Evaluation of a Graph Reconstruction Method of Missing Data in Air Quality: Application to the Aburrá Valley, Colombia

ABSTRACT: Air pollution is an environmental issue that concerns human health all around the world. The air quality is affected by human emissions, meteorological conditions, and topography. The measurement of pollutants is an important task to make better decisions for controlling high pollution con...

Full description

Autores:
Botello Velasquez, Maria Camila
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2021
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
spa
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/20032
Acceso en línea:
http://hdl.handle.net/10495/20032
Palabra clave:
Environmental quality
Calidad ambiental
Air pollution
Contaminación atmosférica
Meteorology
Meteorología
Measurement
Medición
Data analysis
Análisis de datos
Air quality
Missing data
Data reconstruction
Graph signal processing
http://vocabularies.unesco.org/thesaurus/concept4533
http://vocabularies.unesco.org/thesaurus/concept1946
http://vocabularies.unesco.org/thesaurus/concept185
http://vocabularies.unesco.org/thesaurus/concept5899
http://vocabularies.unesco.org/thesaurus/concept2214
Rights
openAccess
License
Atribución-NoComercial-CompartirIgual 2.5 Colombia
id UDEA2_3aa5e3cd0c171814020ac73c5dda3b29
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/20032
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Evaluation of a Graph Reconstruction Method of Missing Data in Air Quality: Application to the Aburrá Valley, Colombia
title Evaluation of a Graph Reconstruction Method of Missing Data in Air Quality: Application to the Aburrá Valley, Colombia
spellingShingle Evaluation of a Graph Reconstruction Method of Missing Data in Air Quality: Application to the Aburrá Valley, Colombia
Environmental quality
Calidad ambiental
Air pollution
Contaminación atmosférica
Meteorology
Meteorología
Measurement
Medición
Data analysis
Análisis de datos
Air quality
Missing data
Data reconstruction
Graph signal processing
http://vocabularies.unesco.org/thesaurus/concept4533
http://vocabularies.unesco.org/thesaurus/concept1946
http://vocabularies.unesco.org/thesaurus/concept185
http://vocabularies.unesco.org/thesaurus/concept5899
http://vocabularies.unesco.org/thesaurus/concept2214
title_short Evaluation of a Graph Reconstruction Method of Missing Data in Air Quality: Application to the Aburrá Valley, Colombia
title_full Evaluation of a Graph Reconstruction Method of Missing Data in Air Quality: Application to the Aburrá Valley, Colombia
title_fullStr Evaluation of a Graph Reconstruction Method of Missing Data in Air Quality: Application to the Aburrá Valley, Colombia
title_full_unstemmed Evaluation of a Graph Reconstruction Method of Missing Data in Air Quality: Application to the Aburrá Valley, Colombia
title_sort Evaluation of a Graph Reconstruction Method of Missing Data in Air Quality: Application to the Aburrá Valley, Colombia
dc.creator.fl_str_mv Botello Velasquez, Maria Camila
dc.contributor.advisor.none.fl_str_mv Rendón Perez, Ángela María
dc.contributor.author.none.fl_str_mv Botello Velasquez, Maria Camila
dc.subject.unesco.none.fl_str_mv Environmental quality
Calidad ambiental
Air pollution
Contaminación atmosférica
Meteorology
Meteorología
Measurement
Medición
Data analysis
Análisis de datos
topic Environmental quality
Calidad ambiental
Air pollution
Contaminación atmosférica
Meteorology
Meteorología
Measurement
Medición
Data analysis
Análisis de datos
Air quality
Missing data
Data reconstruction
Graph signal processing
http://vocabularies.unesco.org/thesaurus/concept4533
http://vocabularies.unesco.org/thesaurus/concept1946
http://vocabularies.unesco.org/thesaurus/concept185
http://vocabularies.unesco.org/thesaurus/concept5899
http://vocabularies.unesco.org/thesaurus/concept2214
dc.subject.proposal.spa.fl_str_mv Air quality
Missing data
Data reconstruction
Graph signal processing
dc.subject.unescouri.none.fl_str_mv http://vocabularies.unesco.org/thesaurus/concept4533
http://vocabularies.unesco.org/thesaurus/concept1946
http://vocabularies.unesco.org/thesaurus/concept185
http://vocabularies.unesco.org/thesaurus/concept5899
http://vocabularies.unesco.org/thesaurus/concept2214
description ABSTRACT: Air pollution is an environmental issue that concerns human health all around the world. The air quality is affected by human emissions, meteorological conditions, and topography. The measurement of pollutants is an important task to make better decisions for controlling high pollution concentrations. However, air quality sensing usually has problems due to machine failures, routine maintenance, among others. As a result, air quality datasets could have missing information that sometimes could represent more than 10% of the data. The correct reconstruction of these missing values plays an essential role in further environmental studies. In this work, we model the reconstruction of missing data as a problem of recovery of graph signals. Therefore, we evaluate the robustness of a graph signal reconstruction method in a dataset of Particular Matter PM2.5 in the Aburrá Valley, Colombia. We observe that 1) the model has better performance during dry months than in wet or transition seasons, and 2) the model could not follow pollution peaks because the algorithm assumes smooth changes in time. This model could be suitable to reconstruct data in the Aburrá Valley in dry seasons for other environmental studies.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-06-09T19:43:40Z
dc.date.available.none.fl_str_mv 2021-06-09T19:43:40Z
dc.date.issued.none.fl_str_mv 2021
dc.type.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/TP
dc.type.local.spa.fl_str_mv Tesis/Trabajo de grado - Monografía - Pregrado
format http://purl.org/coar/resource_type/c_7a1f
status_str draft
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10495/20032
url http://hdl.handle.net/10495/20032
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.*.fl_str_mv Atribución-NoComercial-CompartirIgual 2.5 Colombia
dc.rights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/co/
dc.rights.accessrights.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.creativecommons.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
rights_invalid_str_mv Atribución-NoComercial-CompartirIgual 2.5 Colombia
http://creativecommons.org/licenses/by-nc-sa/2.5/co/
http://purl.org/coar/access_right/c_abf2
https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 36
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
institution Universidad de Antioquia
bitstream.url.fl_str_mv http://bibliotecadigital.udea.edu.co/bitstream/10495/20032/1/BotelloMaria_2021_ReconstructionAirQuality.pdf
http://bibliotecadigital.udea.edu.co/bitstream/10495/20032/3/license_rdf
http://bibliotecadigital.udea.edu.co/bitstream/10495/20032/4/license.txt
bitstream.checksum.fl_str_mv 86efdee717be4c0a34723cd13528f759
e2060682c9c70d4d30c83c51448f4eed
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Antioquia
repository.mail.fl_str_mv andres.perez@udea.edu.co
_version_ 1812173204309934080
spelling Rendón Perez, Ángela MaríaBotello Velasquez, Maria Camila2021-06-09T19:43:40Z2021-06-09T19:43:40Z2021http://hdl.handle.net/10495/20032ABSTRACT: Air pollution is an environmental issue that concerns human health all around the world. The air quality is affected by human emissions, meteorological conditions, and topography. The measurement of pollutants is an important task to make better decisions for controlling high pollution concentrations. However, air quality sensing usually has problems due to machine failures, routine maintenance, among others. As a result, air quality datasets could have missing information that sometimes could represent more than 10% of the data. The correct reconstruction of these missing values plays an essential role in further environmental studies. In this work, we model the reconstruction of missing data as a problem of recovery of graph signals. Therefore, we evaluate the robustness of a graph signal reconstruction method in a dataset of Particular Matter PM2.5 in the Aburrá Valley, Colombia. We observe that 1) the model has better performance during dry months than in wet or transition seasons, and 2) the model could not follow pollution peaks because the algorithm assumes smooth changes in time. This model could be suitable to reconstruct data in the Aburrá Valley in dry seasons for other environmental studies.RESUMEN: La contaminación atmosférica es un problema ambiental que afecta a la salud humana mundialmente. La calidad del aire se ve afectada por emisiones antropogénicas, por condiciones meteorológicas y por la topografía. La medición de contaminantes atmosféricos es una tarea importante para la toma de decisiones, por ejemplo, para controlar altas concentraciones de contaminación en una ciudad. Sin embargo, en la medición de la calidad del aire generalmente hay problemas debidos a fallas de los equipos, mantenimiento de rutina, entre otros. Como resultado, los conjuntos de datos de calidad del aire pueden tener información faltante, que a veces puede representar más del 10% de los datos. La reconstrucción de estos valores faltantes juega un papel importante en los estudios ambientales. En este trabajo, modelamos la imputación de datos faltantes como un problema de reconstrucción de señales gráficas. Evaluamos la robustez de un método de procesamiento de señales gráficas en un conjunto de datos de Material Particulado PM2.5 en el Valle de Aburrá, Colombia. Observamos que 1) el modelo tiene un mejor desempeño durante los meses secos que durante temporadas húmedas o de transición y 2) el modelo puede no predecir picos de contaminación dado que el algoritmo asume cambios suaves en el tiempo. Este modelo podría ser útil para reconstruir datos en el Valle de Aburrá en temporadas secas para ser utilizados en futuros estudios de calidad del aire.36application/pdfspainfo:eu-repo/semantics/draftinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fhttps://purl.org/redcol/resource_type/TPTesis/Trabajo de grado - Monografía - Pregradohttp://purl.org/coar/version/c_b1a7d7d4d402bcceAtribución-NoComercial-CompartirIgual 2.5 Colombiainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/co/http://purl.org/coar/access_right/c_abf2https://creativecommons.org/licenses/by-nc-sa/4.0/Evaluation of a Graph Reconstruction Method of Missing Data in Air Quality: Application to the Aburrá Valley, ColombiaMedellín, ColombiaEnvironmental qualityCalidad ambientalAir pollutionContaminación atmosféricaMeteorologyMeteorologíaMeasurementMediciónData analysisAnálisis de datosAir qualityMissing dataData reconstructionGraph signal processinghttp://vocabularies.unesco.org/thesaurus/concept4533http://vocabularies.unesco.org/thesaurus/concept1946http://vocabularies.unesco.org/thesaurus/concept185http://vocabularies.unesco.org/thesaurus/concept5899http://vocabularies.unesco.org/thesaurus/concept2214Ingeniera AmbientalPregradoFacultad de Ingeniería. Carrera de Ingeniería AmbientalUniversidad de AntioquiaORIGINALBotelloMaria_2021_ReconstructionAirQuality.pdfBotelloMaria_2021_ReconstructionAirQuality.pdfTrabajo de grado de pregradoapplication/pdf24661616http://bibliotecadigital.udea.edu.co/bitstream/10495/20032/1/BotelloMaria_2021_ReconstructionAirQuality.pdf86efdee717be4c0a34723cd13528f759MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81051http://bibliotecadigital.udea.edu.co/bitstream/10495/20032/3/license_rdfe2060682c9c70d4d30c83c51448f4eedMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://bibliotecadigital.udea.edu.co/bitstream/10495/20032/4/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5410495/20032oai:bibliotecadigital.udea.edu.co:10495/200322021-06-19 18:52:16.213Repositorio Institucional Universidad de Antioquiaandres.perez@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=