Ultimate boundedness results for solutions of certain third order nonlinear matrix differential equations
ABSTRACT: We present in this paper ultimate boundedness results for a third order nonlinear matrix differential equations of the form ...X +AX¨ + BX˙ + H(X) = P(t, X, X, ˙ X¨), where A, B are constant symmetric n × n matrices, X, H(X) and P(t, X, X, ˙ X¨) are real n×n matrices continuous in their re...
- Autores:
-
Uyi Afuwape, Anthony
Omeike, Mathew Omonigho
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2010
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/25462
- Acceso en línea:
- http://hdl.handle.net/10495/25462
- Palabra clave:
- Ecuaciones diferenciales no lineales
Differential equations, nonlinear
Boundedness
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id |
UDEA2_1d877a900ded0cdb0fb4f4c13049f5f1 |
---|---|
oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/25462 |
network_acronym_str |
UDEA2 |
network_name_str |
Repositorio UdeA |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Ultimate boundedness results for solutions of certain third order nonlinear matrix differential equations |
title |
Ultimate boundedness results for solutions of certain third order nonlinear matrix differential equations |
spellingShingle |
Ultimate boundedness results for solutions of certain third order nonlinear matrix differential equations Ecuaciones diferenciales no lineales Differential equations, nonlinear Boundedness |
title_short |
Ultimate boundedness results for solutions of certain third order nonlinear matrix differential equations |
title_full |
Ultimate boundedness results for solutions of certain third order nonlinear matrix differential equations |
title_fullStr |
Ultimate boundedness results for solutions of certain third order nonlinear matrix differential equations |
title_full_unstemmed |
Ultimate boundedness results for solutions of certain third order nonlinear matrix differential equations |
title_sort |
Ultimate boundedness results for solutions of certain third order nonlinear matrix differential equations |
dc.creator.fl_str_mv |
Uyi Afuwape, Anthony Omeike, Mathew Omonigho |
dc.contributor.author.none.fl_str_mv |
Uyi Afuwape, Anthony Omeike, Mathew Omonigho |
dc.subject.lemb.none.fl_str_mv |
Ecuaciones diferenciales no lineales Differential equations, nonlinear |
topic |
Ecuaciones diferenciales no lineales Differential equations, nonlinear Boundedness |
dc.subject.proposal.spa.fl_str_mv |
Boundedness |
description |
ABSTRACT: We present in this paper ultimate boundedness results for a third order nonlinear matrix differential equations of the form ...X +AX¨ + BX˙ + H(X) = P(t, X, X, ˙ X¨), where A, B are constant symmetric n × n matrices, X, H(X) and P(t, X, X, ˙ X¨) are real n×n matrices continuous in their respective arguments. Our results give a matrix analogue of earlier results of Afuwape [1] and Meng [4], and extend other earlier results for the case in which we do not necessarily require that H(X) be differentiable. |
publishDate |
2010 |
dc.date.issued.none.fl_str_mv |
2010 |
dc.date.accessioned.none.fl_str_mv |
2022-01-21T18:06:08Z |
dc.date.available.none.fl_str_mv |
2022-01-21T18:06:08Z |
dc.type.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.hasversion.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/ART |
dc.type.local.spa.fl_str_mv |
Artículo de investigación |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
1450-9628 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10495/25462 |
dc.identifier.eissn.none.fl_str_mv |
2406-3045 |
identifier_str_mv |
1450-9628 2406-3045 |
url |
http://hdl.handle.net/10495/25462 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournalabbrev.spa.fl_str_mv |
Kragujev. J. Math. |
dc.rights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
dc.rights.accessrights.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.creativecommons.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ http://purl.org/coar/access_right/c_abf2 https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.format.extent.spa.fl_str_mv |
12 |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad de Kragujevac, Facultad de Ciencias |
dc.publisher.group.spa.fl_str_mv |
Modelación con Ecuaciones Diferenciales |
dc.publisher.place.spa.fl_str_mv |
Kragujevac, Serbia |
institution |
Universidad de Antioquia |
bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstream/10495/25462/1/AfuwapeAnthony_2010_UltimateBoundednessResults%20.pdf https://bibliotecadigital.udea.edu.co/bitstream/10495/25462/3/license.txt https://bibliotecadigital.udea.edu.co/bitstream/10495/25462/2/license_rdf |
bitstream.checksum.fl_str_mv |
237af474db00caa4614bae7d073873a7 8a4605be74aa9ea9d79846c1fba20a33 b88b088d9957e670ce3b3fbe2eedbc13 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Antioquia |
repository.mail.fl_str_mv |
andres.perez@udea.edu.co |
_version_ |
1812173236166721536 |
spelling |
Uyi Afuwape, AnthonyOmeike, Mathew Omonigho2022-01-21T18:06:08Z2022-01-21T18:06:08Z20101450-9628http://hdl.handle.net/10495/254622406-3045ABSTRACT: We present in this paper ultimate boundedness results for a third order nonlinear matrix differential equations of the form ...X +AX¨ + BX˙ + H(X) = P(t, X, X, ˙ X¨), where A, B are constant symmetric n × n matrices, X, H(X) and P(t, X, X, ˙ X¨) are real n×n matrices continuous in their respective arguments. Our results give a matrix analogue of earlier results of Afuwape [1] and Meng [4], and extend other earlier results for the case in which we do not necessarily require that H(X) be differentiable.COL002436512application/pdfengUniversidad de Kragujevac, Facultad de CienciasModelación con Ecuaciones DiferencialesKragujevac, Serbiainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARTArtículo de investigaciónhttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/http://purl.org/coar/access_right/c_abf2https://creativecommons.org/licenses/by-nc-nd/4.0/Ultimate boundedness results for solutions of certain third order nonlinear matrix differential equationsEcuaciones diferenciales no linealesDifferential equations, nonlinearBoundednessKragujev. J. Math.Kragujevac Journal of Mathematics839433ORIGINALAfuwapeAnthony_2010_UltimateBoundednessResults .pdfAfuwapeAnthony_2010_UltimateBoundednessResults .pdfArtículo de investigaciónapplication/pdf141454https://bibliotecadigital.udea.edu.co/bitstream/10495/25462/1/AfuwapeAnthony_2010_UltimateBoundednessResults%20.pdf237af474db00caa4614bae7d073873a7MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstream/10495/25462/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8823https://bibliotecadigital.udea.edu.co/bitstream/10495/25462/2/license_rdfb88b088d9957e670ce3b3fbe2eedbc13MD5210495/25462oai:bibliotecadigital.udea.edu.co:10495/254622022-09-02 13:10:28.921Repositorio Institucional Universidad de Antioquiaandres.perez@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |