Self-organization and pattern formation in coupled Lorenz oscillators under a discrete symmetric transformation
ABSTRACT: We present a spatial array of Lorenz oscillators, with each cell lattice in the chaotic regime. This system shows spatial ordering due to self-organization of chaos synchronization after a bifurcation. It is shown that an array of such oscillators transformed under a discrete symmetry grou...
- Autores:
-
Carrillo Loaiza, Alejandro
Rodríguez Rey, Boris Ánghelo
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2011
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/9259
- Acceso en línea:
- http://hdl.handle.net/10495/9259
- Palabra clave:
- Autoorganización de patrones
Osciladores de Lorenz
Simetría
Symmetry
Self-organizing systems
Sistemas de autoorganización
Pattern recognition systems
Sistema de reconocimiento de configuraciones
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 2.5 Colombia
Summary: | ABSTRACT: We present a spatial array of Lorenz oscillators, with each cell lattice in the chaotic regime. This system shows spatial ordering due to self-organization of chaos synchronization after a bifurcation. It is shown that an array of such oscillators transformed under a discrete symmetry group, does not maintain the global dynamics, although each transformed unit cell is locally identical to its precursor. Alternatively, it is shown that in a 1-dimensional lattice, the coupling destroy the chaotic behavior but there are similar global behaviors between both coupled arrays, suggesting that is the local equivariance which controls the dynamics. |
---|