One step synthesis of magnetic particles covered with casein surfactant

ABSTRACT: The one-step coprecipitation method is used to obtain magnetic nanoparticles controlling the pH (10 and 12), and casein surfactant (CS) concentrations (1 % and 3 % (m/m)). CS has not been used so far for stabilizing magnetic iron oxide ferrofluids. The magnetic nanoparticles have a magneti...

Full description

Autores:
Urquijo Morales, Jeaneth Patricia
Casanova Yepes, Herley Fernando
Morales Aramburo, Álvaro Luis
Zysler, Roberto Daniel
Tipo de recurso:
Article of investigation
Fecha de publicación:
2014
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/29789
Acceso en línea:
https://hdl.handle.net/10495/29789
https://revistas.eia.edu.co/index.php/reveia/article/view/577
Palabra clave:
Espectroscopia de Mossbauer
Mossbauer spectroscopy
Nanopartículas magnéticas
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id UDEA2_4b129a7d6f5f9cc0c4433126e6e9bfd9
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/29789
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv One step synthesis of magnetic particles covered with casein surfactant
dc.title.alternative.spa.fl_str_mv Síntesis de partículas magnéticas cubiertas con caseinato de sodio
title One step synthesis of magnetic particles covered with casein surfactant
spellingShingle One step synthesis of magnetic particles covered with casein surfactant
Espectroscopia de Mossbauer
Mossbauer spectroscopy
Nanopartículas magnéticas
title_short One step synthesis of magnetic particles covered with casein surfactant
title_full One step synthesis of magnetic particles covered with casein surfactant
title_fullStr One step synthesis of magnetic particles covered with casein surfactant
title_full_unstemmed One step synthesis of magnetic particles covered with casein surfactant
title_sort One step synthesis of magnetic particles covered with casein surfactant
dc.creator.fl_str_mv Urquijo Morales, Jeaneth Patricia
Casanova Yepes, Herley Fernando
Morales Aramburo, Álvaro Luis
Zysler, Roberto Daniel
dc.contributor.author.none.fl_str_mv Urquijo Morales, Jeaneth Patricia
Casanova Yepes, Herley Fernando
Morales Aramburo, Álvaro Luis
Zysler, Roberto Daniel
dc.subject.lemb.none.fl_str_mv Espectroscopia de Mossbauer
Mossbauer spectroscopy
topic Espectroscopia de Mossbauer
Mossbauer spectroscopy
Nanopartículas magnéticas
dc.subject.proposal.spa.fl_str_mv Nanopartículas magnéticas
description ABSTRACT: The one-step coprecipitation method is used to obtain magnetic nanoparticles controlling the pH (10 and 12), and casein surfactant (CS) concentrations (1 % and 3 % (m/m)). CS has not been used so far for stabilizing magnetic iron oxide ferrofluids. The magnetic nanoparticles have a magnetite core with maghemite in surface, and a shell of polymer. The transmission electron images confirm the crystallinity, particle size distribution in the range of 5-10 nm, and the spinel structure of the nanoparticles. Mössbauer results at 80 K showed line shapes dominated by magnetic relaxation effects with sextets and combinations of sextets and doublets. The interactions of the surfactant with the nanoparticle surface are strong showing at least two surfactant layers. The magnetic behavior was evaluated by moment versus temperature and magnetic field measurements. The nanoparticles showed superparamagnetic behavior at room temperature and blocked (irreversible) behavior at 5 K. The saturation magnetization presented lower values than reported bulk systems due to the presence of a large layer of maghemite. The FC/ZFC magnetization vs. temperature curves confirmed the superparamagnetic nature of the iron oxide particles and the strong interactions for pH 12 samples and weak interactions for pH 10 samples. The particle growth was dominated by the surface properties of the nanoparticles.
publishDate 2014
dc.date.issued.none.fl_str_mv 2014
dc.date.accessioned.none.fl_str_mv 2022-07-18T22:25:28Z
dc.date.available.none.fl_str_mv 2022-07-18T22:25:28Z
dc.type.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.local.spa.fl_str_mv Artículo de investigación
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 1794-1237
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/29789
dc.identifier.doi.none.fl_str_mv 10.14508/reia.2013.10.20.13-22
dc.identifier.eissn.none.fl_str_mv 2463-0950
dc.identifier.url.spa.fl_str_mv https://revistas.eia.edu.co/index.php/reveia/article/view/577
identifier_str_mv 1794-1237
10.14508/reia.2013.10.20.13-22
2463-0950
url https://hdl.handle.net/10495/29789
https://revistas.eia.edu.co/index.php/reveia/article/view/577
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournalabbrev.spa.fl_str_mv Revista EIA
dc.rights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.accessrights.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.creativecommons.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
http://purl.org/coar/access_right/c_abf2
https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.extent.spa.fl_str_mv 13
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Escuela de Ingeniería de Antioquia
dc.publisher.group.spa.fl_str_mv Grupo de Coloides
dc.publisher.place.spa.fl_str_mv Envigado, Colombia
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstream/10495/29789/1/UrquijoJeaneth_2014_OneStepSynthesisMagneticParticles%20.pdf
https://bibliotecadigital.udea.edu.co/bitstream/10495/29789/2/license_rdf
https://bibliotecadigital.udea.edu.co/bitstream/10495/29789/3/license.txt
bitstream.checksum.fl_str_mv a414f65e0241c2d13a68d7e7785e4860
b88b088d9957e670ce3b3fbe2eedbc13
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Antioquia
repository.mail.fl_str_mv andres.perez@udea.edu.co
_version_ 1812173096556167168
spelling Urquijo Morales, Jeaneth PatriciaCasanova Yepes, Herley FernandoMorales Aramburo, Álvaro LuisZysler, Roberto Daniel2022-07-18T22:25:28Z2022-07-18T22:25:28Z20141794-1237https://hdl.handle.net/10495/2978910.14508/reia.2013.10.20.13-222463-0950https://revistas.eia.edu.co/index.php/reveia/article/view/577ABSTRACT: The one-step coprecipitation method is used to obtain magnetic nanoparticles controlling the pH (10 and 12), and casein surfactant (CS) concentrations (1 % and 3 % (m/m)). CS has not been used so far for stabilizing magnetic iron oxide ferrofluids. The magnetic nanoparticles have a magnetite core with maghemite in surface, and a shell of polymer. The transmission electron images confirm the crystallinity, particle size distribution in the range of 5-10 nm, and the spinel structure of the nanoparticles. Mössbauer results at 80 K showed line shapes dominated by magnetic relaxation effects with sextets and combinations of sextets and doublets. The interactions of the surfactant with the nanoparticle surface are strong showing at least two surfactant layers. The magnetic behavior was evaluated by moment versus temperature and magnetic field measurements. The nanoparticles showed superparamagnetic behavior at room temperature and blocked (irreversible) behavior at 5 K. The saturation magnetization presented lower values than reported bulk systems due to the presence of a large layer of maghemite. The FC/ZFC magnetization vs. temperature curves confirmed the superparamagnetic nature of the iron oxide particles and the strong interactions for pH 12 samples and weak interactions for pH 10 samples. The particle growth was dominated by the surface properties of the nanoparticles.RESUMEN: Se usa el método de coprecipitación para obtener nanopartículas magnéticas controlando el pH (10 y 12) y la concentración del caseinato de sodio (CS) (1 % y 3 %(m/m)). CS no se ha utilizado hasta el momento para estabilizar ferrofluidos magnéticos. Las partículas muestran un núcleo de magnetita, una capa de maghemita sobre el mismo, y otra capa exterior de la proteína. La microscopía electrónica de transmisión muestra partículas cristalinas, una distribu-ción de tamaños entre 5-10 nm, y la estructura de espinela. Los resultados Mössbauer a 80 K muestran formas de línea dominadas por efectos de relajación magnética. La interacción de la proteína con la superficie de las nanopartículas es fuerte y muestra varias capas de proteína. El comportamiento magnético se evaluó mediante medidas termomagnéticas y de momento versus campo magnético. Estas revelaron un sistema superparamagnético a 300 K y bloqueado a 5 K. La magnetización de saturación mostró valores menores que en el volumen posiblemete debido a la presencia de la maghemita. Las medidas termomagnéticas confirmaron el superparamagnetismo y mostraron que las muestras obtenidas a pH 12 presentan interacciones fuertes mientras que las de pH 10 muestran interacciones débiles. El crecimiento de las partículas fue dominado por las propiedades superficiales de las partículas.COL000787413application/pdfengEscuela de Ingeniería de AntioquiaGrupo de ColoidesEnvigado, Colombiainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARTArtículo de investigaciónhttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/http://purl.org/coar/access_right/c_abf2https://creativecommons.org/licenses/by-nc-nd/4.0/One step synthesis of magnetic particles covered with casein surfactantSíntesis de partículas magnéticas cubiertas con caseinato de sodioEspectroscopia de MossbauerMossbauer spectroscopyNanopartículas magnéticasRevista EIARevista EIAE47E5911Edición Especial 1ORIGINALUrquijoJeaneth_2014_OneStepSynthesisMagneticParticles .pdfUrquijoJeaneth_2014_OneStepSynthesisMagneticParticles .pdfArtículo de investigaciónapplication/pdf2442327https://bibliotecadigital.udea.edu.co/bitstream/10495/29789/1/UrquijoJeaneth_2014_OneStepSynthesisMagneticParticles%20.pdfa414f65e0241c2d13a68d7e7785e4860MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8823https://bibliotecadigital.udea.edu.co/bitstream/10495/29789/2/license_rdfb88b088d9957e670ce3b3fbe2eedbc13MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstream/10495/29789/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5310495/29789oai:bibliotecadigital.udea.edu.co:10495/297892022-07-18 17:25:28.751Repositorio Institucional Universidad de Antioquiaandres.perez@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=