Self-organization and pattern formation in coupled Lorenz oscillators under a discrete symmetric transformation

ABSTRACT: We present a spatial array of Lorenz oscillators, with each cell lattice in the chaotic regime. This system shows spatial ordering due to self-organization of chaos synchronization after a bifurcation. It is shown that an array of such oscillators transformed under a discrete symmetry grou...

Full description

Autores:
Carrillo Loaiza, Alejandro
Rodríguez Rey, Boris Ánghelo
Tipo de recurso:
Article of investigation
Fecha de publicación:
2011
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/9259
Acceso en línea:
http://hdl.handle.net/10495/9259
Palabra clave:
Autoorganización de patrones
Osciladores de Lorenz
Simetría
Symmetry
Self-organizing systems
Sistemas de autoorganización
Pattern recognition systems
Sistema de reconocimiento de configuraciones
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 2.5 Colombia
Description
Summary:ABSTRACT: We present a spatial array of Lorenz oscillators, with each cell lattice in the chaotic regime. This system shows spatial ordering due to self-organization of chaos synchronization after a bifurcation. It is shown that an array of such oscillators transformed under a discrete symmetry group, does not maintain the global dynamics, although each transformed unit cell is locally identical to its precursor. Alternatively, it is shown that in a 1-dimensional lattice, the coupling destroy the chaotic behavior but there are similar global behaviors between both coupled arrays, suggesting that is the local equivariance which controls the dynamics.