Wilks’ Factorization of the Complex Matrix Variate Dirichlet Distributions
ABSTRACT: In this paper, it has been shown that the complex matrix variate Dirichlet type I density factors into the complex matrix variate beta type I densities. Similar result has also been derived for the complex matrix variate Dirichlet type II density. Also, by using certain matrix transformati...
- Autores:
-
Nagar, Daya Krishna
Cui, Xinping
Gupta, Arjun Kumar
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2002
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/30420
- Acceso en línea:
- https://hdl.handle.net/10495/30420
https://revistas.ucm.es/index.php/REMA/article/view/16673
- Palabra clave:
- Transformación Celular Neoplásica
Cell Transformation, Neoplastic
beta distribution
Complex random matrix
Dirichlet distribution
Jacobian
Complex multivariate gamma function
Wishart distribution
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by/2.5/co/
id |
UDEA2_34edda1800654ea266d718458331230a |
---|---|
oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/30420 |
network_acronym_str |
UDEA2 |
network_name_str |
Repositorio UdeA |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Wilks’ Factorization of the Complex Matrix Variate Dirichlet Distributions |
title |
Wilks’ Factorization of the Complex Matrix Variate Dirichlet Distributions |
spellingShingle |
Wilks’ Factorization of the Complex Matrix Variate Dirichlet Distributions Transformación Celular Neoplásica Cell Transformation, Neoplastic beta distribution Complex random matrix Dirichlet distribution Jacobian Complex multivariate gamma function Wishart distribution |
title_short |
Wilks’ Factorization of the Complex Matrix Variate Dirichlet Distributions |
title_full |
Wilks’ Factorization of the Complex Matrix Variate Dirichlet Distributions |
title_fullStr |
Wilks’ Factorization of the Complex Matrix Variate Dirichlet Distributions |
title_full_unstemmed |
Wilks’ Factorization of the Complex Matrix Variate Dirichlet Distributions |
title_sort |
Wilks’ Factorization of the Complex Matrix Variate Dirichlet Distributions |
dc.creator.fl_str_mv |
Nagar, Daya Krishna Cui, Xinping Gupta, Arjun Kumar |
dc.contributor.author.none.fl_str_mv |
Nagar, Daya Krishna Cui, Xinping Gupta, Arjun Kumar |
dc.subject.decs.none.fl_str_mv |
Transformación Celular Neoplásica Cell Transformation, Neoplastic |
topic |
Transformación Celular Neoplásica Cell Transformation, Neoplastic beta distribution Complex random matrix Dirichlet distribution Jacobian Complex multivariate gamma function Wishart distribution |
dc.subject.proposal.spa.fl_str_mv |
beta distribution Complex random matrix Dirichlet distribution Jacobian Complex multivariate gamma function Wishart distribution |
description |
ABSTRACT: In this paper, it has been shown that the complex matrix variate Dirichlet type I density factors into the complex matrix variate beta type I densities. Similar result has also been derived for the complex matrix variate Dirichlet type II density. Also, by using certain matrix transformations, the complex matrix variate Dirichlet distributions have been generated from the complex matrix beta distributions. Further, several results on the product of complex Wishart and complex beta matrices with a set of complex Dirichlet type I matrices have been derived. |
publishDate |
2002 |
dc.date.issued.none.fl_str_mv |
2002 |
dc.date.accessioned.none.fl_str_mv |
2022-09-05T21:10:55Z |
dc.date.available.none.fl_str_mv |
2022-09-05T21:10:55Z |
dc.type.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.hasversion.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/ART |
dc.type.local.spa.fl_str_mv |
Artículo de investigación |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.citation.spa.fl_str_mv |
Cui, X., K. Gupta, A., & K. Nagar, D. (2005). Wilks’ Factorization of the Complex Matrix Variate Dirichlet Distributions. Revista Matemática Complutense, 18(2), 315 - 328. https://doi.org/10.5209/rev_REMA.2005.v18.n2.16673 |
dc.identifier.issn.none.fl_str_mv |
1139-1138 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10495/30420 |
dc.identifier.doi.none.fl_str_mv |
10.5209/rev_REMA.2005.v18.n2.16673 |
dc.identifier.eissn.none.fl_str_mv |
1988-2807 |
dc.identifier.url.spa.fl_str_mv |
https://revistas.ucm.es/index.php/REMA/article/view/16673 |
identifier_str_mv |
Cui, X., K. Gupta, A., & K. Nagar, D. (2005). Wilks’ Factorization of the Complex Matrix Variate Dirichlet Distributions. Revista Matemática Complutense, 18(2), 315 - 328. https://doi.org/10.5209/rev_REMA.2005.v18.n2.16673 1139-1138 10.5209/rev_REMA.2005.v18.n2.16673 1988-2807 |
url |
https://hdl.handle.net/10495/30420 https://revistas.ucm.es/index.php/REMA/article/view/16673 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournalabbrev.spa.fl_str_mv |
Rev. Mat. Complut. |
dc.rights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by/2.5/co/ |
dc.rights.accessrights.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.creativecommons.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/co/ http://purl.org/coar/access_right/c_abf2 https://creativecommons.org/licenses/by/4.0/ |
dc.format.extent.spa.fl_str_mv |
14 |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Springer |
dc.publisher.group.spa.fl_str_mv |
Análisis Multivariado |
dc.publisher.place.spa.fl_str_mv |
Madrid, España |
institution |
Universidad de Antioquia |
bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstream/10495/30420/2/license_rdf https://bibliotecadigital.udea.edu.co/bitstream/10495/30420/3/license.txt https://bibliotecadigital.udea.edu.co/bitstream/10495/30420/4/NagarDaya_2011_PropertiesBivariateConfluent.pdf |
bitstream.checksum.fl_str_mv |
1646d1f6b96dbbbc38035efc9239ac9c 8a4605be74aa9ea9d79846c1fba20a33 47b15db129be81127ffe04024a15090b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Antioquia |
repository.mail.fl_str_mv |
andres.perez@udea.edu.co |
_version_ |
1812173131563925504 |
spelling |
Nagar, Daya KrishnaCui, XinpingGupta, Arjun Kumar2022-09-05T21:10:55Z2022-09-05T21:10:55Z2002Cui, X., K. Gupta, A., & K. Nagar, D. (2005). Wilks’ Factorization of the Complex Matrix Variate Dirichlet Distributions. Revista Matemática Complutense, 18(2), 315 - 328. https://doi.org/10.5209/rev_REMA.2005.v18.n2.166731139-1138https://hdl.handle.net/10495/3042010.5209/rev_REMA.2005.v18.n2.166731988-2807https://revistas.ucm.es/index.php/REMA/article/view/16673ABSTRACT: In this paper, it has been shown that the complex matrix variate Dirichlet type I density factors into the complex matrix variate beta type I densities. Similar result has also been derived for the complex matrix variate Dirichlet type II density. Also, by using certain matrix transformations, the complex matrix variate Dirichlet distributions have been generated from the complex matrix beta distributions. Further, several results on the product of complex Wishart and complex beta matrices with a set of complex Dirichlet type I matrices have been derived.COL000053214application/pdfengSpringerAnálisis MultivariadoMadrid, Españainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARTArtículo de investigaciónhttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/co/http://purl.org/coar/access_right/c_abf2https://creativecommons.org/licenses/by/4.0/Wilks’ Factorization of the Complex Matrix Variate Dirichlet DistributionsTransformación Celular NeoplásicaCell Transformation, Neoplasticbeta distributionComplex random matrixDirichlet distributionJacobianComplex multivariate gamma functionWishart distributionRev. Mat. Complut.Revista Matemática Complutense315328182CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8927https://bibliotecadigital.udea.edu.co/bitstream/10495/30420/2/license_rdf1646d1f6b96dbbbc38035efc9239ac9cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstream/10495/30420/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53ORIGINALNagarDaya_2011_PropertiesBivariateConfluent.pdfNagarDaya_2011_PropertiesBivariateConfluent.pdfArtículo de investigaciónapplication/pdf254263https://bibliotecadigital.udea.edu.co/bitstream/10495/30420/4/NagarDaya_2011_PropertiesBivariateConfluent.pdf47b15db129be81127ffe04024a15090bMD5410495/30420oai:bibliotecadigital.udea.edu.co:10495/304202022-12-11 12:09:38.27Repositorio Institucional Universidad de Antioquiaandres.perez@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |