Properties of the bivariate confluent hypergeometric function kind 1 distribution
ABSTRACT: The bivariate confluent hypergeometric function kind 1 distribution is defined by the probability density function proportional to x1ν1 − 1 x2ν2 − 11F1(α; β; −x1 − x2). In this article, we study several properties of this distribution and derive density functions of X1/X2, X1/(X1 + X2), X1...
- Autores:
-
Nagar, Daya Krishna
Sepulveda Murillo, Fabio Humberto
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2011
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/30378
- Acceso en línea:
- https://hdl.handle.net/10495/30378
- Palabra clave:
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by/2.5/co/
Summary: | ABSTRACT: The bivariate confluent hypergeometric function kind 1 distribution is defined by the probability density function proportional to x1ν1 − 1 x2ν2 − 11F1(α; β; −x1 − x2). In this article, we study several properties of this distribution and derive density functions of X1/X2, X1/(X1 + X2), X1 + X2 and 2 √(X1 X2). The density function of 2 √(X1 X2) is represented in terms of modified Bessel function of the second kind. We also show that for ν1 − ν2 = 1/2, 2 √(X1 X2) follows a confluent hypergeometric function kind 1 distribution. |
---|