Wilks’ Factorization of the Complex Matrix Variate Dirichlet Distributions

ABSTRACT: In this paper, it has been shown that the complex matrix variate Dirichlet type I density factors into the complex matrix variate beta type I densities. Similar result has also been derived for the complex matrix variate Dirichlet type II density. Also, by using certain matrix transformati...

Full description

Autores:
Nagar, Daya Krishna
Cui, Xinping
Gupta, Arjun Kumar
Tipo de recurso:
Article of investigation
Fecha de publicación:
2002
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/30420
Acceso en línea:
https://hdl.handle.net/10495/30420
https://revistas.ucm.es/index.php/REMA/article/view/16673
Palabra clave:
Transformación Celular Neoplásica
Cell Transformation, Neoplastic
beta distribution
Complex random matrix
Dirichlet distribution
Jacobian
Complex multivariate gamma function
Wishart distribution
Rights
openAccess
License
http://creativecommons.org/licenses/by/2.5/co/
id UDEA2_34edda1800654ea266d718458331230a
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/30420
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Wilks’ Factorization of the Complex Matrix Variate Dirichlet Distributions
title Wilks’ Factorization of the Complex Matrix Variate Dirichlet Distributions
spellingShingle Wilks’ Factorization of the Complex Matrix Variate Dirichlet Distributions
Transformación Celular Neoplásica
Cell Transformation, Neoplastic
beta distribution
Complex random matrix
Dirichlet distribution
Jacobian
Complex multivariate gamma function
Wishart distribution
title_short Wilks’ Factorization of the Complex Matrix Variate Dirichlet Distributions
title_full Wilks’ Factorization of the Complex Matrix Variate Dirichlet Distributions
title_fullStr Wilks’ Factorization of the Complex Matrix Variate Dirichlet Distributions
title_full_unstemmed Wilks’ Factorization of the Complex Matrix Variate Dirichlet Distributions
title_sort Wilks’ Factorization of the Complex Matrix Variate Dirichlet Distributions
dc.creator.fl_str_mv Nagar, Daya Krishna
Cui, Xinping
Gupta, Arjun Kumar
dc.contributor.author.none.fl_str_mv Nagar, Daya Krishna
Cui, Xinping
Gupta, Arjun Kumar
dc.subject.decs.none.fl_str_mv Transformación Celular Neoplásica
Cell Transformation, Neoplastic
topic Transformación Celular Neoplásica
Cell Transformation, Neoplastic
beta distribution
Complex random matrix
Dirichlet distribution
Jacobian
Complex multivariate gamma function
Wishart distribution
dc.subject.proposal.spa.fl_str_mv beta distribution
Complex random matrix
Dirichlet distribution
Jacobian
Complex multivariate gamma function
Wishart distribution
description ABSTRACT: In this paper, it has been shown that the complex matrix variate Dirichlet type I density factors into the complex matrix variate beta type I densities. Similar result has also been derived for the complex matrix variate Dirichlet type II density. Also, by using certain matrix transformations, the complex matrix variate Dirichlet distributions have been generated from the complex matrix beta distributions. Further, several results on the product of complex Wishart and complex beta matrices with a set of complex Dirichlet type I matrices have been derived.
publishDate 2002
dc.date.issued.none.fl_str_mv 2002
dc.date.accessioned.none.fl_str_mv 2022-09-05T21:10:55Z
dc.date.available.none.fl_str_mv 2022-09-05T21:10:55Z
dc.type.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.local.spa.fl_str_mv Artículo de investigación
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Cui, X., K. Gupta, A., & K. Nagar, D. (2005). Wilks’ Factorization of the Complex Matrix Variate Dirichlet Distributions. Revista Matemática Complutense, 18(2), 315 - 328. https://doi.org/10.5209/rev_REMA.2005.v18.n2.16673
dc.identifier.issn.none.fl_str_mv 1139-1138
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/30420
dc.identifier.doi.none.fl_str_mv 10.5209/rev_REMA.2005.v18.n2.16673
dc.identifier.eissn.none.fl_str_mv 1988-2807
dc.identifier.url.spa.fl_str_mv https://revistas.ucm.es/index.php/REMA/article/view/16673
identifier_str_mv Cui, X., K. Gupta, A., & K. Nagar, D. (2005). Wilks’ Factorization of the Complex Matrix Variate Dirichlet Distributions. Revista Matemática Complutense, 18(2), 315 - 328. https://doi.org/10.5209/rev_REMA.2005.v18.n2.16673
1139-1138
10.5209/rev_REMA.2005.v18.n2.16673
1988-2807
url https://hdl.handle.net/10495/30420
https://revistas.ucm.es/index.php/REMA/article/view/16673
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournalabbrev.spa.fl_str_mv Rev. Mat. Complut.
dc.rights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by/2.5/co/
dc.rights.accessrights.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.creativecommons.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/co/
http://purl.org/coar/access_right/c_abf2
https://creativecommons.org/licenses/by/4.0/
dc.format.extent.spa.fl_str_mv 14
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Springer
dc.publisher.group.spa.fl_str_mv Análisis Multivariado
dc.publisher.place.spa.fl_str_mv Madrid, España
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstream/10495/30420/2/license_rdf
https://bibliotecadigital.udea.edu.co/bitstream/10495/30420/3/license.txt
https://bibliotecadigital.udea.edu.co/bitstream/10495/30420/4/NagarDaya_2011_PropertiesBivariateConfluent.pdf
bitstream.checksum.fl_str_mv 1646d1f6b96dbbbc38035efc9239ac9c
8a4605be74aa9ea9d79846c1fba20a33
47b15db129be81127ffe04024a15090b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Antioquia
repository.mail.fl_str_mv andres.perez@udea.edu.co
_version_ 1812173131563925504
spelling Nagar, Daya KrishnaCui, XinpingGupta, Arjun Kumar2022-09-05T21:10:55Z2022-09-05T21:10:55Z2002Cui, X., K. Gupta, A., & K. Nagar, D. (2005). Wilks’ Factorization of the Complex Matrix Variate Dirichlet Distributions. Revista Matemática Complutense, 18(2), 315 - 328. https://doi.org/10.5209/rev_REMA.2005.v18.n2.166731139-1138https://hdl.handle.net/10495/3042010.5209/rev_REMA.2005.v18.n2.166731988-2807https://revistas.ucm.es/index.php/REMA/article/view/16673ABSTRACT: In this paper, it has been shown that the complex matrix variate Dirichlet type I density factors into the complex matrix variate beta type I densities. Similar result has also been derived for the complex matrix variate Dirichlet type II density. Also, by using certain matrix transformations, the complex matrix variate Dirichlet distributions have been generated from the complex matrix beta distributions. Further, several results on the product of complex Wishart and complex beta matrices with a set of complex Dirichlet type I matrices have been derived.COL000053214application/pdfengSpringerAnálisis MultivariadoMadrid, Españainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARTArtículo de investigaciónhttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/co/http://purl.org/coar/access_right/c_abf2https://creativecommons.org/licenses/by/4.0/Wilks’ Factorization of the Complex Matrix Variate Dirichlet DistributionsTransformación Celular NeoplásicaCell Transformation, Neoplasticbeta distributionComplex random matrixDirichlet distributionJacobianComplex multivariate gamma functionWishart distributionRev. Mat. Complut.Revista Matemática Complutense315328182CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8927https://bibliotecadigital.udea.edu.co/bitstream/10495/30420/2/license_rdf1646d1f6b96dbbbc38035efc9239ac9cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstream/10495/30420/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53ORIGINALNagarDaya_2011_PropertiesBivariateConfluent.pdfNagarDaya_2011_PropertiesBivariateConfluent.pdfArtículo de investigaciónapplication/pdf254263https://bibliotecadigital.udea.edu.co/bitstream/10495/30420/4/NagarDaya_2011_PropertiesBivariateConfluent.pdf47b15db129be81127ffe04024a15090bMD5410495/30420oai:bibliotecadigital.udea.edu.co:10495/304202022-12-11 12:09:38.27Repositorio Institucional Universidad de Antioquiaandres.perez@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=