Pronóstico de insolvencia empresarial en Colombia a través de indicadores financieros

RESUMEN: La insolvencia empresarial afecta tanto a las empresas que entran en este proceso como a sus proveedores de bienes y servicios. Esta investigación hace uso de indicadores financieros para pronosticar la insolvencia empresarial con un año de anticipación. El estudio fue aplicado a 2.988 empr...

Full description

Autores:
Correa Mejía, Diego Andrés
Lópera Castaño, Mauricio
Tipo de recurso:
Article of investigation
Fecha de publicación:
2019
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
spa
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/15507
Acceso en línea:
http://hdl.handle.net/10495/15507
Palabra clave:
Quiebra
Bankruptcy
Indicadores económicos
Economic indicators
Rights
openAccess
License
Atribución-NoComercial-CompartirIgual 2.5 Colombia (CC BY-NC-SA 2.5 CO)
id UDEA2_52067f175f7f3b7e498190ab7c94fed5
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/15507
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Pronóstico de insolvencia empresarial en Colombia a través de indicadores financieros
dc.title.alternative.spa.fl_str_mv Forecast of Business Insolvency in Colombia Through Financial Indicators
title Pronóstico de insolvencia empresarial en Colombia a través de indicadores financieros
spellingShingle Pronóstico de insolvencia empresarial en Colombia a través de indicadores financieros
Quiebra
Bankruptcy
Indicadores económicos
Economic indicators
title_short Pronóstico de insolvencia empresarial en Colombia a través de indicadores financieros
title_full Pronóstico de insolvencia empresarial en Colombia a través de indicadores financieros
title_fullStr Pronóstico de insolvencia empresarial en Colombia a través de indicadores financieros
title_full_unstemmed Pronóstico de insolvencia empresarial en Colombia a través de indicadores financieros
title_sort Pronóstico de insolvencia empresarial en Colombia a través de indicadores financieros
dc.creator.fl_str_mv Correa Mejía, Diego Andrés
Lópera Castaño, Mauricio
dc.contributor.author.none.fl_str_mv Correa Mejía, Diego Andrés
Lópera Castaño, Mauricio
dc.subject.lemb.none.fl_str_mv Quiebra
Bankruptcy
topic Quiebra
Bankruptcy
Indicadores económicos
Economic indicators
dc.subject.ocde.none.fl_str_mv Indicadores económicos
Economic indicators
description RESUMEN: La insolvencia empresarial afecta tanto a las empresas que entran en este proceso como a sus proveedores de bienes y servicios. Esta investigación hace uso de indicadores financieros para pronosticar la insolvencia empresarial con un año de anticipación. El estudio fue aplicado a 2.988 empresas que reportaron información financiera a la Superintendencia de Sociedades (Colombia) durante el año 2017, de las cuales 127 entraron en proceso de insolvencia en 2018. El pronóstico considera indicadores financieros de liquidez, rentabilidad y endeudamiento, y contrasta los resultados de la regresión logística con el algoritmo boosting. Se concluye que los indicadores financieros permiten pronosticar la insolvencia empresarial, sin embargo se debe recurrir a metodologías no tradicionales como el algoritmo boosting que consideren la asimetría de la información. ABSTRACT: Business insolvency affects both companies that enter this process and their suppliers of goods and services. This research uses financial indicators to forecast business insolvency one year in advance.The study was applied to 2,988 companies that reported financial information to the Superintendency of Companies (Colombia) during 2017, of which 127 went into insolvency in 2018. The forecast considers financial indicators of liquidity, profitability and indebtedness, and contrasts the results of the logistic regression with the boosting algorithm. It is concluded that financial indicators allow predicting business insolvency. However, non-traditional methodologies such as the boosting algorithm that consider the information asymmetry should be used.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2020-07-17T17:48:34Z
dc.date.available.none.fl_str_mv 2020-07-17T17:48:34Z
dc.type.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.local.spa.fl_str_mv Artículo de investigación
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 0122-8900
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10495/15507
dc.identifier.doi.none.fl_str_mv 10.32997/2463-0470-vol.27-num.2-2019-2639
dc.identifier.eissn.none.fl_str_mv 2463-0470
identifier_str_mv 0122-8900
10.32997/2463-0470-vol.27-num.2-2019-2639
2463-0470
url http://hdl.handle.net/10495/15507
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.*.fl_str_mv Atribución-NoComercial-CompartirIgual 2.5 Colombia (CC BY-NC-SA 2.5 CO)
dc.rights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/co/
dc.rights.accessrights.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.creativecommons.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
rights_invalid_str_mv Atribución-NoComercial-CompartirIgual 2.5 Colombia (CC BY-NC-SA 2.5 CO)
https://creativecommons.org/licenses/by-nc-sa/2.5/co/
http://purl.org/coar/access_right/c_abf2
https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad de Cartagena, Facultad de Ciencias Económicas
dc.publisher.place.spa.fl_str_mv Cartagena, Colombia
institution Universidad de Antioquia
bitstream.url.fl_str_mv http://bibliotecadigital.udea.edu.co/bitstream/10495/15507/1/CorreaMejiaDiego_2019_PronosticoInsolvenciaEmpresarial.pdf
http://bibliotecadigital.udea.edu.co/bitstream/10495/15507/2/license_rdf
http://bibliotecadigital.udea.edu.co/bitstream/10495/15507/3/license.txt
bitstream.checksum.fl_str_mv 46d357d9aa3e08fa1feb5c6d3a4d99a3
b88b088d9957e670ce3b3fbe2eedbc13
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Antioquia
repository.mail.fl_str_mv andres.perez@udea.edu.co
_version_ 1812173199517941760
spelling Correa Mejía, Diego AndrésLópera Castaño, Mauricio2020-07-17T17:48:34Z2020-07-17T17:48:34Z20190122-8900http://hdl.handle.net/10495/1550710.32997/2463-0470-vol.27-num.2-2019-26392463-0470RESUMEN: La insolvencia empresarial afecta tanto a las empresas que entran en este proceso como a sus proveedores de bienes y servicios. Esta investigación hace uso de indicadores financieros para pronosticar la insolvencia empresarial con un año de anticipación. El estudio fue aplicado a 2.988 empresas que reportaron información financiera a la Superintendencia de Sociedades (Colombia) durante el año 2017, de las cuales 127 entraron en proceso de insolvencia en 2018. El pronóstico considera indicadores financieros de liquidez, rentabilidad y endeudamiento, y contrasta los resultados de la regresión logística con el algoritmo boosting. Se concluye que los indicadores financieros permiten pronosticar la insolvencia empresarial, sin embargo se debe recurrir a metodologías no tradicionales como el algoritmo boosting que consideren la asimetría de la información. ABSTRACT: Business insolvency affects both companies that enter this process and their suppliers of goods and services. This research uses financial indicators to forecast business insolvency one year in advance.The study was applied to 2,988 companies that reported financial information to the Superintendency of Companies (Colombia) during 2017, of which 127 went into insolvency in 2018. The forecast considers financial indicators of liquidity, profitability and indebtedness, and contrasts the results of the logistic regression with the boosting algorithm. It is concluded that financial indicators allow predicting business insolvency. However, non-traditional methodologies such as the boosting algorithm that consider the information asymmetry should be used.application/pdfspaUniversidad de Cartagena, Facultad de Ciencias EconómicasCartagena, Colombiainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARTArtículo de investigaciónhttp://purl.org/coar/version/c_970fb48d4fbd8a85Atribución-NoComercial-CompartirIgual 2.5 Colombia (CC BY-NC-SA 2.5 CO)info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/co/http://purl.org/coar/access_right/c_abf2https://creativecommons.org/licenses/by-nc-sa/4.0/Pronóstico de insolvencia empresarial en Colombia a través de indicadores financierosForecast of Business Insolvency in Colombia Through Financial IndicatorsQuiebraBankruptcyIndicadores económicosEconomic indicatorsPanorama EconómicoORIGINALCorreaMejiaDiego_2019_PronosticoInsolvenciaEmpresarial.pdfCorreaMejiaDiego_2019_PronosticoInsolvenciaEmpresarial.pdfArtículo de investigaciónapplication/pdf1206671http://bibliotecadigital.udea.edu.co/bitstream/10495/15507/1/CorreaMejiaDiego_2019_PronosticoInsolvenciaEmpresarial.pdf46d357d9aa3e08fa1feb5c6d3a4d99a3MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8823http://bibliotecadigital.udea.edu.co/bitstream/10495/15507/2/license_rdfb88b088d9957e670ce3b3fbe2eedbc13MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://bibliotecadigital.udea.edu.co/bitstream/10495/15507/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5310495/15507oai:bibliotecadigital.udea.edu.co:10495/155072021-04-30 18:19:06.934Repositorio Institucional Universidad de Antioquiaandres.perez@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=