Biomarkers identification in Alzheimer’s disease using effective connectivity analysis from electroencephalography recordings

RESUMEN: La enfermedad de Alzheimer (EA) es la causa más común de demencia, la cual afecta generalmente a personas después de los 65 años de edad. Algunas mutaciones genéticas inducen la aparición temprana de EA ayudando a monitorear la evolución de los síntomas y los cambios fisiológicos en diferen...

Full description

Autores:
Duque Grajales, Jon Edinson
Tobón Quintero, Carlos Andrés
Tipo de recurso:
Article of investigation
Fecha de publicación:
2016
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/12833
Acceso en línea:
http://hdl.handle.net/10495/12833
Palabra clave:
Enfermedad de Alzheimer familiar
Grafos cerebrales
Electroencefalografía
Conectividad efectiva
Rights
openAccess
License
Atribución 2.5 Colombia (CC BY 2.5 CO)
Description
Summary:RESUMEN: La enfermedad de Alzheimer (EA) es la causa más común de demencia, la cual afecta generalmente a personas después de los 65 años de edad. Algunas mutaciones genéticas inducen la aparición temprana de EA ayudando a monitorear la evolución de los síntomas y los cambios fisiológicos en diferentes etapas de la enfermedad. En Colombia existe un gran grupo familiar con la mutación PSEN1 E280A, con una edad media de aparición de los síntomas de 46,8 años. La EA ha sido definida como un síndrome de desconexión; en consecuencia, enfoques de redes podrían ayudar a capturar diferentes características de la enfermedad. El objetivo del presente trabajo es identificar un biomarcador en la EA que permita realizar el seguimiento del proceso neurodegenerativo. Se registró una electroencefalografía (EEG) durante la codificación de información visual en cuatro grupos de sujetos: portadores de la mutación PSEN1 E280A asintomáticos y con deterioro cognitivo leve y dos grupos control de no portadores. Para cada sujeto se estimó la conectividad efectiva utilizando la Función de Transferencia Directa dirigida y se extrajeron tres medidas de grafos: fuerza de entrada, fuerza de salida y fuerza total. Se calculó una relación entre el estado cognitivo y la edad de los participantes con las características de conectividad. Para aquellas medidas de conectividad que tuvieran una relación con la edad o la escala clínica, se evaluó su desempeño como variable de diagnóstico. Se encontró que la fuerza de conectividad saliente en la región parieto-occipital derecha está relacionada con la edad del grupo de los portadores (r = −0,54, p = 0,0036), y que tiene alta sensibilidad y especificidad para distinguir entre portadores y no portadores (67 % de sensibilidad y 80 % de especificidad en casos asintomáticos, y 83 % de sensibilidad y 67 % de especificidad en casos sintomáticos). Esta relación indica que la fuerza de conectividad saliente podría estar relacionada con el proceso neurodegenerativo de la enfermedad y podría ayudar a realizar un seguimiento de la conversión desde la etapa asintomática hacia la demencia.