Melanoma Classification
ABSTRACT : We presented our solution for the SIIM-ISIC melanoma classification challenge. This is a multi-class multi-modal classification model using images and metadata and, we tested both binary and multi-class image-only models and a binary multi-modal model. The keys to success for our solution...
- Autores:
-
Gómez Giraldo, Oscar Nicolás
Arbeláez López, Néstor Iván
- Tipo de recurso:
- Tesis
- Fecha de publicación:
- 2021
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/24997
- Acceso en línea:
- http://hdl.handle.net/10495/24997
- Palabra clave:
- Análisis de datos
Data analysis
Procesamiento de datos
Data processing
Melanoma
Melanoma
Multi-modal
Data augmentation
http://aims.fao.org/aos/agrovoc/c_4713
http://vocabularies.unesco.org/thesaurus/concept2214
http://vocabularies.unesco.org/thesaurus/concept522
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-sa/2.5/co/
id |
UDEA2_154172c0a278b2142fe8d7d06fa7c223 |
---|---|
oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/24997 |
network_acronym_str |
UDEA2 |
network_name_str |
Repositorio UdeA |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Melanoma Classification |
title |
Melanoma Classification |
spellingShingle |
Melanoma Classification Análisis de datos Data analysis Procesamiento de datos Data processing Melanoma Melanoma Multi-modal Data augmentation http://aims.fao.org/aos/agrovoc/c_4713 http://vocabularies.unesco.org/thesaurus/concept2214 http://vocabularies.unesco.org/thesaurus/concept522 |
title_short |
Melanoma Classification |
title_full |
Melanoma Classification |
title_fullStr |
Melanoma Classification |
title_full_unstemmed |
Melanoma Classification |
title_sort |
Melanoma Classification |
dc.creator.fl_str_mv |
Gómez Giraldo, Oscar Nicolás Arbeláez López, Néstor Iván |
dc.contributor.advisor.none.fl_str_mv |
Sepúlveda Cano, Lina María |
dc.contributor.author.none.fl_str_mv |
Gómez Giraldo, Oscar Nicolás Arbeláez López, Néstor Iván |
dc.subject.unesco.none.fl_str_mv |
Análisis de datos Data analysis Procesamiento de datos Data processing |
topic |
Análisis de datos Data analysis Procesamiento de datos Data processing Melanoma Melanoma Multi-modal Data augmentation http://aims.fao.org/aos/agrovoc/c_4713 http://vocabularies.unesco.org/thesaurus/concept2214 http://vocabularies.unesco.org/thesaurus/concept522 |
dc.subject.agrovoc.none.fl_str_mv |
Melanoma Melanoma |
dc.subject.proposal.spa.fl_str_mv |
Multi-modal Data augmentation |
dc.subject.agrovocuri.none.fl_str_mv |
http://aims.fao.org/aos/agrovoc/c_4713 |
dc.subject.unescouri.none.fl_str_mv |
http://vocabularies.unesco.org/thesaurus/concept2214 http://vocabularies.unesco.org/thesaurus/concept522 |
description |
ABSTRACT : We presented our solution for the SIIM-ISIC melanoma classification challenge. This is a multi-class multi-modal classification model using images and metadata and, we tested both binary and multi-class image-only models and a binary multi-modal model. The keys to success for our solution were the selection of the target variable, using the available metadata, and the data augmentation strategy. Achieving AUC values of 0.95 and F1 of 0.71 for the validation data. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-12-13T18:05:33Z |
dc.date.available.none.fl_str_mv |
2021-12-13T18:05:33Z |
dc.date.issued.none.fl_str_mv |
2021 |
dc.type.spa.fl_str_mv |
info:eu-repo/semantics/other |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
dc.type.hasversion.spa.fl_str_mv |
info:eu-repo/semantics/draft |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_46ec |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/COther |
dc.type.local.spa.fl_str_mv |
Tesis/Trabajo de grado - Monografía - Especialización |
format |
http://purl.org/coar/resource_type/c_46ec |
status_str |
draft |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10495/24997 |
url |
http://hdl.handle.net/10495/24997 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/co/ |
dc.rights.accessrights.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.creativecommons.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/co/ http://purl.org/coar/access_right/c_abf2 https://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.format.extent.spa.fl_str_mv |
6 |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Medellín |
institution |
Universidad de Antioquia |
bitstream.url.fl_str_mv |
http://bibliotecadigital.udea.edu.co/bitstream/10495/24997/2/license_rdf http://bibliotecadigital.udea.edu.co/bitstream/10495/24997/4/ArbelaezNestor_2021_MelanomaClassificationModel.pdf http://bibliotecadigital.udea.edu.co/bitstream/10495/24997/7/license.txt |
bitstream.checksum.fl_str_mv |
e2060682c9c70d4d30c83c51448f4eed 176ad87ae6d2f28392efca158304114e 8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Antioquia |
repository.mail.fl_str_mv |
andres.perez@udea.edu.co |
_version_ |
1812173249990098944 |
spelling |
Sepúlveda Cano, Lina MaríaGómez Giraldo, Oscar NicolásArbeláez López, Néstor Iván2021-12-13T18:05:33Z2021-12-13T18:05:33Z2021http://hdl.handle.net/10495/24997ABSTRACT : We presented our solution for the SIIM-ISIC melanoma classification challenge. This is a multi-class multi-modal classification model using images and metadata and, we tested both binary and multi-class image-only models and a binary multi-modal model. The keys to success for our solution were the selection of the target variable, using the available metadata, and the data augmentation strategy. Achieving AUC values of 0.95 and F1 of 0.71 for the validation data.6application/pdfenginfo:eu-repo/semantics/draftinfo:eu-repo/semantics/otherhttp://purl.org/coar/resource_type/c_46echttp://purl.org/redcol/resource_type/COtherTesis/Trabajo de grado - Monografía - Especializaciónhttp://purl.org/coar/version/c_b1a7d7d4d402bcceinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/co/http://purl.org/coar/access_right/c_abf2https://creativecommons.org/licenses/by-nc-sa/4.0/Melanoma ClassificationMedellínAnálisis de datosData analysisProcesamiento de datosData processingMelanomaMelanomaMulti-modalData augmentationhttp://aims.fao.org/aos/agrovoc/c_4713http://vocabularies.unesco.org/thesaurus/concept2214http://vocabularies.unesco.org/thesaurus/concept522Especialista en Analítica y Ciencia de DatosEspecializaciónFacultad de Ingeniería. Especialización en Analítica y Ciencia de DatosUniversidad de AntioquiaCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81051http://bibliotecadigital.udea.edu.co/bitstream/10495/24997/2/license_rdfe2060682c9c70d4d30c83c51448f4eedMD52ORIGINALArbelaezNestor_2021_MelanomaClassificationModel.pdfArbelaezNestor_2021_MelanomaClassificationModel.pdfapplication/pdf1020771http://bibliotecadigital.udea.edu.co/bitstream/10495/24997/4/ArbelaezNestor_2021_MelanomaClassificationModel.pdf176ad87ae6d2f28392efca158304114eMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://bibliotecadigital.udea.edu.co/bitstream/10495/24997/7/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5710495/24997oai:bibliotecadigital.udea.edu.co:10495/249972021-12-13 13:05:49.272Repositorio Institucional Universidad de Antioquiaandres.perez@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |