Entropies and Fisher information matrix for extended beta distribution

ABSTRACT: The extended beta type 1 distribution has the probability density function proportional to x α−1 (1 − x) β−1 exp[−σ/x(1 − x)], 0 < x < 1. In this article, we derive the Fisher information matrix and entropies such as R´enyi and Shannon for the extended beta type 1 distribution....

Full description

Autores:
Nagar, Daya Krishna
Zarrazola Rivera, Edwin de Jesús
Sánchez Herrera, Luz Estela
Tipo de recurso:
Article of investigation
Fecha de publicación:
2015
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/26794
Acceso en línea:
http://hdl.handle.net/10495/26794
Palabra clave:
Entropy
Entropía
Beta function
Extended beta function
Information matrix
Probability distribution
http://aims.fao.org/aos/agrovoc/c_1fc62594
Rights
openAccess
License
http://creativecommons.org/licenses/by/2.5/co/
Description
Summary:ABSTRACT: The extended beta type 1 distribution has the probability density function proportional to x α−1 (1 − x) β−1 exp[−σ/x(1 − x)], 0 < x < 1. In this article, we derive the Fisher information matrix and entropies such as R´enyi and Shannon for the extended beta type 1 distribution.