Automatic segmentation of lizard spots using an active contour model
RESUMEN: La biometría en animales es una tarea desafiante. En la literatura muchos algoritmos se han utilizado, como, por ejemplo, el reconocimiento de los pechos en pingüinos, el reconocimiento de las orejas en elefantes y el reconocimiento de los patrones de rayas en leopardos. No cabe duda que aú...
- Autores:
-
Salazar Jiménez, Augusto Enrique
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2016
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/5916
- Acceso en línea:
- http://hdl.handle.net/10495/5916
- Palabra clave:
- Biometría
Lagartos
Filtrado (informática)
Morfología (Biología)
Segmentación de imágenes
- Rights
- openAccess
- License
- Atribución-NoComercial-CompartirIgual 2.5 Colombia (CC BY-NC-SA 2.5 CO)
Summary: | RESUMEN: La biometría en animales es una tarea desafiante. En la literatura muchos algoritmos se han utilizado, como, por ejemplo, el reconocimiento de los pechos en pingüinos, el reconocimiento de las orejas en elefantes y el reconocimiento de los patrones de rayas en leopardos. No cabe duda que aún hay mucho trabajo para hacer un uso masivo de la tecnología. En este artículo proponemos un algoritmo de segmentación para extraer manchas de la especie de lagartos Diploglossus millepunctatus, amenazada por la actividad humana. La segmentación automática ha sido lograda con una combinación de preprocesamiento, contornos activos y morfología. Los parámetros de cada etapa del algoritmo de segmentación han sido optimizados usando imágenes de referencia como objetivo. Los resultados muestran que la segmentación automática de manchas es posible. Un 78,37% de segmentación correcta en promedio es alcanzado. |
---|