IEEE-CIS fraud detection: a case study for fraudulent transaction detection based on supervised learning models

ABSTRACT : This paper proposes a solution to the Kaggle competition: "IEE-Fraud Detection", whose objective is to detect fraudulent transactions in a customer and transactional dataset collected by an E-commerce site to construct a transaction confirmation system via text messaging of the...

Full description

Autores:
González Benaissa, Aarón Al Rachid
Tipo de recurso:
Tesis
Fecha de publicación:
2021
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/20175
Acceso en línea:
http://hdl.handle.net/10495/20175
https://github.com/AaronGonzalezB/monografia-especializacion-udea.git
Palabra clave:
Electronic commerce
Comercio electrónico
Artificial intelligence
Inteligencia artificial
Fraud
Fraude
Illegal practices
Practicas Ilegales
Classification systems
Sistemas de Clasificación
Linked open data
Datos abiertos vinculados
Fraud detection
binary classification
imbalanced data
dimensionality reduction
http://aims.fao.org/aos/agrovoc/c_8139c3d0
http://aims.fao.org/aos/agrovoc/c_15682
http://aims.fao.org/aos/agrovoc/c_9000017
http://aims.fao.org/aos/agrovoc/c_773acdb4
http://vocabularies.unesco.org/thesaurus/concept11036
http://vocabularies.unesco.org/thesaurus/concept3052
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-sa/2.5/co/
id UDEA2_1e2519420cbb23d656566f76f6620c6e
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/20175
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv IEEE-CIS fraud detection: a case study for fraudulent transaction detection based on supervised learning models
title IEEE-CIS fraud detection: a case study for fraudulent transaction detection based on supervised learning models
spellingShingle IEEE-CIS fraud detection: a case study for fraudulent transaction detection based on supervised learning models
Electronic commerce
Comercio electrónico
Artificial intelligence
Inteligencia artificial
Fraud
Fraude
Illegal practices
Practicas Ilegales
Classification systems
Sistemas de Clasificación
Linked open data
Datos abiertos vinculados
Fraud detection
binary classification
imbalanced data
dimensionality reduction
http://aims.fao.org/aos/agrovoc/c_8139c3d0
http://aims.fao.org/aos/agrovoc/c_15682
http://aims.fao.org/aos/agrovoc/c_9000017
http://aims.fao.org/aos/agrovoc/c_773acdb4
http://vocabularies.unesco.org/thesaurus/concept11036
http://vocabularies.unesco.org/thesaurus/concept3052
title_short IEEE-CIS fraud detection: a case study for fraudulent transaction detection based on supervised learning models
title_full IEEE-CIS fraud detection: a case study for fraudulent transaction detection based on supervised learning models
title_fullStr IEEE-CIS fraud detection: a case study for fraudulent transaction detection based on supervised learning models
title_full_unstemmed IEEE-CIS fraud detection: a case study for fraudulent transaction detection based on supervised learning models
title_sort IEEE-CIS fraud detection: a case study for fraudulent transaction detection based on supervised learning models
dc.creator.fl_str_mv González Benaissa, Aarón Al Rachid
dc.contributor.advisor.none.fl_str_mv Sepúlveda Cano, Lina María
dc.contributor.author.none.fl_str_mv González Benaissa, Aarón Al Rachid
dc.subject.unesco.none.fl_str_mv Electronic commerce
Comercio electrónico
Artificial intelligence
Inteligencia artificial
topic Electronic commerce
Comercio electrónico
Artificial intelligence
Inteligencia artificial
Fraud
Fraude
Illegal practices
Practicas Ilegales
Classification systems
Sistemas de Clasificación
Linked open data
Datos abiertos vinculados
Fraud detection
binary classification
imbalanced data
dimensionality reduction
http://aims.fao.org/aos/agrovoc/c_8139c3d0
http://aims.fao.org/aos/agrovoc/c_15682
http://aims.fao.org/aos/agrovoc/c_9000017
http://aims.fao.org/aos/agrovoc/c_773acdb4
http://vocabularies.unesco.org/thesaurus/concept11036
http://vocabularies.unesco.org/thesaurus/concept3052
dc.subject.agrovoc.none.fl_str_mv Fraud
Fraude
Illegal practices
Practicas Ilegales
Classification systems
Sistemas de Clasificación
Linked open data
Datos abiertos vinculados
dc.subject.proposal.spa.fl_str_mv Fraud detection
binary classification
imbalanced data
dimensionality reduction
dc.subject.agrovocuri.none.fl_str_mv http://aims.fao.org/aos/agrovoc/c_8139c3d0
http://aims.fao.org/aos/agrovoc/c_15682
http://aims.fao.org/aos/agrovoc/c_9000017
http://aims.fao.org/aos/agrovoc/c_773acdb4
dc.subject.unescouri.none.fl_str_mv http://vocabularies.unesco.org/thesaurus/concept11036
http://vocabularies.unesco.org/thesaurus/concept3052
description ABSTRACT : This paper proposes a solution to the Kaggle competition: "IEE-Fraud Detection", whose objective is to detect fraudulent transactions in a customer and transactional dataset collected by an E-commerce site to construct a transaction confirmation system via text messaging of the payment services company Vesta Corporation. Exploratory analysis of the data and different modeling approaches are shown, selecting the most appropriate results for anomaly detection.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-06-17T16:01:59Z
dc.date.available.none.fl_str_mv 2021-06-17T16:01:59Z
dc.date.issued.none.fl_str_mv 2021
dc.type.spa.fl_str_mv info:eu-repo/semantics/other
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_46ec
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/COther
dc.type.local.spa.fl_str_mv Tesis/Trabajo de grado - Monografía - Especialización
format http://purl.org/coar/resource_type/c_46ec
status_str draft
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10495/20175
dc.identifier.url.spa.fl_str_mv https://github.com/AaronGonzalezB/monografia-especializacion-udea.git
url http://hdl.handle.net/10495/20175
https://github.com/AaronGonzalezB/monografia-especializacion-udea.git
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/co/
dc.rights.accessrights.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.creativecommons.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/co/
http://purl.org/coar/access_right/c_abf2
https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.extent.spa.fl_str_mv 8
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
institution Universidad de Antioquia
bitstream.url.fl_str_mv http://bibliotecadigital.udea.edu.co/bitstream/10495/20175/11/license_rdf
http://bibliotecadigital.udea.edu.co/bitstream/10495/20175/12/license.txt
http://bibliotecadigital.udea.edu.co/bitstream/10495/20175/10/AaronAlrachid_2021IEECISFraudPrediction
bitstream.checksum.fl_str_mv e2060682c9c70d4d30c83c51448f4eed
8a4605be74aa9ea9d79846c1fba20a33
408c8eb84f9bc3249fdc16d46992fc86
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Antioquia
repository.mail.fl_str_mv andres.perez@udea.edu.co
_version_ 1812173213991436288
spelling Sepúlveda Cano, Lina MaríaGonzález Benaissa, Aarón Al Rachid2021-06-17T16:01:59Z2021-06-17T16:01:59Z2021http://hdl.handle.net/10495/20175https://github.com/AaronGonzalezB/monografia-especializacion-udea.gitABSTRACT : This paper proposes a solution to the Kaggle competition: "IEE-Fraud Detection", whose objective is to detect fraudulent transactions in a customer and transactional dataset collected by an E-commerce site to construct a transaction confirmation system via text messaging of the payment services company Vesta Corporation. Exploratory analysis of the data and different modeling approaches are shown, selecting the most appropriate results for anomaly detection.8application/pdfenginfo:eu-repo/semantics/draftinfo:eu-repo/semantics/otherhttp://purl.org/coar/resource_type/c_46echttp://purl.org/redcol/resource_type/COtherTesis/Trabajo de grado - Monografía - Especializaciónhttp://purl.org/coar/version/c_b1a7d7d4d402bcceinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/co/http://purl.org/coar/access_right/c_abf2https://creativecommons.org/licenses/by-nc-sa/4.0/IEEE-CIS fraud detection: a case study for fraudulent transaction detection based on supervised learning modelsMedellín, ColombiaElectronic commerceComercio electrónicoArtificial intelligenceInteligencia artificialFraudFraudeIllegal practicesPracticas IlegalesClassification systemsSistemas de ClasificaciónLinked open dataDatos abiertos vinculadosFraud detectionbinary classificationimbalanced datadimensionality reductionhttp://aims.fao.org/aos/agrovoc/c_8139c3d0http://aims.fao.org/aos/agrovoc/c_15682http://aims.fao.org/aos/agrovoc/c_9000017http://aims.fao.org/aos/agrovoc/c_773acdb4http://vocabularies.unesco.org/thesaurus/concept11036http://vocabularies.unesco.org/thesaurus/concept3052https://github.com/AaronGonzalezB/monografia-especializacion-udea.gitEspecialista en Analítica y Ciencia de DatosEspecializaciónFacultad de Ingeniería. Especialización en Analítica y Ciencia de DatosUniversidad de AntioquiaCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81051http://bibliotecadigital.udea.edu.co/bitstream/10495/20175/11/license_rdfe2060682c9c70d4d30c83c51448f4eedMD511LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://bibliotecadigital.udea.edu.co/bitstream/10495/20175/12/license.txt8a4605be74aa9ea9d79846c1fba20a33MD512ORIGINALAaronAlrachid_2021IEECISFraudPredictionAaronAlrachid_2021IEECISFraudPredictionTrabajo de grado de especializaciónapplication/pdf565597http://bibliotecadigital.udea.edu.co/bitstream/10495/20175/10/AaronAlrachid_2021IEECISFraudPrediction408c8eb84f9bc3249fdc16d46992fc86MD51010495/20175oai:bibliotecadigital.udea.edu.co:10495/201752021-06-17 11:06:01.884Repositorio Institucional Universidad de Antioquiaandres.perez@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=