Desarrollo de solución analítica para la predicción de la demanda de línea
RESUMEN: Una de las aplicaciones actuales de la ciencia de datos y que ha cobrado gran relevancia, es el aprendizaje y posterior predicción del comportamiento de la demanda de productos, que puede estudiarse a partir de diferentes metodologías estadísticas enfocadas en el tiempo. Sin embargo, debido...
- Autores:
-
Cano Opina, Juan Esteban
- Tipo de recurso:
- http://purl.org/coar/resource_type/c_7a1f
- Fecha de publicación:
- 2021
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- spa
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/18495
- Acceso en línea:
- http://hdl.handle.net/10495/18495
- Palabra clave:
- Análisis de regresión
Regression analysis
Inteligencia artificial
Artificial intelligence
Mercado
Markets
Oferta y demanda
Supply and demand
Productos competitivos
Ventas
Modelos de predicción
Productos alimenticios
http://vocabularies.unesco.org/thesaurus/concept2226
http://vocabularies.unesco.org/thesaurus/concept3052
http://vocabularies.unesco.org/thesaurus/concept13608
http://vocabularies.unesco.org/thesaurus/concept6436
- Rights
- openAccess
- License
- Atribución-NoComercial-CompartirIgual 2.5 Colombia
id |
UDEA2_53da56f3373d6c3ec32173b87138e41b |
---|---|
oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/18495 |
network_acronym_str |
UDEA2 |
network_name_str |
Repositorio UdeA |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Desarrollo de solución analítica para la predicción de la demanda de línea |
title |
Desarrollo de solución analítica para la predicción de la demanda de línea |
spellingShingle |
Desarrollo de solución analítica para la predicción de la demanda de línea Análisis de regresión Regression analysis Inteligencia artificial Artificial intelligence Mercado Markets Oferta y demanda Supply and demand Productos competitivos Ventas Modelos de predicción Productos alimenticios http://vocabularies.unesco.org/thesaurus/concept2226 http://vocabularies.unesco.org/thesaurus/concept3052 http://vocabularies.unesco.org/thesaurus/concept13608 http://vocabularies.unesco.org/thesaurus/concept6436 |
title_short |
Desarrollo de solución analítica para la predicción de la demanda de línea |
title_full |
Desarrollo de solución analítica para la predicción de la demanda de línea |
title_fullStr |
Desarrollo de solución analítica para la predicción de la demanda de línea |
title_full_unstemmed |
Desarrollo de solución analítica para la predicción de la demanda de línea |
title_sort |
Desarrollo de solución analítica para la predicción de la demanda de línea |
dc.creator.fl_str_mv |
Cano Opina, Juan Esteban |
dc.contributor.advisor.none.fl_str_mv |
Llano Ortíz, Carlos Mario |
dc.contributor.author.none.fl_str_mv |
Cano Opina, Juan Esteban |
dc.subject.unesco.none.fl_str_mv |
Análisis de regresión Regression analysis Inteligencia artificial Artificial intelligence Mercado Markets Oferta y demanda Supply and demand |
topic |
Análisis de regresión Regression analysis Inteligencia artificial Artificial intelligence Mercado Markets Oferta y demanda Supply and demand Productos competitivos Ventas Modelos de predicción Productos alimenticios http://vocabularies.unesco.org/thesaurus/concept2226 http://vocabularies.unesco.org/thesaurus/concept3052 http://vocabularies.unesco.org/thesaurus/concept13608 http://vocabularies.unesco.org/thesaurus/concept6436 |
dc.subject.spines.none.fl_str_mv |
Productos competitivos Ventas |
dc.subject.proposal.spa.fl_str_mv |
Modelos de predicción Productos alimenticios |
dc.subject.unescouri.none.fl_str_mv |
http://vocabularies.unesco.org/thesaurus/concept2226 http://vocabularies.unesco.org/thesaurus/concept3052 http://vocabularies.unesco.org/thesaurus/concept13608 http://vocabularies.unesco.org/thesaurus/concept6436 |
description |
RESUMEN: Una de las aplicaciones actuales de la ciencia de datos y que ha cobrado gran relevancia, es el aprendizaje y posterior predicción del comportamiento de la demanda de productos, que puede estudiarse a partir de diferentes metodologías estadísticas enfocadas en el tiempo. Sin embargo, debido a la variabilidad de la demanda y de las variables que la afectan, es cada vez más complejo en el día de hoy realizar una proyección similar a la realidad, sobre todo si existe influencia por otros productos de la compañía o de la competencia. Ejemplo de esto puede ser la activación o creación de ofertas (promociones) que pueden producir como efecto una disminución en la demanda de los productos de línea, este fenómeno se conoce como “canibalización”. El comportamiento de este fenómeno repercute gravemente a la planeación eficiente de la cadena de suministro, en cuyo caso, su incorrecto analisis y pronostico afecta a indicadores importantes como desguace (producto terminado vencido) y nivel de servicio. Por lo anterior, fue necesario construir una solución asertiva para mejorar el entendimiento del fenómeno y para el desarrollo de una solución basada en un modelo de predicción. En primer lugar, se identificaron las variables que afectan la demanda de los productos de línea cuando existen promociones; Luego, se obtuvo la información pertinente de las variables con sus históricos, posteriormente se organizó y se estructuro adecuadamente esta información, de acuerdo a los lineamientos requeridos para la correcta predicción con el fin de aumentar la precisión del modelo a la realidad y por último, se implementó el modelo y se realizaron pruebas de verificación y validación de los resultados para evaluar el rendimiento del modelo con la metodología actual. Todo lo anterior apoyado del equipo comercial y de monitoreo de la cadena de suministro de la compañía. Los resultados del proyecto fueron aceptados por los expertos del negocio y se tomó la decisión de continuar perfeccionando la solución. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-02-17T22:27:43Z |
dc.date.available.none.fl_str_mv |
2021-02-17T22:27:43Z |
dc.date.issued.none.fl_str_mv |
2021 |
dc.type.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
dc.type.hasversion.spa.fl_str_mv |
info:eu-repo/semantics/draft |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/TP |
dc.type.local.spa.fl_str_mv |
Tesis/Trabajo de grado - Monografía - Pregrado |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
draft |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10495/18495 |
url |
http://hdl.handle.net/10495/18495 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.rights.*.fl_str_mv |
Atribución-NoComercial-CompartirIgual 2.5 Colombia |
dc.rights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.*.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/co/ |
dc.rights.accessrights.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.creativecommons.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
rights_invalid_str_mv |
Atribución-NoComercial-CompartirIgual 2.5 Colombia https://creativecommons.org/licenses/by-nc-sa/2.5/co/ http://purl.org/coar/access_right/c_abf2 https://creativecommons.org/licenses/by-nc-sa/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
25 |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
institution |
Universidad de Antioquia |
bitstream.url.fl_str_mv |
http://bibliotecadigital.udea.edu.co/bitstream/10495/18495/4/license_rdf http://bibliotecadigital.udea.edu.co/bitstream/10495/18495/1/CanoJuan_2021_AnaliticaPrediccionDemanda.pdf http://bibliotecadigital.udea.edu.co/bitstream/10495/18495/5/license.txt |
bitstream.checksum.fl_str_mv |
b88b088d9957e670ce3b3fbe2eedbc13 6bf7607bb09a4e7ae6feefad467f05a3 8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Antioquia |
repository.mail.fl_str_mv |
andres.perez@udea.edu.co |
_version_ |
1812173137569120256 |
spelling |
Llano Ortíz, Carlos MarioCano Opina, Juan Esteban2021-02-17T22:27:43Z2021-02-17T22:27:43Z2021http://hdl.handle.net/10495/18495RESUMEN: Una de las aplicaciones actuales de la ciencia de datos y que ha cobrado gran relevancia, es el aprendizaje y posterior predicción del comportamiento de la demanda de productos, que puede estudiarse a partir de diferentes metodologías estadísticas enfocadas en el tiempo. Sin embargo, debido a la variabilidad de la demanda y de las variables que la afectan, es cada vez más complejo en el día de hoy realizar una proyección similar a la realidad, sobre todo si existe influencia por otros productos de la compañía o de la competencia. Ejemplo de esto puede ser la activación o creación de ofertas (promociones) que pueden producir como efecto una disminución en la demanda de los productos de línea, este fenómeno se conoce como “canibalización”. El comportamiento de este fenómeno repercute gravemente a la planeación eficiente de la cadena de suministro, en cuyo caso, su incorrecto analisis y pronostico afecta a indicadores importantes como desguace (producto terminado vencido) y nivel de servicio. Por lo anterior, fue necesario construir una solución asertiva para mejorar el entendimiento del fenómeno y para el desarrollo de una solución basada en un modelo de predicción. En primer lugar, se identificaron las variables que afectan la demanda de los productos de línea cuando existen promociones; Luego, se obtuvo la información pertinente de las variables con sus históricos, posteriormente se organizó y se estructuro adecuadamente esta información, de acuerdo a los lineamientos requeridos para la correcta predicción con el fin de aumentar la precisión del modelo a la realidad y por último, se implementó el modelo y se realizaron pruebas de verificación y validación de los resultados para evaluar el rendimiento del modelo con la metodología actual. Todo lo anterior apoyado del equipo comercial y de monitoreo de la cadena de suministro de la compañía. Los resultados del proyecto fueron aceptados por los expertos del negocio y se tomó la decisión de continuar perfeccionando la solución.25application/pdfspainfo:eu-repo/semantics/draftinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1f http://purl.org/coar/resource_type/c_7a1fhttps://purl.org/redcol/resource_type/TPTesis/Trabajo de grado - Monografía - Pregradohttp://purl.org/coar/version/c_b1a7d7d4d402bcceAtribución-NoComercial-CompartirIgual 2.5 Colombiainfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/co/http://purl.org/coar/access_right/c_abf2https://creativecommons.org/licenses/by-nc-sa/4.0/Desarrollo de solución analítica para la predicción de la demanda de líneaMedellín, ColombiaAnálisis de regresiónRegression analysisInteligencia artificialArtificial intelligenceMercadoMarketsOferta y demandaSupply and demandProductos competitivosVentasModelos de predicciónProductos alimenticioshttp://vocabularies.unesco.org/thesaurus/concept2226http://vocabularies.unesco.org/thesaurus/concept3052http://vocabularies.unesco.org/thesaurus/concept13608http://vocabularies.unesco.org/thesaurus/concept6436Ingeniero IndustrialPregradoFacultad de Ingeniería. Carrera de Ingeniería IndustrialUniversidad de AntioquiaCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8823http://bibliotecadigital.udea.edu.co/bitstream/10495/18495/4/license_rdfb88b088d9957e670ce3b3fbe2eedbc13MD54ORIGINALCanoJuan_2021_AnaliticaPrediccionDemanda.pdfCanoJuan_2021_AnaliticaPrediccionDemanda.pdfTrabajo de grado de pregradoapplication/pdf893800http://bibliotecadigital.udea.edu.co/bitstream/10495/18495/1/CanoJuan_2021_AnaliticaPrediccionDemanda.pdf6bf7607bb09a4e7ae6feefad467f05a3MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://bibliotecadigital.udea.edu.co/bitstream/10495/18495/5/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5510495/18495oai:bibliotecadigital.udea.edu.co:10495/184952021-06-29 12:39:25.24Repositorio Institucional Universidad de Antioquiaandres.perez@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |