IEEE-CIS fraud detection: a case study for fraudulent transaction detection based on supervised learning models
ABSTRACT : This paper proposes a solution to the Kaggle competition: "IEE-Fraud Detection", whose objective is to detect fraudulent transactions in a customer and transactional dataset collected by an E-commerce site to construct a transaction confirmation system via text messaging of the...
- Autores:
-
González Benaissa, Aarón Al Rachid
- Tipo de recurso:
- Tesis
- Fecha de publicación:
- 2021
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/20175
- Acceso en línea:
- http://hdl.handle.net/10495/20175
https://github.com/AaronGonzalezB/monografia-especializacion-udea.git
- Palabra clave:
- Electronic commerce
Comercio electrónico
Artificial intelligence
Inteligencia artificial
Fraud
Fraude
Illegal practices
Practicas Ilegales
Classification systems
Sistemas de Clasificación
Linked open data
Datos abiertos vinculados
Fraud detection
binary classification
imbalanced data
dimensionality reduction
http://aims.fao.org/aos/agrovoc/c_8139c3d0
http://aims.fao.org/aos/agrovoc/c_15682
http://aims.fao.org/aos/agrovoc/c_9000017
http://aims.fao.org/aos/agrovoc/c_773acdb4
http://vocabularies.unesco.org/thesaurus/concept11036
http://vocabularies.unesco.org/thesaurus/concept3052
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-sa/2.5/co/
id |
UDEA2_1e2519420cbb23d656566f76f6620c6e |
---|---|
oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/20175 |
network_acronym_str |
UDEA2 |
network_name_str |
Repositorio UdeA |
repository_id_str |
|
dc.title.spa.fl_str_mv |
IEEE-CIS fraud detection: a case study for fraudulent transaction detection based on supervised learning models |
title |
IEEE-CIS fraud detection: a case study for fraudulent transaction detection based on supervised learning models |
spellingShingle |
IEEE-CIS fraud detection: a case study for fraudulent transaction detection based on supervised learning models Electronic commerce Comercio electrónico Artificial intelligence Inteligencia artificial Fraud Fraude Illegal practices Practicas Ilegales Classification systems Sistemas de Clasificación Linked open data Datos abiertos vinculados Fraud detection binary classification imbalanced data dimensionality reduction http://aims.fao.org/aos/agrovoc/c_8139c3d0 http://aims.fao.org/aos/agrovoc/c_15682 http://aims.fao.org/aos/agrovoc/c_9000017 http://aims.fao.org/aos/agrovoc/c_773acdb4 http://vocabularies.unesco.org/thesaurus/concept11036 http://vocabularies.unesco.org/thesaurus/concept3052 |
title_short |
IEEE-CIS fraud detection: a case study for fraudulent transaction detection based on supervised learning models |
title_full |
IEEE-CIS fraud detection: a case study for fraudulent transaction detection based on supervised learning models |
title_fullStr |
IEEE-CIS fraud detection: a case study for fraudulent transaction detection based on supervised learning models |
title_full_unstemmed |
IEEE-CIS fraud detection: a case study for fraudulent transaction detection based on supervised learning models |
title_sort |
IEEE-CIS fraud detection: a case study for fraudulent transaction detection based on supervised learning models |
dc.creator.fl_str_mv |
González Benaissa, Aarón Al Rachid |
dc.contributor.advisor.none.fl_str_mv |
Sepúlveda Cano, Lina María |
dc.contributor.author.none.fl_str_mv |
González Benaissa, Aarón Al Rachid |
dc.subject.unesco.none.fl_str_mv |
Electronic commerce Comercio electrónico Artificial intelligence Inteligencia artificial |
topic |
Electronic commerce Comercio electrónico Artificial intelligence Inteligencia artificial Fraud Fraude Illegal practices Practicas Ilegales Classification systems Sistemas de Clasificación Linked open data Datos abiertos vinculados Fraud detection binary classification imbalanced data dimensionality reduction http://aims.fao.org/aos/agrovoc/c_8139c3d0 http://aims.fao.org/aos/agrovoc/c_15682 http://aims.fao.org/aos/agrovoc/c_9000017 http://aims.fao.org/aos/agrovoc/c_773acdb4 http://vocabularies.unesco.org/thesaurus/concept11036 http://vocabularies.unesco.org/thesaurus/concept3052 |
dc.subject.agrovoc.none.fl_str_mv |
Fraud Fraude Illegal practices Practicas Ilegales Classification systems Sistemas de Clasificación Linked open data Datos abiertos vinculados |
dc.subject.proposal.spa.fl_str_mv |
Fraud detection binary classification imbalanced data dimensionality reduction |
dc.subject.agrovocuri.none.fl_str_mv |
http://aims.fao.org/aos/agrovoc/c_8139c3d0 http://aims.fao.org/aos/agrovoc/c_15682 http://aims.fao.org/aos/agrovoc/c_9000017 http://aims.fao.org/aos/agrovoc/c_773acdb4 |
dc.subject.unescouri.none.fl_str_mv |
http://vocabularies.unesco.org/thesaurus/concept11036 http://vocabularies.unesco.org/thesaurus/concept3052 |
description |
ABSTRACT : This paper proposes a solution to the Kaggle competition: "IEE-Fraud Detection", whose objective is to detect fraudulent transactions in a customer and transactional dataset collected by an E-commerce site to construct a transaction confirmation system via text messaging of the payment services company Vesta Corporation. Exploratory analysis of the data and different modeling approaches are shown, selecting the most appropriate results for anomaly detection. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-06-17T16:01:59Z |
dc.date.available.none.fl_str_mv |
2021-06-17T16:01:59Z |
dc.date.issued.none.fl_str_mv |
2021 |
dc.type.spa.fl_str_mv |
info:eu-repo/semantics/other |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
dc.type.hasversion.spa.fl_str_mv |
info:eu-repo/semantics/draft |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_46ec |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/COther |
dc.type.local.spa.fl_str_mv |
Tesis/Trabajo de grado - Monografía - Especialización |
format |
http://purl.org/coar/resource_type/c_46ec |
status_str |
draft |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10495/20175 |
dc.identifier.url.spa.fl_str_mv |
https://github.com/AaronGonzalezB/monografia-especializacion-udea.git |
url |
http://hdl.handle.net/10495/20175 https://github.com/AaronGonzalezB/monografia-especializacion-udea.git |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/co/ |
dc.rights.accessrights.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.creativecommons.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/co/ http://purl.org/coar/access_right/c_abf2 https://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.format.extent.spa.fl_str_mv |
8 |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
institution |
Universidad de Antioquia |
bitstream.url.fl_str_mv |
http://bibliotecadigital.udea.edu.co/bitstream/10495/20175/11/license_rdf http://bibliotecadigital.udea.edu.co/bitstream/10495/20175/12/license.txt http://bibliotecadigital.udea.edu.co/bitstream/10495/20175/10/AaronAlrachid_2021IEECISFraudPrediction |
bitstream.checksum.fl_str_mv |
e2060682c9c70d4d30c83c51448f4eed 8a4605be74aa9ea9d79846c1fba20a33 408c8eb84f9bc3249fdc16d46992fc86 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Antioquia |
repository.mail.fl_str_mv |
andres.perez@udea.edu.co |
_version_ |
1812173213991436288 |
spelling |
Sepúlveda Cano, Lina MaríaGonzález Benaissa, Aarón Al Rachid2021-06-17T16:01:59Z2021-06-17T16:01:59Z2021http://hdl.handle.net/10495/20175https://github.com/AaronGonzalezB/monografia-especializacion-udea.gitABSTRACT : This paper proposes a solution to the Kaggle competition: "IEE-Fraud Detection", whose objective is to detect fraudulent transactions in a customer and transactional dataset collected by an E-commerce site to construct a transaction confirmation system via text messaging of the payment services company Vesta Corporation. Exploratory analysis of the data and different modeling approaches are shown, selecting the most appropriate results for anomaly detection.8application/pdfenginfo:eu-repo/semantics/draftinfo:eu-repo/semantics/otherhttp://purl.org/coar/resource_type/c_46echttp://purl.org/redcol/resource_type/COtherTesis/Trabajo de grado - Monografía - Especializaciónhttp://purl.org/coar/version/c_b1a7d7d4d402bcceinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/co/http://purl.org/coar/access_right/c_abf2https://creativecommons.org/licenses/by-nc-sa/4.0/IEEE-CIS fraud detection: a case study for fraudulent transaction detection based on supervised learning modelsMedellín, ColombiaElectronic commerceComercio electrónicoArtificial intelligenceInteligencia artificialFraudFraudeIllegal practicesPracticas IlegalesClassification systemsSistemas de ClasificaciónLinked open dataDatos abiertos vinculadosFraud detectionbinary classificationimbalanced datadimensionality reductionhttp://aims.fao.org/aos/agrovoc/c_8139c3d0http://aims.fao.org/aos/agrovoc/c_15682http://aims.fao.org/aos/agrovoc/c_9000017http://aims.fao.org/aos/agrovoc/c_773acdb4http://vocabularies.unesco.org/thesaurus/concept11036http://vocabularies.unesco.org/thesaurus/concept3052https://github.com/AaronGonzalezB/monografia-especializacion-udea.gitEspecialista en Analítica y Ciencia de DatosEspecializaciónFacultad de Ingeniería. Especialización en Analítica y Ciencia de DatosUniversidad de AntioquiaCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81051http://bibliotecadigital.udea.edu.co/bitstream/10495/20175/11/license_rdfe2060682c9c70d4d30c83c51448f4eedMD511LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://bibliotecadigital.udea.edu.co/bitstream/10495/20175/12/license.txt8a4605be74aa9ea9d79846c1fba20a33MD512ORIGINALAaronAlrachid_2021IEECISFraudPredictionAaronAlrachid_2021IEECISFraudPredictionTrabajo de grado de especializaciónapplication/pdf565597http://bibliotecadigital.udea.edu.co/bitstream/10495/20175/10/AaronAlrachid_2021IEECISFraudPrediction408c8eb84f9bc3249fdc16d46992fc86MD51010495/20175oai:bibliotecadigital.udea.edu.co:10495/201752021-06-17 11:06:01.884Repositorio Institucional Universidad de Antioquiaandres.perez@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |