Spatial coherence modulation using plane waves generated with a digital micromirror device

ABSTRACT : Plane waves generated and alternated using a Digital Micromirror Device (DMD) were evaluated for modulating the spatial coherence of a laser beam. The spatial coherence and its modulation can be represented as a sampling problem in the temporal domain. In this way, the integration time in...

Full description

Autores:
Correa Rojas, Nelson Alonso
Álvarez Castaño, Maria Isabel
Herrera Ramírez, Jorge Alexis
Tipo de recurso:
Article of investigation
Fecha de publicación:
2021
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/24970
Acceso en línea:
http://hdl.handle.net/10495/24970
https://revistas.udea.edu.co/index.php/ingenieria/article/view/339562
Palabra clave:
Óptica
Optics
Onda electromagnética
Electromagnetic waves
Instrumentos ópticos
Optical instruments
Laser
Lasers
http://aims.fao.org/aos/agrovoc/c_63668d64
http://vocabularies.unesco.org/thesaurus/concept129
http://vocabularies.unesco.org/thesaurus/concept9533
http://aims.fao.org/aos/agrovoc/c_26026
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-sa/2.5/co/
Description
Summary:ABSTRACT : Plane waves generated and alternated using a Digital Micromirror Device (DMD) were evaluated for modulating the spatial coherence of a laser beam. The spatial coherence and its modulation can be represented as a sampling problem in the temporal domain. In this way, the integration time in the detector, the frame rate of the DMD, and the laser coherence time were properly adjusted or chosen to achieve the effect of a beam with a particular state of spatial coherence. Two methods were applied to superpose the plane waves and produce controlled visibility variations in the interferogram of a Young’s experiment. The visibility measurements show the variation of the modulus of the complex degree of spatial coherence, controlled by simple phase modulation, and between a pair of points on the wavefront. This procedure, which uses no mobile parts, could be applied in digital holography denoising, beam shaping, optical communications and optical metrology and imaging.