Bivariate Extended Confluent Hypergeometric Function Distribution

ABSTRACT: In this article, we define a bivariate extended confluent hypergeometric function density in terms of extended confluent hypergeometric function. We also derive several of its properties and results in terms of extended beta, extended confluent hypergeometric, and modified Bessel functions...

Full description

Autores:
Nagar, Daya Krishna
Morán Vásquez, Raúl Alejandro
Roldán Correa, Alejandro
Tipo de recurso:
Article of investigation
Fecha de publicación:
2013
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/26754
Acceso en línea:
http://hdl.handle.net/10495/26754
Palabra clave:
Beta distribution
Bivariate distribution
Extended beta function
Extended confluent hypergeometric function
Quotient
Gauss hypergeometric function
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id UDEA2_50cd306e04fc0a742131ca96173387dc
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/26754
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Bivariate Extended Confluent Hypergeometric Function Distribution
title Bivariate Extended Confluent Hypergeometric Function Distribution
spellingShingle Bivariate Extended Confluent Hypergeometric Function Distribution
Beta distribution
Bivariate distribution
Extended beta function
Extended confluent hypergeometric function
Quotient
Gauss hypergeometric function
title_short Bivariate Extended Confluent Hypergeometric Function Distribution
title_full Bivariate Extended Confluent Hypergeometric Function Distribution
title_fullStr Bivariate Extended Confluent Hypergeometric Function Distribution
title_full_unstemmed Bivariate Extended Confluent Hypergeometric Function Distribution
title_sort Bivariate Extended Confluent Hypergeometric Function Distribution
dc.creator.fl_str_mv Nagar, Daya Krishna
Morán Vásquez, Raúl Alejandro
Roldán Correa, Alejandro
dc.contributor.author.none.fl_str_mv Nagar, Daya Krishna
Morán Vásquez, Raúl Alejandro
Roldán Correa, Alejandro
dc.subject.proposal.spa.fl_str_mv Beta distribution
Bivariate distribution
Extended beta function
Extended confluent hypergeometric function
Quotient
Gauss hypergeometric function
topic Beta distribution
Bivariate distribution
Extended beta function
Extended confluent hypergeometric function
Quotient
Gauss hypergeometric function
description ABSTRACT: In this article, we define a bivariate extended confluent hypergeometric function density in terms of extended confluent hypergeometric function. We also derive several of its properties and results in terms of extended beta, extended confluent hypergeometric, and modified Bessel functions.
publishDate 2013
dc.date.issued.none.fl_str_mv 2013
dc.date.accessioned.none.fl_str_mv 2022-03-20T14:36:16Z
dc.date.available.none.fl_str_mv 2022-03-20T14:36:16Z
dc.type.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.local.spa.fl_str_mv Artículo de investigación
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Nagar, D., Morán, R., & Roldán, A. (2013) Bivariate Extended Confluent Hypergeometric Function Distribution, American Journal of Mathematical and Management Sciences, 32:2, 91-100, DOI: 10.1080/01966324.2013.830235
dc.identifier.issn.none.fl_str_mv 0196-6324
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10495/26754
dc.identifier.doi.none.fl_str_mv 10.1080/01966324.2013.830235
dc.identifier.eissn.none.fl_str_mv 2325-8454
identifier_str_mv Nagar, D., Morán, R., & Roldán, A. (2013) Bivariate Extended Confluent Hypergeometric Function Distribution, American Journal of Mathematical and Management Sciences, 32:2, 91-100, DOI: 10.1080/01966324.2013.830235
0196-6324
10.1080/01966324.2013.830235
2325-8454
url http://hdl.handle.net/10495/26754
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournalabbrev.spa.fl_str_mv Am. J. Math. Manag.
dc.rights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.accessrights.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.creativecommons.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
http://purl.org/coar/access_right/c_abf2
https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.extent.spa.fl_str_mv 10
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Taylor and Francis
dc.publisher.group.spa.fl_str_mv Análisis Multivariado
dc.publisher.place.spa.fl_str_mv Londres, Inglaterra
institution Universidad de Antioquia
bitstream.url.fl_str_mv http://bibliotecadigital.udea.edu.co/bitstream/10495/26754/2/license_rdf
http://bibliotecadigital.udea.edu.co/bitstream/10495/26754/1/NagarDaya_2013_BivariateHypergeometricFunction.pdf
http://bibliotecadigital.udea.edu.co/bitstream/10495/26754/3/license.txt
bitstream.checksum.fl_str_mv b88b088d9957e670ce3b3fbe2eedbc13
653a1ae7589285a8f62a3292c42af6ef
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Antioquia
repository.mail.fl_str_mv andres.perez@udea.edu.co
_version_ 1812173240335859712
spelling Nagar, Daya KrishnaMorán Vásquez, Raúl AlejandroRoldán Correa, Alejandro2022-03-20T14:36:16Z2022-03-20T14:36:16Z2013Nagar, D., Morán, R., & Roldán, A. (2013) Bivariate Extended Confluent Hypergeometric Function Distribution, American Journal of Mathematical and Management Sciences, 32:2, 91-100, DOI: 10.1080/01966324.2013.8302350196-6324http://hdl.handle.net/10495/2675410.1080/01966324.2013.8302352325-8454ABSTRACT: In this article, we define a bivariate extended confluent hypergeometric function density in terms of extended confluent hypergeometric function. We also derive several of its properties and results in terms of extended beta, extended confluent hypergeometric, and modified Bessel functions.COL000053210application/pdfengTaylor and FrancisAnálisis MultivariadoLondres, Inglaterrainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARTArtículo de investigaciónhttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/http://purl.org/coar/access_right/c_abf2https://creativecommons.org/licenses/by-nc-nd/4.0/Bivariate Extended Confluent Hypergeometric Function DistributionBeta distributionBivariate distributionExtended beta functionExtended confluent hypergeometric functionQuotientGauss hypergeometric functionAm. J. Math. Manag.American Journal of Mathematical and Management Sciences91100322CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8823http://bibliotecadigital.udea.edu.co/bitstream/10495/26754/2/license_rdfb88b088d9957e670ce3b3fbe2eedbc13MD52ORIGINALNagarDaya_2013_BivariateHypergeometricFunction.pdfNagarDaya_2013_BivariateHypergeometricFunction.pdfArtículo de investigaciónapplication/pdf77848http://bibliotecadigital.udea.edu.co/bitstream/10495/26754/1/NagarDaya_2013_BivariateHypergeometricFunction.pdf653a1ae7589285a8f62a3292c42af6efMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://bibliotecadigital.udea.edu.co/bitstream/10495/26754/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5310495/26754oai:bibliotecadigital.udea.edu.co:10495/267542022-03-22 16:34:48.115Repositorio Institucional Universidad de Antioquiaandres.perez@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=