Forecasting egg production curve with neural networks
ABSTRACT: The comparison between the real egg production curve and the graph proposed by management guidelines, aims towards continuous performance evaluation. The objectives of this study was to compare the capacity of curve fitting daily egg production of Lokhorst (LM), neural network multilayer p...
- Autores:
-
Galeano Vasco, Luis Fernando
Cerón Muñoz, Mario Fernando
Galvan, I.M.
Aler, R.
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2018
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/32693
- Acceso en línea:
- https://hdl.handle.net/10495/32693
- Palabra clave:
- Modelos Teóricos
Models, Theoretical
Curvas de frecuencia
Frequency curves
Polinomios
Polynomials
Funciones
Functions
Avicultura
Aviculture
Producción de huevos
Egg production
http://aims.fao.org/aos/agrovoc/c_2498
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-sa/2.5/co/
id |
UDEA2_36a51bd04480d249d404a4edc475669e |
---|---|
oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/32693 |
network_acronym_str |
UDEA2 |
network_name_str |
Repositorio UdeA |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Forecasting egg production curve with neural networks |
dc.title.alternative.spa.fl_str_mv |
Pronóstico de la curva de producción de huevos con redes neuronales |
title |
Forecasting egg production curve with neural networks |
spellingShingle |
Forecasting egg production curve with neural networks Modelos Teóricos Models, Theoretical Curvas de frecuencia Frequency curves Polinomios Polynomials Funciones Functions Avicultura Aviculture Producción de huevos Egg production http://aims.fao.org/aos/agrovoc/c_2498 |
title_short |
Forecasting egg production curve with neural networks |
title_full |
Forecasting egg production curve with neural networks |
title_fullStr |
Forecasting egg production curve with neural networks |
title_full_unstemmed |
Forecasting egg production curve with neural networks |
title_sort |
Forecasting egg production curve with neural networks |
dc.creator.fl_str_mv |
Galeano Vasco, Luis Fernando Cerón Muñoz, Mario Fernando Galvan, I.M. Aler, R. |
dc.contributor.author.none.fl_str_mv |
Galeano Vasco, Luis Fernando Cerón Muñoz, Mario Fernando Galvan, I.M. Aler, R. |
dc.subject.decs.none.fl_str_mv |
Modelos Teóricos Models, Theoretical |
topic |
Modelos Teóricos Models, Theoretical Curvas de frecuencia Frequency curves Polinomios Polynomials Funciones Functions Avicultura Aviculture Producción de huevos Egg production http://aims.fao.org/aos/agrovoc/c_2498 |
dc.subject.lemb.none.fl_str_mv |
Curvas de frecuencia Frequency curves Polinomios Polynomials Funciones Functions Avicultura Aviculture |
dc.subject.agrovoc.none.fl_str_mv |
Producción de huevos Egg production |
dc.subject.agrovocuri.none.fl_str_mv |
http://aims.fao.org/aos/agrovoc/c_2498 |
description |
ABSTRACT: The comparison between the real egg production curve and the graph proposed by management guidelines, aims towards continuous performance evaluation. The objectives of this study was to compare the capacity of curve fitting daily egg production of Lokhorst (LM), neural network multilayer perceptron (MP) and Jordan and Elman recurrent neural network (RNNJ and RNNE, respectively) for the prediction of the daily egg production in commercial laying hens. The models were fitted using 4650 data from 12 selected batches. The MP and LM models gave good fitting to the data, with correlation values greater than 0.95 and accounting for more than 95% of the variability in daily egg production. For the production forecast, MP was a technique with acceptable accuracy and less variation. The MP model can be recommended as a tool for fit and forecast of daily egg production curve in commercial hens. |
publishDate |
2018 |
dc.date.issued.none.fl_str_mv |
2018 |
dc.date.accessioned.none.fl_str_mv |
2022-12-10T05:01:10Z |
dc.date.available.none.fl_str_mv |
2022-12-10T05:01:10Z |
dc.type.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.hasversion.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/ART |
dc.type.local.spa.fl_str_mv |
Artículo de investigación |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
0004-0592 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10495/32693 |
dc.identifier.doi.none.fl_str_mv |
10.21071/az.v67i257.3494 |
dc.identifier.eissn.none.fl_str_mv |
1885-4494 |
identifier_str_mv |
0004-0592 10.21071/az.v67i257.3494 1885-4494 |
url |
https://hdl.handle.net/10495/32693 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournalabbrev.spa.fl_str_mv |
Arch. Zootec. |
dc.rights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-sa/2.5/co/ |
dc.rights.accessrights.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.creativecommons.spa.fl_str_mv |
https://creativecommons.org/licenses/by-sa/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-sa/2.5/co/ http://purl.org/coar/access_right/c_abf2 https://creativecommons.org/licenses/by-sa/4.0/ |
dc.format.extent.spa.fl_str_mv |
6 |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad de Córdoba Asociación Iberoamericana de Zootecnia |
dc.publisher.group.spa.fl_str_mv |
Grupo de Investigación en Agrociencias Biodiversidad y Territorio GAMMA |
dc.publisher.place.spa.fl_str_mv |
Córdoba, España |
institution |
Universidad de Antioquia |
bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstream/10495/32693/1/GaleanoLuis2018_Forecasting-Egg-Production.pdf https://bibliotecadigital.udea.edu.co/bitstream/10495/32693/2/license_rdf https://bibliotecadigital.udea.edu.co/bitstream/10495/32693/3/license.txt |
bitstream.checksum.fl_str_mv |
e2426ed58a5fb924b9f6b03c0629c3d5 21f304c81bfa79d3db42c7e2740dd6fe 8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Antioquia |
repository.mail.fl_str_mv |
andres.perez@udea.edu.co |
_version_ |
1812173186388721664 |
spelling |
Galeano Vasco, Luis FernandoCerón Muñoz, Mario FernandoGalvan, I.M.Aler, R.2022-12-10T05:01:10Z2022-12-10T05:01:10Z20180004-0592https://hdl.handle.net/10495/3269310.21071/az.v67i257.34941885-4494ABSTRACT: The comparison between the real egg production curve and the graph proposed by management guidelines, aims towards continuous performance evaluation. The objectives of this study was to compare the capacity of curve fitting daily egg production of Lokhorst (LM), neural network multilayer perceptron (MP) and Jordan and Elman recurrent neural network (RNNJ and RNNE, respectively) for the prediction of the daily egg production in commercial laying hens. The models were fitted using 4650 data from 12 selected batches. The MP and LM models gave good fitting to the data, with correlation values greater than 0.95 and accounting for more than 95% of the variability in daily egg production. For the production forecast, MP was a technique with acceptable accuracy and less variation. The MP model can be recommended as a tool for fit and forecast of daily egg production curve in commercial hens.RESUMEN: La comparación entre la curva de producción real del huevo y la gráfica propuesta por las pautas de gestión, tiene como objetivo la evaluación continua del rendimiento. Los objetivos de este estudio fueron comparar la capacidad de la curva de ajuste de la producción diaria de huevo de Lokjorst (LM), la red neuronal del perceptrón multicapa (MP) y las redes neuronales recurrantes de Jordania y Elman (RNNJ y RNNE, respectivamente) para la predicción del huevo diario producción en gallinas ponedoras comerciales. Los modelos se instalaron utilizando 4650 datos de 12 lotes seleccionados. Los modelos MP y LM dieron un buen ajuste a los datos, con valores de correlación superiores a 0,95 y que representan más del 95% de la variabilidad en la producción diaria de óvulos. Para el pronóstico de producción, MP fue una técnica con una precisión aceptable y menos variación. El modelo MP se recomienda como herramienta de ajuste y previsión de la curva diaria de producción de huevos en gallinas comerciales.COL00067796application/pdfengUniversidad de CórdobaAsociación Iberoamericana de ZootecniaGrupo de Investigación en Agrociencias Biodiversidad y Territorio GAMMACórdoba, Españainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARTArtículo de investigaciónhttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-sa/2.5/co/http://purl.org/coar/access_right/c_abf2https://creativecommons.org/licenses/by-sa/4.0/Forecasting egg production curve with neural networksPronóstico de la curva de producción de huevos con redes neuronalesModelos TeóricosModels, TheoreticalCurvas de frecuenciaFrequency curvesPolinomiosPolynomialsFuncionesFunctionsAviculturaAvicultureProducción de huevosEgg productionhttp://aims.fao.org/aos/agrovoc/c_2498Arch. Zootec.Archivos de Zootecnia818767257ORIGINALGaleanoLuis2018_Forecasting-Egg-Production.pdfGaleanoLuis2018_Forecasting-Egg-Production.pdfArtículo de investigaciónapplication/pdf355941https://bibliotecadigital.udea.edu.co/bitstream/10495/32693/1/GaleanoLuis2018_Forecasting-Egg-Production.pdfe2426ed58a5fb924b9f6b03c0629c3d5MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81045https://bibliotecadigital.udea.edu.co/bitstream/10495/32693/2/license_rdf21f304c81bfa79d3db42c7e2740dd6feMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstream/10495/32693/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5310495/32693oai:bibliotecadigital.udea.edu.co:10495/326932022-12-10 00:01:11.388Repositorio Institucional Universidad de Antioquiaandres.perez@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |