Entropies and Fisher information matrix for extended beta distribution

ABSTRACT: The extended beta type 1 distribution has the probability density function proportional to x α−1 (1 − x) β−1 exp[−σ/x(1 − x)], 0 < x < 1. In this article, we derive the Fisher information matrix and entropies such as R´enyi and Shannon for the extended beta type 1 distribution....

Full description

Autores:
Nagar, Daya Krishna
Zarrazola Rivera, Edwin de Jesús
Sánchez Herrera, Luz Estela
Tipo de recurso:
Article of investigation
Fecha de publicación:
2015
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/26794
Acceso en línea:
http://hdl.handle.net/10495/26794
Palabra clave:
Entropy
Entropía
Beta function
Extended beta function
Information matrix
Probability distribution
http://aims.fao.org/aos/agrovoc/c_1fc62594
Rights
openAccess
License
http://creativecommons.org/licenses/by/2.5/co/
id UDEA2_242cd58e86ae7a4baec60059e5824494
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/26794
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Entropies and Fisher information matrix for extended beta distribution
title Entropies and Fisher information matrix for extended beta distribution
spellingShingle Entropies and Fisher information matrix for extended beta distribution
Entropy
Entropía
Beta function
Extended beta function
Information matrix
Probability distribution
http://aims.fao.org/aos/agrovoc/c_1fc62594
title_short Entropies and Fisher information matrix for extended beta distribution
title_full Entropies and Fisher information matrix for extended beta distribution
title_fullStr Entropies and Fisher information matrix for extended beta distribution
title_full_unstemmed Entropies and Fisher information matrix for extended beta distribution
title_sort Entropies and Fisher information matrix for extended beta distribution
dc.creator.fl_str_mv Nagar, Daya Krishna
Zarrazola Rivera, Edwin de Jesús
Sánchez Herrera, Luz Estela
dc.contributor.author.none.fl_str_mv Nagar, Daya Krishna
Zarrazola Rivera, Edwin de Jesús
Sánchez Herrera, Luz Estela
dc.subject.agrovoc.none.fl_str_mv Entropy
Entropía
topic Entropy
Entropía
Beta function
Extended beta function
Information matrix
Probability distribution
http://aims.fao.org/aos/agrovoc/c_1fc62594
dc.subject.proposal.spa.fl_str_mv Beta function
Extended beta function
Information matrix
Probability distribution
dc.subject.agrovocuri.none.fl_str_mv http://aims.fao.org/aos/agrovoc/c_1fc62594
description ABSTRACT: The extended beta type 1 distribution has the probability density function proportional to x α−1 (1 − x) β−1 exp[−σ/x(1 − x)], 0 < x < 1. In this article, we derive the Fisher information matrix and entropies such as R´enyi and Shannon for the extended beta type 1 distribution.
publishDate 2015
dc.date.issued.none.fl_str_mv 2015
dc.date.accessioned.none.fl_str_mv 2022-03-22T21:41:44Z
dc.date.available.none.fl_str_mv 2022-03-22T21:41:44Z
dc.type.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.local.spa.fl_str_mv Artículo de investigación
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Nagar, D., Zarrazola, E., & Sánchez, L. (2015). Entropies and fisher information matrix for extended beta distribution. Applied Mathematical Sciences, 9(80), 3983-3994.. http://dx.doi.org/10.12988/ams.2015.53257
dc.identifier.issn.none.fl_str_mv 1312-885X
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10495/26794
dc.identifier.doi.none.fl_str_mv 10.12988/ams.2015.53257
dc.identifier.eissn.none.fl_str_mv 1314-7552
identifier_str_mv Nagar, D., Zarrazola, E., & Sánchez, L. (2015). Entropies and fisher information matrix for extended beta distribution. Applied Mathematical Sciences, 9(80), 3983-3994.. http://dx.doi.org/10.12988/ams.2015.53257
1312-885X
10.12988/ams.2015.53257
1314-7552
url http://hdl.handle.net/10495/26794
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournalabbrev.spa.fl_str_mv Appl. Math. Sci.
dc.rights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by/2.5/co/
dc.rights.accessrights.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.creativecommons.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/co/
http://purl.org/coar/access_right/c_abf2
https://creativecommons.org/licenses/by/4.0/
dc.format.extent.spa.fl_str_mv 12
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Hikari
dc.publisher.group.spa.fl_str_mv Análisis Multivariado
dc.publisher.place.spa.fl_str_mv Bulgaria
institution Universidad de Antioquia
bitstream.url.fl_str_mv http://bibliotecadigital.udea.edu.co/bitstream/10495/26794/2/license_rdf
http://bibliotecadigital.udea.edu.co/bitstream/10495/26794/3/license.txt
http://bibliotecadigital.udea.edu.co/bitstream/10495/26794/1/NagarDaya_2015_EntropiesFisherDistribution.pdf
bitstream.checksum.fl_str_mv 1646d1f6b96dbbbc38035efc9239ac9c
8a4605be74aa9ea9d79846c1fba20a33
caf2984c2db9362fb2fd48f6ab855e14
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Antioquia
repository.mail.fl_str_mv andres.perez@udea.edu.co
_version_ 1812173074027511808
spelling Nagar, Daya KrishnaZarrazola Rivera, Edwin de JesúsSánchez Herrera, Luz Estela2022-03-22T21:41:44Z2022-03-22T21:41:44Z2015Nagar, D., Zarrazola, E., & Sánchez, L. (2015). Entropies and fisher information matrix for extended beta distribution. Applied Mathematical Sciences, 9(80), 3983-3994.. http://dx.doi.org/10.12988/ams.2015.532571312-885Xhttp://hdl.handle.net/10495/2679410.12988/ams.2015.532571314-7552ABSTRACT: The extended beta type 1 distribution has the probability density function proportional to x α−1 (1 − x) β−1 exp[−σ/x(1 − x)], 0 < x < 1. In this article, we derive the Fisher information matrix and entropies such as R´enyi and Shannon for the extended beta type 1 distribution.COL000053212application/pdfengHikariAnálisis MultivariadoBulgariainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARTArtículo de investigaciónhttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/co/http://purl.org/coar/access_right/c_abf2https://creativecommons.org/licenses/by/4.0/Entropies and Fisher information matrix for extended beta distributionEntropyEntropíaBeta functionExtended beta functionInformation matrixProbability distributionhttp://aims.fao.org/aos/agrovoc/c_1fc62594Appl. Math. Sci.Applied Mathematical Sciences39833994980CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8927http://bibliotecadigital.udea.edu.co/bitstream/10495/26794/2/license_rdf1646d1f6b96dbbbc38035efc9239ac9cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://bibliotecadigital.udea.edu.co/bitstream/10495/26794/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53ORIGINALNagarDaya_2015_EntropiesFisherDistribution.pdfNagarDaya_2015_EntropiesFisherDistribution.pdfArtículo de investigaciónapplication/pdf211238http://bibliotecadigital.udea.edu.co/bitstream/10495/26794/1/NagarDaya_2015_EntropiesFisherDistribution.pdfcaf2984c2db9362fb2fd48f6ab855e14MD5110495/26794oai:bibliotecadigital.udea.edu.co:10495/267942022-03-22 16:41:45.282Repositorio Institucional Universidad de Antioquiaandres.perez@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=