Identificación de modelos ARFIMA

RESUMEN: Desde la introducción de los modelos fraccionalmente integrados ARFIMA para series de tiempo con memoria larga, ha surgido un gran interés en el estudio de sus propiedades y áreas de aplicación. En este modelo, el grado de la memoria está detenido por el parámetro de diferenciación fraccion...

Full description

Autores:
Castaño Vélez, Elkin Argemiro
Tipo de recurso:
Article of investigation
Fecha de publicación:
2016
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
spa
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/7366
Acceso en línea:
http://hdl.handle.net/10495/7366
Palabra clave:
Integración fraccional
Métodos paramétricos
Métodos semiparamétricos
Persistencia
Fractional integration
Long memory
Parametric method
Semiparametric method
Persistence
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 2.5 Colombia
id UDEA2_343943ae04852d78b9bc5c62c3c7461c
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/7366
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Identificación de modelos ARFIMA
dc.title.alternative.spa.fl_str_mv Identification in ARFIMA models
title Identificación de modelos ARFIMA
spellingShingle Identificación de modelos ARFIMA
Integración fraccional
Métodos paramétricos
Métodos semiparamétricos
Persistencia
Fractional integration
Long memory
Parametric method
Semiparametric method
Persistence
title_short Identificación de modelos ARFIMA
title_full Identificación de modelos ARFIMA
title_fullStr Identificación de modelos ARFIMA
title_full_unstemmed Identificación de modelos ARFIMA
title_sort Identificación de modelos ARFIMA
dc.creator.fl_str_mv Castaño Vélez, Elkin Argemiro
dc.contributor.author.none.fl_str_mv Castaño Vélez, Elkin Argemiro
dc.subject.none.fl_str_mv Integración fraccional
Métodos paramétricos
Métodos semiparamétricos
Persistencia
Fractional integration
Long memory
Parametric method
Semiparametric method
Persistence
topic Integración fraccional
Métodos paramétricos
Métodos semiparamétricos
Persistencia
Fractional integration
Long memory
Parametric method
Semiparametric method
Persistence
description RESUMEN: Desde la introducción de los modelos fraccionalmente integrados ARFIMA para series de tiempo con memoria larga, ha surgido un gran interés en el estudio de sus propiedades y áreas de aplicación. En este modelo, el grado de la memoria está detenido por el parámetro de diferenciación fraccional, el cual toma valores en un intervalo continuo de números reales. Para realizar la estimación de este parámetro y probar la existencia de memoria larga, se han propuesto distintos procedimientos en la literatura. Ahora bien, generalmente no basta con conocer si hay memoria larga en la serie de tiempo, sino que es necesario estimar adecuadamente el valor del parámetro de diferenciación fraccional, del cual depende la dinámica de largo plazo de la serie, y de la componente ARMA asociada al comportamiento de corto plazo. Esta estimación requiere de la especificación correcta del modelo ARFIMA. El objetivo de este artículo es el de implementar un proceso de identificación del modelo ARFIMA para series estacionarias a partir de un procedimiento paramétrico propuesto, y comparar su desempeño con métodos semiparamétricos propuestos en la literatura. Los resultados, obtenidos a través de un estudio de simulación, muestran que el procedimiento propuesto tiene, en general, un mejor desempeño.
publishDate 2016
dc.date.issued.none.fl_str_mv 2016
dc.date.accessioned.none.fl_str_mv 2017-05-25T16:24:18Z
dc.date.available.none.fl_str_mv 2017-05-25T16:24:18Z
dc.type.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.local.spa.fl_str_mv Artículo de investigación
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Castaño Vélez, E. A. (2016). Identificación de modelos ARFIMA. Revista de la Facultad de Ciencias, 5(1), 12-37.
dc.identifier.issn.none.fl_str_mv 0121-747X
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10495/7366
dc.identifier.eissn.none.fl_str_mv 2357-5549
identifier_str_mv Castaño Vélez, E. A. (2016). Identificación de modelos ARFIMA. Revista de la Facultad de Ciencias, 5(1), 12-37.
0121-747X
2357-5549
url http://hdl.handle.net/10495/7366
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.*.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
dc.rights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.accessrights.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.creativecommons.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
http://purl.org/coar/access_right/c_abf2
https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 25
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional, Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
institution Universidad de Antioquia
bitstream.url.fl_str_mv http://bibliotecadigital.udea.edu.co/bitstream/10495/7366/5/license.txt
http://bibliotecadigital.udea.edu.co/bitstream/10495/7366/1/CastanoElkin_2016_IdentificacionModelosArfima.pdf
http://bibliotecadigital.udea.edu.co/bitstream/10495/7366/2/license_url
http://bibliotecadigital.udea.edu.co/bitstream/10495/7366/3/license_text
http://bibliotecadigital.udea.edu.co/bitstream/10495/7366/4/license_rdf
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
508c248a47c8c7af302aad0e5b6abc69
4afdbb8c545fd630ea7db775da747b2f
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Antioquia
repository.mail.fl_str_mv andres.perez@udea.edu.co
_version_ 1812173182778474496
spelling Castaño Vélez, Elkin Argemiro2017-05-25T16:24:18Z2017-05-25T16:24:18Z2016Castaño Vélez, E. A. (2016). Identificación de modelos ARFIMA. Revista de la Facultad de Ciencias, 5(1), 12-37.0121-747Xhttp://hdl.handle.net/10495/73662357-5549RESUMEN: Desde la introducción de los modelos fraccionalmente integrados ARFIMA para series de tiempo con memoria larga, ha surgido un gran interés en el estudio de sus propiedades y áreas de aplicación. En este modelo, el grado de la memoria está detenido por el parámetro de diferenciación fraccional, el cual toma valores en un intervalo continuo de números reales. Para realizar la estimación de este parámetro y probar la existencia de memoria larga, se han propuesto distintos procedimientos en la literatura. Ahora bien, generalmente no basta con conocer si hay memoria larga en la serie de tiempo, sino que es necesario estimar adecuadamente el valor del parámetro de diferenciación fraccional, del cual depende la dinámica de largo plazo de la serie, y de la componente ARMA asociada al comportamiento de corto plazo. Esta estimación requiere de la especificación correcta del modelo ARFIMA. El objetivo de este artículo es el de implementar un proceso de identificación del modelo ARFIMA para series estacionarias a partir de un procedimiento paramétrico propuesto, y comparar su desempeño con métodos semiparamétricos propuestos en la literatura. Los resultados, obtenidos a través de un estudio de simulación, muestran que el procedimiento propuesto tiene, en general, un mejor desempeño.ABSTRACT: Since the introduction of ARFIMA models for fractionally integrated time series with long memory, there has been great interest in the study of their properties and application areas. In this model, the degree of memory is defined by the fractional differencing parameter, which takes values in a continuous range of real numbers. In order to estimate this parameter and prove the existence of long memory, they have been proposed various methods in the literature. But usually it is not enough to know if there is long memory in time series, it is necessary to properly assess the value of the fractional differencing parameter, which depends on the long-term dynamics of the series, and the associated component ARMA short-term behavior. This estimate requires the correct specification of the ARFIMA model. The purpose of this paper is to implement a process of identification for the ARFIMA model based in a parametric procedure, and compare their performance with semi-parametric methods proposed in the literature. The results obtained through a simulation study show that the proposed method has generally improved performance25application/pdfspaUniversidad Nacional, Facultad de CienciasBogotá, Colombiainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARTArtículo de investigaciónhttp://purl.org/coar/version/c_970fb48d4fbd8a85Atribución-NoComercial-SinDerivadas 2.5 Colombiainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/http://purl.org/coar/access_right/c_abf2https://creativecommons.org/licenses/by-nc-nd/4.0/Integración fraccionalMétodos paramétricosMétodos semiparamétricosPersistenciaFractional integrationLong memoryParametric methodSemiparametric methodPersistenceIdentificación de modelos ARFIMAIdentification in ARFIMA modelsRevista de la Facultad de Ciencias123751LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://bibliotecadigital.udea.edu.co/bitstream/10495/7366/5/license.txt8a4605be74aa9ea9d79846c1fba20a33MD55ORIGINALCastanoElkin_2016_IdentificacionModelosArfima.pdfCastanoElkin_2016_IdentificacionModelosArfima.pdfArtículo de investigaciónapplication/pdf541517http://bibliotecadigital.udea.edu.co/bitstream/10495/7366/1/CastanoElkin_2016_IdentificacionModelosArfima.pdf508c248a47c8c7af302aad0e5b6abc69MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://bibliotecadigital.udea.edu.co/bitstream/10495/7366/2/license_url4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://bibliotecadigital.udea.edu.co/bitstream/10495/7366/3/license_textd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://bibliotecadigital.udea.edu.co/bitstream/10495/7366/4/license_rdfd41d8cd98f00b204e9800998ecf8427eMD5410495/7366oai:bibliotecadigital.udea.edu.co:10495/73662021-06-23 20:46:07.285Repositorio Institucional Universidad de Antioquiaandres.perez@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=