Properties of the bivariate confluent hypergeometric function kind 1 distribution
ABSTRACT: The bivariate confluent hypergeometric function kind 1 distribution is defined by the probability density function proportional to x1ν1 − 1 x2ν2 − 11F1(α; β; −x1 − x2). In this article, we study several properties of this distribution and derive density functions of X1/X2, X1/(X1 + X2), X1...
- Autores:
-
Nagar, Daya Krishna
Sepulveda Murillo, Fabio Humberto
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2011
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/30378
- Acceso en línea:
- https://hdl.handle.net/10495/30378
- Palabra clave:
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by/2.5/co/
id |
UDEA2_516632748e944754cb95175c679bcb4c |
---|---|
oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/30378 |
network_acronym_str |
UDEA2 |
network_name_str |
Repositorio UdeA |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Properties of the bivariate confluent hypergeometric function kind 1 distribution |
title |
Properties of the bivariate confluent hypergeometric function kind 1 distribution |
spellingShingle |
Properties of the bivariate confluent hypergeometric function kind 1 distribution |
title_short |
Properties of the bivariate confluent hypergeometric function kind 1 distribution |
title_full |
Properties of the bivariate confluent hypergeometric function kind 1 distribution |
title_fullStr |
Properties of the bivariate confluent hypergeometric function kind 1 distribution |
title_full_unstemmed |
Properties of the bivariate confluent hypergeometric function kind 1 distribution |
title_sort |
Properties of the bivariate confluent hypergeometric function kind 1 distribution |
dc.creator.fl_str_mv |
Nagar, Daya Krishna Sepulveda Murillo, Fabio Humberto |
dc.contributor.author.none.fl_str_mv |
Nagar, Daya Krishna Sepulveda Murillo, Fabio Humberto |
description |
ABSTRACT: The bivariate confluent hypergeometric function kind 1 distribution is defined by the probability density function proportional to x1ν1 − 1 x2ν2 − 11F1(α; β; −x1 − x2). In this article, we study several properties of this distribution and derive density functions of X1/X2, X1/(X1 + X2), X1 + X2 and 2 √(X1 X2). The density function of 2 √(X1 X2) is represented in terms of modified Bessel function of the second kind. We also show that for ν1 − ν2 = 1/2, 2 √(X1 X2) follows a confluent hypergeometric function kind 1 distribution. |
publishDate |
2011 |
dc.date.issued.none.fl_str_mv |
2011 |
dc.date.accessioned.none.fl_str_mv |
2022-09-02T17:24:10Z |
dc.date.available.none.fl_str_mv |
2022-09-02T17:24:10Z |
dc.type.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.hasversion.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/ART |
dc.type.local.spa.fl_str_mv |
Artículo de investigación |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
0041-6932 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10495/30378 |
dc.identifier.eissn.none.fl_str_mv |
1669-9637 |
identifier_str_mv |
0041-6932 1669-9637 |
url |
https://hdl.handle.net/10495/30378 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournalabbrev.spa.fl_str_mv |
Rev. Unión Mat. Argent. |
dc.rights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by/2.5/co/ |
dc.rights.accessrights.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.creativecommons.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/co/ http://purl.org/coar/access_right/c_abf2 https://creativecommons.org/licenses/by/4.0/ |
dc.format.extent.spa.fl_str_mv |
11 |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Unión Matemática Argentina |
dc.publisher.group.spa.fl_str_mv |
Análisis Multivariado |
dc.publisher.place.spa.fl_str_mv |
Bahía Blanca, Argentina |
institution |
Universidad de Antioquia |
bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstream/10495/30378/3/license.txt https://bibliotecadigital.udea.edu.co/bitstream/10495/30378/1/NagarDaya_2011_PropertiesBivariateConfluent%c2%a0.pdf https://bibliotecadigital.udea.edu.co/bitstream/10495/30378/2/license_rdf |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 c5639d0c9fd88550a946708134f78dbb 1646d1f6b96dbbbc38035efc9239ac9c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Antioquia |
repository.mail.fl_str_mv |
andres.perez@udea.edu.co |
_version_ |
1812173238603612160 |
spelling |
Nagar, Daya KrishnaSepulveda Murillo, Fabio Humberto2022-09-02T17:24:10Z2022-09-02T17:24:10Z20110041-6932https://hdl.handle.net/10495/303781669-9637ABSTRACT: The bivariate confluent hypergeometric function kind 1 distribution is defined by the probability density function proportional to x1ν1 − 1 x2ν2 − 11F1(α; β; −x1 − x2). In this article, we study several properties of this distribution and derive density functions of X1/X2, X1/(X1 + X2), X1 + X2 and 2 √(X1 X2). The density function of 2 √(X1 X2) is represented in terms of modified Bessel function of the second kind. We also show that for ν1 − ν2 = 1/2, 2 √(X1 X2) follows a confluent hypergeometric function kind 1 distribution.COL000053211application/pdfengUnión Matemática ArgentinaAnálisis MultivariadoBahía Blanca, Argentinainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARTArtículo de investigaciónhttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/co/http://purl.org/coar/access_right/c_abf2https://creativecommons.org/licenses/by/4.0/Properties of the bivariate confluent hypergeometric function kind 1 distributionRev. Unión Mat. Argent.Revista de la Unión Matemática Argentina1121521LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstream/10495/30378/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53ORIGINALNagarDaya_2011_PropertiesBivariateConfluent .pdfNagarDaya_2011_PropertiesBivariateConfluent .pdfArtículo de investigaciónapplication/pdf164139https://bibliotecadigital.udea.edu.co/bitstream/10495/30378/1/NagarDaya_2011_PropertiesBivariateConfluent%c2%a0.pdfc5639d0c9fd88550a946708134f78dbbMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8927https://bibliotecadigital.udea.edu.co/bitstream/10495/30378/2/license_rdf1646d1f6b96dbbbc38035efc9239ac9cMD5210495/30378oai:bibliotecadigital.udea.edu.co:10495/303782022-09-02 12:24:10.854Repositorio Institucional Universidad de Antioquiaandres.perez@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |