Forecasting egg production curve with neural networks

ABSTRACT: The comparison between the real egg production curve and the graph proposed by management guidelines, aims towards continuous performance evaluation. The objectives of this study was to compare the capacity of curve fitting daily egg production of Lokhorst (LM), neural network multilayer p...

Full description

Autores:
Galeano Vasco, Luis Fernando
Cerón Muñoz, Mario Fernando
Galvan, I.M.
Aler, R.
Tipo de recurso:
Article of investigation
Fecha de publicación:
2018
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/32693
Acceso en línea:
https://hdl.handle.net/10495/32693
Palabra clave:
Modelos Teóricos
Models, Theoretical
Curvas de frecuencia
Frequency curves
Polinomios
Polynomials
Funciones
Functions
Avicultura
Aviculture
Producción de huevos
Egg production
http://aims.fao.org/aos/agrovoc/c_2498
Rights
openAccess
License
http://creativecommons.org/licenses/by-sa/2.5/co/
id UDEA2_36a51bd04480d249d404a4edc475669e
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/32693
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Forecasting egg production curve with neural networks
dc.title.alternative.spa.fl_str_mv Pronóstico de la curva de producción de huevos con redes neuronales
title Forecasting egg production curve with neural networks
spellingShingle Forecasting egg production curve with neural networks
Modelos Teóricos
Models, Theoretical
Curvas de frecuencia
Frequency curves
Polinomios
Polynomials
Funciones
Functions
Avicultura
Aviculture
Producción de huevos
Egg production
http://aims.fao.org/aos/agrovoc/c_2498
title_short Forecasting egg production curve with neural networks
title_full Forecasting egg production curve with neural networks
title_fullStr Forecasting egg production curve with neural networks
title_full_unstemmed Forecasting egg production curve with neural networks
title_sort Forecasting egg production curve with neural networks
dc.creator.fl_str_mv Galeano Vasco, Luis Fernando
Cerón Muñoz, Mario Fernando
Galvan, I.M.
Aler, R.
dc.contributor.author.none.fl_str_mv Galeano Vasco, Luis Fernando
Cerón Muñoz, Mario Fernando
Galvan, I.M.
Aler, R.
dc.subject.decs.none.fl_str_mv Modelos Teóricos
Models, Theoretical
topic Modelos Teóricos
Models, Theoretical
Curvas de frecuencia
Frequency curves
Polinomios
Polynomials
Funciones
Functions
Avicultura
Aviculture
Producción de huevos
Egg production
http://aims.fao.org/aos/agrovoc/c_2498
dc.subject.lemb.none.fl_str_mv Curvas de frecuencia
Frequency curves
Polinomios
Polynomials
Funciones
Functions
Avicultura
Aviculture
dc.subject.agrovoc.none.fl_str_mv Producción de huevos
Egg production
dc.subject.agrovocuri.none.fl_str_mv http://aims.fao.org/aos/agrovoc/c_2498
description ABSTRACT: The comparison between the real egg production curve and the graph proposed by management guidelines, aims towards continuous performance evaluation. The objectives of this study was to compare the capacity of curve fitting daily egg production of Lokhorst (LM), neural network multilayer perceptron (MP) and Jordan and Elman recurrent neural network (RNNJ and RNNE, respectively) for the prediction of the daily egg production in commercial laying hens. The models were fitted using 4650 data from 12 selected batches. The MP and LM models gave good fitting to the data, with correlation values greater than 0.95 and accounting for more than 95% of the variability in daily egg production. For the production forecast, MP was a technique with acceptable accuracy and less variation. The MP model can be recommended as a tool for fit and forecast of daily egg production curve in commercial hens.
publishDate 2018
dc.date.issued.none.fl_str_mv 2018
dc.date.accessioned.none.fl_str_mv 2022-12-10T05:01:10Z
dc.date.available.none.fl_str_mv 2022-12-10T05:01:10Z
dc.type.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.local.spa.fl_str_mv Artículo de investigación
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 0004-0592
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/32693
dc.identifier.doi.none.fl_str_mv 10.21071/az.v67i257.3494
dc.identifier.eissn.none.fl_str_mv 1885-4494
identifier_str_mv 0004-0592
10.21071/az.v67i257.3494
1885-4494
url https://hdl.handle.net/10495/32693
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournalabbrev.spa.fl_str_mv Arch. Zootec.
dc.rights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-sa/2.5/co/
dc.rights.accessrights.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.creativecommons.spa.fl_str_mv https://creativecommons.org/licenses/by-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-sa/2.5/co/
http://purl.org/coar/access_right/c_abf2
https://creativecommons.org/licenses/by-sa/4.0/
dc.format.extent.spa.fl_str_mv 6
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad de Córdoba
Asociación Iberoamericana de Zootecnia
dc.publisher.group.spa.fl_str_mv Grupo de Investigación en Agrociencias Biodiversidad y Territorio GAMMA
dc.publisher.place.spa.fl_str_mv Córdoba, España
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstream/10495/32693/1/GaleanoLuis2018_Forecasting-Egg-Production.pdf
https://bibliotecadigital.udea.edu.co/bitstream/10495/32693/2/license_rdf
https://bibliotecadigital.udea.edu.co/bitstream/10495/32693/3/license.txt
bitstream.checksum.fl_str_mv e2426ed58a5fb924b9f6b03c0629c3d5
21f304c81bfa79d3db42c7e2740dd6fe
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Antioquia
repository.mail.fl_str_mv andres.perez@udea.edu.co
_version_ 1812173186388721664
spelling Galeano Vasco, Luis FernandoCerón Muñoz, Mario FernandoGalvan, I.M.Aler, R.2022-12-10T05:01:10Z2022-12-10T05:01:10Z20180004-0592https://hdl.handle.net/10495/3269310.21071/az.v67i257.34941885-4494ABSTRACT: The comparison between the real egg production curve and the graph proposed by management guidelines, aims towards continuous performance evaluation. The objectives of this study was to compare the capacity of curve fitting daily egg production of Lokhorst (LM), neural network multilayer perceptron (MP) and Jordan and Elman recurrent neural network (RNNJ and RNNE, respectively) for the prediction of the daily egg production in commercial laying hens. The models were fitted using 4650 data from 12 selected batches. The MP and LM models gave good fitting to the data, with correlation values greater than 0.95 and accounting for more than 95% of the variability in daily egg production. For the production forecast, MP was a technique with acceptable accuracy and less variation. The MP model can be recommended as a tool for fit and forecast of daily egg production curve in commercial hens.RESUMEN: La comparación entre la curva de producción real del huevo y la gráfica propuesta por las pautas de gestión, tiene como objetivo la evaluación continua del rendimiento. Los objetivos de este estudio fueron comparar la capacidad de la curva de ajuste de la producción diaria de huevo de Lokjorst (LM), la red neuronal del perceptrón multicapa (MP) y las redes neuronales recurrantes de Jordania y Elman (RNNJ y RNNE, respectivamente) para la predicción del huevo diario producción en gallinas ponedoras comerciales. Los modelos se instalaron utilizando 4650 datos de 12 lotes seleccionados. Los modelos MP y LM dieron un buen ajuste a los datos, con valores de correlación superiores a 0,95 y que representan más del 95% de la variabilidad en la producción diaria de óvulos. Para el pronóstico de producción, MP fue una técnica con una precisión aceptable y menos variación. El modelo MP se recomienda como herramienta de ajuste y previsión de la curva diaria de producción de huevos en gallinas comerciales.COL00067796application/pdfengUniversidad de CórdobaAsociación Iberoamericana de ZootecniaGrupo de Investigación en Agrociencias Biodiversidad y Territorio GAMMACórdoba, Españainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARTArtículo de investigaciónhttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-sa/2.5/co/http://purl.org/coar/access_right/c_abf2https://creativecommons.org/licenses/by-sa/4.0/Forecasting egg production curve with neural networksPronóstico de la curva de producción de huevos con redes neuronalesModelos TeóricosModels, TheoreticalCurvas de frecuenciaFrequency curvesPolinomiosPolynomialsFuncionesFunctionsAviculturaAvicultureProducción de huevosEgg productionhttp://aims.fao.org/aos/agrovoc/c_2498Arch. Zootec.Archivos de Zootecnia818767257ORIGINALGaleanoLuis2018_Forecasting-Egg-Production.pdfGaleanoLuis2018_Forecasting-Egg-Production.pdfArtículo de investigaciónapplication/pdf355941https://bibliotecadigital.udea.edu.co/bitstream/10495/32693/1/GaleanoLuis2018_Forecasting-Egg-Production.pdfe2426ed58a5fb924b9f6b03c0629c3d5MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81045https://bibliotecadigital.udea.edu.co/bitstream/10495/32693/2/license_rdf21f304c81bfa79d3db42c7e2740dd6feMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstream/10495/32693/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5310495/32693oai:bibliotecadigital.udea.edu.co:10495/326932022-12-10 00:01:11.388Repositorio Institucional Universidad de Antioquiaandres.perez@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=