Mapping and Scheduling in Heterogeneous NoC through Population-Based Incremental Learning

ABSTRACT: Network-on-Chip (NoC) is a growing and promising communication paradigm for Multiprocessor-System-On-Chip (MPSoC) design, because of its scalability and performance features. In designing such systems, mapping and scheduling are becoming critical stages, because of the increase of both siz...

Full description

Autores:
Aedo Cobo, José Edinson
Rivera Vélez, Fredy Alexander
Bagherzadeh, Nader
Tipo de recurso:
Article of investigation
Fecha de publicación:
2012
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/9986
Acceso en línea:
http://hdl.handle.net/10495/9986
Palabra clave:
Aprendizaje Incremental Basado en la Población
Diseño con ayuda de computador
Multiprocesador
Computer-aided Design
Multiprocessors
Rights
openAccess
License
Atribución-NoComercial-CompartirIgual 2.5 Colombia (CC BY-NC-SA 2.5 CO)
Description
Summary:ABSTRACT: Network-on-Chip (NoC) is a growing and promising communication paradigm for Multiprocessor-System-On-Chip (MPSoC) design, because of its scalability and performance features. In designing such systems, mapping and scheduling are becoming critical stages, because of the increase of both size of the network and application’s complexity. Some reported solutions solve each issue independently. However, a conjoint approach for solving mapping and scheduling allows to take into account both computation and communication objectives simultaneously. This paper shows a mapping and scheduling solution, which is based on a Population-Based Incremental Learning (PBIL) algorithm. The simulation results suggest that our PBIL approach is able to find optimal mapping and scheduling, in a multi-objective fashion. A 2-D heterogeneous mesh was used as target architecture for implementation, although the PBIL representation is suited to deal with more complex architectures, such as 3-D meshes.