Análisis de clasificación para identificar características relevantes en la detección de operaciones sospechosas en Bancolombia

RESUMEN: Grupo Bancolombia participa activamente en la lucha contra el Lavado de Activos y Financiación de terrorismo (LAFT), por este motivo, desde la gerencia de pymes y empresas que hace parte de la vicepresidencia de Cumplimiento, se deseaban conocer las variables, atributos o características má...

Full description

Autores:
Mariaca Rueda, Cristian David
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2022
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
spa
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/27344
Acceso en línea:
http://hdl.handle.net/10495/27344
Palabra clave:
Multivariate analysis
Financial statements
Machine learning
U-statistics
Principal components analysis
Money laundering - Prevention
Terrorism - Finance - Prevention
Análisis multivariante
Estados financieros
Aprendizaje automático (Inteligencia artificial)
Análisis por componentes principales
Reporte de Operaciones Sospechosas (ROS)
t-SNE
Aproximación y Proyección de Colector Uniforme (UMAP)
http://id.loc.gov/authorities/subjects/sh85088390
http://id.loc.gov/authorities/subjects/sh85048313
http://id.loc.gov/authorities/subjects/sh85079324
http://id.loc.gov/authorities/subjects/sh94001626
http://id.loc.gov/authorities/subjects/sh85106729
http://id.loc.gov/authorities/subjects/sh2010102291
http://id.loc.gov/authorities/subjects/sh2010116131
Rights
openAccess
License
Atribución-NoComercial-CompartirIgual 2.5 Colombia (CC BY-NC-SA 2.5 CO)
id UDEA2_2c8fe21596140283bb9e6390175814ec
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/27344
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Análisis de clasificación para identificar características relevantes en la detección de operaciones sospechosas en Bancolombia
title Análisis de clasificación para identificar características relevantes en la detección de operaciones sospechosas en Bancolombia
spellingShingle Análisis de clasificación para identificar características relevantes en la detección de operaciones sospechosas en Bancolombia
Multivariate analysis
Financial statements
Machine learning
U-statistics
Principal components analysis
Money laundering - Prevention
Terrorism - Finance - Prevention
Análisis multivariante
Estados financieros
Aprendizaje automático (Inteligencia artificial)
Análisis por componentes principales
Reporte de Operaciones Sospechosas (ROS)
t-SNE
Aproximación y Proyección de Colector Uniforme (UMAP)
http://id.loc.gov/authorities/subjects/sh85088390
http://id.loc.gov/authorities/subjects/sh85048313
http://id.loc.gov/authorities/subjects/sh85079324
http://id.loc.gov/authorities/subjects/sh94001626
http://id.loc.gov/authorities/subjects/sh85106729
http://id.loc.gov/authorities/subjects/sh2010102291
http://id.loc.gov/authorities/subjects/sh2010116131
title_short Análisis de clasificación para identificar características relevantes en la detección de operaciones sospechosas en Bancolombia
title_full Análisis de clasificación para identificar características relevantes en la detección de operaciones sospechosas en Bancolombia
title_fullStr Análisis de clasificación para identificar características relevantes en la detección de operaciones sospechosas en Bancolombia
title_full_unstemmed Análisis de clasificación para identificar características relevantes en la detección de operaciones sospechosas en Bancolombia
title_sort Análisis de clasificación para identificar características relevantes en la detección de operaciones sospechosas en Bancolombia
dc.creator.fl_str_mv Mariaca Rueda, Cristian David
dc.contributor.advisor.none.fl_str_mv Castañeda López, María Eugenia
Yarce Carmona, Emerson
dc.contributor.author.none.fl_str_mv Mariaca Rueda, Cristian David
dc.subject.lcsh.none.fl_str_mv Multivariate analysis
Financial statements
Machine learning
U-statistics
Principal components analysis
Money laundering - Prevention
Terrorism - Finance - Prevention
topic Multivariate analysis
Financial statements
Machine learning
U-statistics
Principal components analysis
Money laundering - Prevention
Terrorism - Finance - Prevention
Análisis multivariante
Estados financieros
Aprendizaje automático (Inteligencia artificial)
Análisis por componentes principales
Reporte de Operaciones Sospechosas (ROS)
t-SNE
Aproximación y Proyección de Colector Uniforme (UMAP)
http://id.loc.gov/authorities/subjects/sh85088390
http://id.loc.gov/authorities/subjects/sh85048313
http://id.loc.gov/authorities/subjects/sh85079324
http://id.loc.gov/authorities/subjects/sh94001626
http://id.loc.gov/authorities/subjects/sh85106729
http://id.loc.gov/authorities/subjects/sh2010102291
http://id.loc.gov/authorities/subjects/sh2010116131
dc.subject.lemb.none.fl_str_mv Análisis multivariante
Estados financieros
Aprendizaje automático (Inteligencia artificial)
Análisis por componentes principales
dc.subject.proposal.spa.fl_str_mv Reporte de Operaciones Sospechosas (ROS)
t-SNE
Aproximación y Proyección de Colector Uniforme (UMAP)
dc.subject.lcshuri.none.fl_str_mv http://id.loc.gov/authorities/subjects/sh85088390
http://id.loc.gov/authorities/subjects/sh85048313
http://id.loc.gov/authorities/subjects/sh85079324
http://id.loc.gov/authorities/subjects/sh94001626
http://id.loc.gov/authorities/subjects/sh85106729
http://id.loc.gov/authorities/subjects/sh2010102291
http://id.loc.gov/authorities/subjects/sh2010116131
description RESUMEN: Grupo Bancolombia participa activamente en la lucha contra el Lavado de Activos y Financiación de terrorismo (LAFT), por este motivo, desde la gerencia de pymes y empresas que hace parte de la vicepresidencia de Cumplimiento, se deseaban conocer las variables, atributos o características más influyentes de los estados financieros en los clientes con Reportes de Operaciones Sospechosas (ROS) y los clientes no reportados, con el fin de generar alertas que permitieran llevar a cabo un monitoreo a los clientes con posibles operaciones sospechosas. Se investigaron técnicas de análisis multivariado como ACP, t-SNE y UMAP usando machine learning para hacer la clasificación de los clientes de interés según los estados financieros, y para identificar las características, variables o atributos más influyentes se empleó la prueba no paramétrica U de Mann-Whitney.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-04-06T20:40:35Z
dc.date.available.none.fl_str_mv 2022-04-06T20:40:35Z
dc.date.issued.none.fl_str_mv 2022
dc.type.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/TP
dc.type.local.spa.fl_str_mv Tesis/Trabajo de grado - Monografía - Pregrado
format http://purl.org/coar/resource_type/c_7a1f
status_str draft
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10495/27344
url http://hdl.handle.net/10495/27344
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.*.fl_str_mv Atribución-NoComercial-CompartirIgual 2.5 Colombia (CC BY-NC-SA 2.5 CO)
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/co/
dc.rights.accessrights.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.creativecommons.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv Atribución-NoComercial-CompartirIgual 2.5 Colombia (CC BY-NC-SA 2.5 CO)
http://creativecommons.org/licenses/by-nc-sa/2.5/co/
http://purl.org/coar/access_right/c_abf2
https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.extent.spa.fl_str_mv 23
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
institution Universidad de Antioquia
bitstream.url.fl_str_mv http://bibliotecadigital.udea.edu.co/bitstream/10495/27344/3/license_rdf
http://bibliotecadigital.udea.edu.co/bitstream/10495/27344/2/MariacaCristian_2022_ClasificacionLAFTBancolombia.pdf
http://bibliotecadigital.udea.edu.co/bitstream/10495/27344/4/license.txt
bitstream.checksum.fl_str_mv b88b088d9957e670ce3b3fbe2eedbc13
988d09e7ee0364c21f859df0089404aa
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Antioquia
repository.mail.fl_str_mv andres.perez@udea.edu.co
_version_ 1812173171922567168
spelling Castañeda López, María EugeniaYarce Carmona, EmersonMariaca Rueda, Cristian David2022-04-06T20:40:35Z2022-04-06T20:40:35Z2022http://hdl.handle.net/10495/27344RESUMEN: Grupo Bancolombia participa activamente en la lucha contra el Lavado de Activos y Financiación de terrorismo (LAFT), por este motivo, desde la gerencia de pymes y empresas que hace parte de la vicepresidencia de Cumplimiento, se deseaban conocer las variables, atributos o características más influyentes de los estados financieros en los clientes con Reportes de Operaciones Sospechosas (ROS) y los clientes no reportados, con el fin de generar alertas que permitieran llevar a cabo un monitoreo a los clientes con posibles operaciones sospechosas. Se investigaron técnicas de análisis multivariado como ACP, t-SNE y UMAP usando machine learning para hacer la clasificación de los clientes de interés según los estados financieros, y para identificar las características, variables o atributos más influyentes se empleó la prueba no paramétrica U de Mann-Whitney.ABSTRACT: Grupo Bancolombia actively participates in the fight against Money Laundering and Financing of Terrorism (LAFT), for this reason, from the management of SMEs and companies that is part of the Vice Presidency of Cumplimiento, they wanted to know the variables, attributes or characteristics more influencers of financial statements in clients with Suspicious Transaction Reports (ROS) and unreported clients, in order to generate alerts that would allow monitoring clients with possible suspicious transactions. Multivariate analysis techniques such as PCA, t-SNE and UMAP were investigated using machine learning to classify the clients of interest according to the financial statements, and to identify the most influential characteristics, variables or attributes, the non-parametric test U Mann-Whitney.23application/pdfspainfo:eu-repo/semantics/draftinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fhttps://purl.org/redcol/resource_type/TPTesis/Trabajo de grado - Monografía - Pregradohttp://purl.org/coar/version/c_b1a7d7d4d402bcceinfo:eu-repo/semantics/openAccessAtribución-NoComercial-CompartirIgual 2.5 Colombia (CC BY-NC-SA 2.5 CO)http://creativecommons.org/licenses/by-nc-sa/2.5/co/http://purl.org/coar/access_right/c_abf2https://creativecommons.org/licenses/by-nc-sa/4.0/Multivariate analysisFinancial statementsMachine learningU-statisticsPrincipal components analysisMoney laundering - PreventionTerrorism - Finance - PreventionAnálisis multivarianteEstados financierosAprendizaje automático (Inteligencia artificial)Análisis por componentes principalesReporte de Operaciones Sospechosas (ROS)t-SNEAproximación y Proyección de Colector Uniforme (UMAP)http://id.loc.gov/authorities/subjects/sh85088390http://id.loc.gov/authorities/subjects/sh85048313http://id.loc.gov/authorities/subjects/sh85079324http://id.loc.gov/authorities/subjects/sh94001626http://id.loc.gov/authorities/subjects/sh85106729http://id.loc.gov/authorities/subjects/sh2010102291http://id.loc.gov/authorities/subjects/sh2010116131Análisis de clasificación para identificar características relevantes en la detección de operaciones sospechosas en BancolombiaMedellín, ColombiaEstadísticoPregradoFacultad de Ciencias Exactas y Naturales. EstadísticaUniversidad de AntioquiaCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8823http://bibliotecadigital.udea.edu.co/bitstream/10495/27344/3/license_rdfb88b088d9957e670ce3b3fbe2eedbc13MD53ORIGINALMariacaCristian_2022_ClasificacionLAFTBancolombia.pdfMariacaCristian_2022_ClasificacionLAFTBancolombia.pdfTrabajo de grado de pregradoapplication/pdf1181289http://bibliotecadigital.udea.edu.co/bitstream/10495/27344/2/MariacaCristian_2022_ClasificacionLAFTBancolombia.pdf988d09e7ee0364c21f859df0089404aaMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://bibliotecadigital.udea.edu.co/bitstream/10495/27344/4/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5410495/27344oai:bibliotecadigital.udea.edu.co:10495/273442022-04-07 07:21:05.401Repositorio Institucional Universidad de Antioquiaandres.perez@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=