Pronóstico de la radiación solar para la generación de energía eléctrica fotovoltaica
RESUMEN : El pronóstico de la energía solar fotovoltaica es cada vez más importante para los operadores de los sistemas eléctricos, dada la naturaleza incierta de la fuente primaria y su continua integración en estos. Por tanto, para una correcta operación de los sistemas eléctricos es necesario con...
- Autores:
-
Jaramillo Duque, Álvaro
- Tipo de recurso:
- Tesis
- Fecha de publicación:
- 2022
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- spa
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/29149
- Acceso en línea:
- http://hdl.handle.net/10495/29149
- Palabra clave:
- Análisis de datos
Data analysis
Radiación solar
Solar radiation
Aprendizaje automático (inteligencia artificial)
Machine learning
Generación de energía fotovoltaica
Photovoltaic power generation
Solar energy
Energía solar
Técnicas de predicción
Forecasting
http://aims.fao.org/aos/agrovoc/c_3041
http://vocabularies.unesco.org/thesaurus/concept2214
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-sa/2.5/co/
id |
UDEA2_25162ebd641cc8cb5155b276cb9eec60 |
---|---|
oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/29149 |
network_acronym_str |
UDEA2 |
network_name_str |
Repositorio UdeA |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Pronóstico de la radiación solar para la generación de energía eléctrica fotovoltaica |
title |
Pronóstico de la radiación solar para la generación de energía eléctrica fotovoltaica |
spellingShingle |
Pronóstico de la radiación solar para la generación de energía eléctrica fotovoltaica Análisis de datos Data analysis Radiación solar Solar radiation Aprendizaje automático (inteligencia artificial) Machine learning Generación de energía fotovoltaica Photovoltaic power generation Solar energy Energía solar Técnicas de predicción Forecasting http://aims.fao.org/aos/agrovoc/c_3041 http://vocabularies.unesco.org/thesaurus/concept2214 |
title_short |
Pronóstico de la radiación solar para la generación de energía eléctrica fotovoltaica |
title_full |
Pronóstico de la radiación solar para la generación de energía eléctrica fotovoltaica |
title_fullStr |
Pronóstico de la radiación solar para la generación de energía eléctrica fotovoltaica |
title_full_unstemmed |
Pronóstico de la radiación solar para la generación de energía eléctrica fotovoltaica |
title_sort |
Pronóstico de la radiación solar para la generación de energía eléctrica fotovoltaica |
dc.creator.fl_str_mv |
Jaramillo Duque, Álvaro |
dc.contributor.advisor.none.fl_str_mv |
Villa Acevedo, Walter Mauricio |
dc.contributor.author.none.fl_str_mv |
Jaramillo Duque, Álvaro |
dc.subject.unesco.none.fl_str_mv |
Análisis de datos Data analysis |
topic |
Análisis de datos Data analysis Radiación solar Solar radiation Aprendizaje automático (inteligencia artificial) Machine learning Generación de energía fotovoltaica Photovoltaic power generation Solar energy Energía solar Técnicas de predicción Forecasting http://aims.fao.org/aos/agrovoc/c_3041 http://vocabularies.unesco.org/thesaurus/concept2214 |
dc.subject.lemb.none.fl_str_mv |
Radiación solar Solar radiation Aprendizaje automático (inteligencia artificial) Machine learning Generación de energía fotovoltaica Photovoltaic power generation Solar energy Energía solar |
dc.subject.agrovoc.none.fl_str_mv |
Técnicas de predicción Forecasting |
dc.subject.agrovocuri.none.fl_str_mv |
http://aims.fao.org/aos/agrovoc/c_3041 |
dc.subject.unescouri.none.fl_str_mv |
http://vocabularies.unesco.org/thesaurus/concept2214 |
description |
RESUMEN : El pronóstico de la energía solar fotovoltaica es cada vez más importante para los operadores de los sistemas eléctricos, dada la naturaleza incierta de la fuente primaria y su continua integración en estos. Por tanto, para una correcta operación de los sistemas eléctricos es necesario contar con pronósticos de la producción de la energía solar, lo más precisos posibles. Este trabajo se enfocará en predicciones para un horizonte de tiempo de corto plazo (24 horas). Estos pronósticos tienen una aplicación directa en los mercados de energía eléctrica del tipo diario e intradiarios, para la estimación de reservas secundarias y terciarias, entre otros aspectos importantes de la operación de los sistemas eléctricos que incluyan fuentes de energía solar. Actualmente, existe una tendencia hacia el uso de métodos de pronóstico basados en analitica de datos avanzada. Por lo tanto, el presente trabajo hace una comparación entre diferentes métodos de aprendizaje de máquina. La comparación consiste en entrenar y comparar diferentes modelos capaces de proporcionar series de tiempo de la radiación solar con un día de anticipación. Para estos experimentos se hace uso de un conjunto de datos abiertos proporcionado por el proyecto SolarMap. El conjunto de datos comprende diferentes variables climáticas y abarca un período que va desde el 6 de abril de 2010 hasta el 3 de abril de 2012. Después de los experimentos realizados, se encontró que los modelos con redes neuronales Convolutional Neural Network combinados con Long short-term memory (CNN-LSTM) son los que lograron mejor desempeño comparadas con el resto de modelos implementados y probados. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-06-13T18:55:36Z |
dc.date.available.none.fl_str_mv |
2022-06-13T18:55:36Z |
dc.date.issued.none.fl_str_mv |
2022 |
dc.type.spa.fl_str_mv |
info:eu-repo/semantics/other |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
dc.type.hasversion.spa.fl_str_mv |
info:eu-repo/semantics/draft |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_46ec |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/COther |
dc.type.local.spa.fl_str_mv |
Tesis/Trabajo de grado - Monografía - Especialización |
format |
http://purl.org/coar/resource_type/c_46ec |
status_str |
draft |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10495/29149 |
url |
http://hdl.handle.net/10495/29149 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.rights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/co/ |
dc.rights.accessrights.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.creativecommons.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/co/ http://purl.org/coar/access_right/c_abf2 https://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.format.extent.spa.fl_str_mv |
21 |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.group.spa.fl_str_mv |
Grupo de Manejo Eficiente de la Energía (GIMEL) |
dc.publisher.place.spa.fl_str_mv |
Medellín - Colombia |
institution |
Universidad de Antioquia |
bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstream/10495/29149/3/license_rdf https://bibliotecadigital.udea.edu.co/bitstream/10495/29149/4/license.txt https://bibliotecadigital.udea.edu.co/bitstream/10495/29149/1/Jaramillo%c3%81lvaro_2022_Pron%c3%b3sticoRadiaci%c3%b3nSolar.pdf |
bitstream.checksum.fl_str_mv |
e2060682c9c70d4d30c83c51448f4eed 8a4605be74aa9ea9d79846c1fba20a33 c7a0a2d608016b9e05c2e599a54d9575 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Antioquia |
repository.mail.fl_str_mv |
andres.perez@udea.edu.co |
_version_ |
1812173153084899328 |
spelling |
Villa Acevedo, Walter MauricioJaramillo Duque, Álvaro2022-06-13T18:55:36Z2022-06-13T18:55:36Z2022http://hdl.handle.net/10495/29149RESUMEN : El pronóstico de la energía solar fotovoltaica es cada vez más importante para los operadores de los sistemas eléctricos, dada la naturaleza incierta de la fuente primaria y su continua integración en estos. Por tanto, para una correcta operación de los sistemas eléctricos es necesario contar con pronósticos de la producción de la energía solar, lo más precisos posibles. Este trabajo se enfocará en predicciones para un horizonte de tiempo de corto plazo (24 horas). Estos pronósticos tienen una aplicación directa en los mercados de energía eléctrica del tipo diario e intradiarios, para la estimación de reservas secundarias y terciarias, entre otros aspectos importantes de la operación de los sistemas eléctricos que incluyan fuentes de energía solar. Actualmente, existe una tendencia hacia el uso de métodos de pronóstico basados en analitica de datos avanzada. Por lo tanto, el presente trabajo hace una comparación entre diferentes métodos de aprendizaje de máquina. La comparación consiste en entrenar y comparar diferentes modelos capaces de proporcionar series de tiempo de la radiación solar con un día de anticipación. Para estos experimentos se hace uso de un conjunto de datos abiertos proporcionado por el proyecto SolarMap. El conjunto de datos comprende diferentes variables climáticas y abarca un período que va desde el 6 de abril de 2010 hasta el 3 de abril de 2012. Después de los experimentos realizados, se encontró que los modelos con redes neuronales Convolutional Neural Network combinados con Long short-term memory (CNN-LSTM) son los que lograron mejor desempeño comparadas con el resto de modelos implementados y probados.21application/pdfspainfo:eu-repo/semantics/draftinfo:eu-repo/semantics/otherhttp://purl.org/coar/resource_type/c_46echttp://purl.org/redcol/resource_type/COtherTesis/Trabajo de grado - Monografía - Especializaciónhttp://purl.org/coar/version/c_b1a7d7d4d402bcceinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/co/http://purl.org/coar/access_right/c_abf2https://creativecommons.org/licenses/by-nc-sa/4.0/Pronóstico de la radiación solar para la generación de energía eléctrica fotovoltaicaGrupo de Manejo Eficiente de la Energía (GIMEL)Medellín - ColombiaAnálisis de datosData analysisRadiación solarSolar radiationAprendizaje automático (inteligencia artificial)Machine learningGeneración de energía fotovoltaicaPhotovoltaic power generationSolar energyEnergía solarTécnicas de predicciónForecastinghttp://aims.fao.org/aos/agrovoc/c_3041http://vocabularies.unesco.org/thesaurus/concept2214https://github.com/alvarojd/SolarForecastingEspecialista en Analítica y Ciencia de DatosEspecializaciónFacultad de Ingeniería. Especialización en Analítica y Ciencia de DatosUniversidad de AntioquiaCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81051https://bibliotecadigital.udea.edu.co/bitstream/10495/29149/3/license_rdfe2060682c9c70d4d30c83c51448f4eedMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstream/10495/29149/4/license.txt8a4605be74aa9ea9d79846c1fba20a33MD54ORIGINALJaramilloÁlvaro_2022_PronósticoRadiaciónSolar.pdfJaramilloÁlvaro_2022_PronósticoRadiaciónSolar.pdfTrabajo de grado de especializaciónapplication/pdf434279https://bibliotecadigital.udea.edu.co/bitstream/10495/29149/1/Jaramillo%c3%81lvaro_2022_Pron%c3%b3sticoRadiaci%c3%b3nSolar.pdfc7a0a2d608016b9e05c2e599a54d9575MD5110495/29149oai:bibliotecadigital.udea.edu.co:10495/291492022-06-13 13:56:21.705Repositorio Institucional Universidad de Antioquiaandres.perez@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |