Manufacture of titanium dioxide scaffolds for medical applications
ABSTRACT: The skeletal system is vulnerable to injuries and bone loss over the years, making the use of autologous or allogeneic implants necessary. However, these implants have complications, such as the limited amount of bone to be extracted and the cell death at the extraction site; hence, biomat...
- Autores:
-
Cuervo Osorio, Giovanni
Jiménez Valencia, Ana María
Mosquera Agualimpia, Cristian
Escobar Sierra, Diana Marcela
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2018
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/27002
- Acceso en línea:
- http://hdl.handle.net/10495/27002
- Palabra clave:
- Andamios del tejido
Tissue Scaffolds
Infiltración
Seepage
Liofilización
Freeze Drying
Dióxido de titanio
Titanium dioxide
http://aims.fao.org/aos/agrovoc/c_331330
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by/2.5/co/
id |
UDEA2_098ea10778f905a6d8df39d56177285c |
---|---|
oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/27002 |
network_acronym_str |
UDEA2 |
network_name_str |
Repositorio UdeA |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Manufacture of titanium dioxide scaffolds for medical applications |
dc.title.alternative.spa.fl_str_mv |
Elaboración de scaffolds de dióxido de titanio para aplicaciones médicas Elaboração de scaffolds de dióxido de titânio para aplicações médicas |
title |
Manufacture of titanium dioxide scaffolds for medical applications |
spellingShingle |
Manufacture of titanium dioxide scaffolds for medical applications Andamios del tejido Tissue Scaffolds Infiltración Seepage Liofilización Freeze Drying Dióxido de titanio Titanium dioxide http://aims.fao.org/aos/agrovoc/c_331330 |
title_short |
Manufacture of titanium dioxide scaffolds for medical applications |
title_full |
Manufacture of titanium dioxide scaffolds for medical applications |
title_fullStr |
Manufacture of titanium dioxide scaffolds for medical applications |
title_full_unstemmed |
Manufacture of titanium dioxide scaffolds for medical applications |
title_sort |
Manufacture of titanium dioxide scaffolds for medical applications |
dc.creator.fl_str_mv |
Cuervo Osorio, Giovanni Jiménez Valencia, Ana María Mosquera Agualimpia, Cristian Escobar Sierra, Diana Marcela |
dc.contributor.author.none.fl_str_mv |
Cuervo Osorio, Giovanni Jiménez Valencia, Ana María Mosquera Agualimpia, Cristian Escobar Sierra, Diana Marcela |
dc.subject.decs.none.fl_str_mv |
Andamios del tejido Tissue Scaffolds Infiltración Seepage Liofilización Freeze Drying |
topic |
Andamios del tejido Tissue Scaffolds Infiltración Seepage Liofilización Freeze Drying Dióxido de titanio Titanium dioxide http://aims.fao.org/aos/agrovoc/c_331330 |
dc.subject.agrovoc.none.fl_str_mv |
Dióxido de titanio Titanium dioxide |
dc.subject.agrovocuri.none.fl_str_mv |
http://aims.fao.org/aos/agrovoc/c_331330 |
description |
ABSTRACT: The skeletal system is vulnerable to injuries and bone loss over the years, making the use of autologous or allogeneic implants necessary. However, these implants have complications, such as the limited amount of bone to be extracted and the cell death at the extraction site; hence, biomaterials have been developed as platforms for cell growth (scaffolds). Biomaterials and bones have similar properties that facilitate the integration between the material and the bone tissue, helping the tissue to regenerate. Traditional ceramic implants are hydroxyapatite, but given their low mechanical properties, they have been replaced with better inert ceramics. Therefore, this study aims at manufacturing titanium dioxide scaffolds through various techniques, using collagen, polyvinyl alcohol (PVA), sodium chloride, and corn flour as binders to influence pore size. Scaffolds were characterized by a Scanning Electron Microscope (SEM) and evaluated by compression and degradability tests in a Simulated Body Fluid (SBF). The prepared scaffolds had mechanical behaviors with ranges within the bone parameters; among them, the scaffold obtained by infiltration with 10% PVA presented values of compression strength (6.75 MPa), elastic modulus (0.23 GPa), and porosities (54-67%) closer to the values of the trabecular bone. |
publishDate |
2018 |
dc.date.issued.none.fl_str_mv |
2018 |
dc.date.accessioned.none.fl_str_mv |
2022-03-26T16:52:56Z |
dc.date.available.none.fl_str_mv |
2022-03-26T16:52:56Z |
dc.type.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.hasversion.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/ART |
dc.type.local.spa.fl_str_mv |
Artículo de investigación |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
0121-1129 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10495/27002 |
dc.identifier.doi.none.fl_str_mv |
10.19053/01211129.v27.n48.2018.8017 |
dc.identifier.eissn.none.fl_str_mv |
2357-5328 |
identifier_str_mv |
0121-1129 10.19053/01211129.v27.n48.2018.8017 2357-5328 |
url |
http://hdl.handle.net/10495/27002 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournalabbrev.spa.fl_str_mv |
Rev. Fac. Ing. |
dc.rights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by/2.5/co/ |
dc.rights.accessrights.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.creativecommons.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/co/ http://purl.org/coar/access_right/c_abf2 https://creativecommons.org/licenses/by/4.0/ |
dc.format.extent.spa.fl_str_mv |
10 |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Pedagógica y Tecnológica de Colombia, Facultad de Ingeniería |
dc.publisher.group.spa.fl_str_mv |
Grupo de Investigación en Biomateriales |
dc.publisher.place.spa.fl_str_mv |
Tunja, Colombia |
institution |
Universidad de Antioquia |
bitstream.url.fl_str_mv |
http://bibliotecadigital.udea.edu.co/bitstream/10495/27002/2/license_rdf http://bibliotecadigital.udea.edu.co/bitstream/10495/27002/3/license.txt http://bibliotecadigital.udea.edu.co/bitstream/10495/27002/1/CuervoGiovanni_2018_ManufactureTitaniumDioxide.pdf |
bitstream.checksum.fl_str_mv |
1646d1f6b96dbbbc38035efc9239ac9c 8a4605be74aa9ea9d79846c1fba20a33 8c9cf35f5172d4c242fdf585ac2b3ca7 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Antioquia |
repository.mail.fl_str_mv |
andres.perez@udea.edu.co |
_version_ |
1812173082150830080 |
spelling |
Cuervo Osorio, GiovanniJiménez Valencia, Ana MaríaMosquera Agualimpia, CristianEscobar Sierra, Diana Marcela2022-03-26T16:52:56Z2022-03-26T16:52:56Z20180121-1129http://hdl.handle.net/10495/2700210.19053/01211129.v27.n48.2018.80172357-5328ABSTRACT: The skeletal system is vulnerable to injuries and bone loss over the years, making the use of autologous or allogeneic implants necessary. However, these implants have complications, such as the limited amount of bone to be extracted and the cell death at the extraction site; hence, biomaterials have been developed as platforms for cell growth (scaffolds). Biomaterials and bones have similar properties that facilitate the integration between the material and the bone tissue, helping the tissue to regenerate. Traditional ceramic implants are hydroxyapatite, but given their low mechanical properties, they have been replaced with better inert ceramics. Therefore, this study aims at manufacturing titanium dioxide scaffolds through various techniques, using collagen, polyvinyl alcohol (PVA), sodium chloride, and corn flour as binders to influence pore size. Scaffolds were characterized by a Scanning Electron Microscope (SEM) and evaluated by compression and degradability tests in a Simulated Body Fluid (SBF). The prepared scaffolds had mechanical behaviors with ranges within the bone parameters; among them, the scaffold obtained by infiltration with 10% PVA presented values of compression strength (6.75 MPa), elastic modulus (0.23 GPa), and porosities (54-67%) closer to the values of the trabecular bone.RESUMEN: El Sistema esquelético es vulnerable a lesiones y a perder hueso a lo largo de los años, lo que hace necesario el uso de implantes autólogos o alogénicos; sin embargo, estos implantes tienen complicaciones, como la cantidad limitada de hueso que se extrae y la muerte celular en el sitio de extracción; por lo tanto, se han desarrollado biomateriales como plataformas para el crecimiento celular (scaffolds). Los biomateriales tienen propiedades similares a las del hueso, lo que facilita su integración con el tejido óseo, ayudando a la regeneración de este. Tradicionales los implantes de cerámica son de hidroxiapatitas, pero, debido a sus pobres propiedades mecánicas, han sido reemplazados por cerámicas inertes, que tienen mejores propiedades mecánicas. Por lo tanto, el objetivo de este estudio fue fabricar scaffolds de dióxido de titanio, por medio de diferentes técnicas, utilizando colágeno, polivinil alcohol (PVA), cloruro de sodio y harina de maíz como aglutinante para influenciar el tamaño del poro. Los scaffolds se caracterizaron por medio de microscopía electrónica de barrido (SEM) y se evaluaron con pruebas de compresión y degradabilidad en un fluido corporal simulado (SBF). Los scaffolds elaborados presentaron comportamientos mecánicos que están entre el rango normal del hueso; el scaffold obtenido por medio de infiltración, con 10 % de PVA, presentó valores de fuerza de compresión (6.75 MPa), módulos elásticos (0.23 GPa) y porosidad (54-67 %) cercanos a aquellos reportados para el hueso trabecular.RESUMO: O Sistema esquelético é vulnerável a lesões e a perder osso ao longo dos anos, o que faz necessário o uso de implantes autólogos ou alogênicos; porém, estes implantes têm complicações, como a quantidade limitada de osso que se extrai e a morte celular no lugar de extração; portanto, têm sido desenvolvidos biomateriais como plataformas para o crescimento celular (scaffolds). Os biomateriais têm propriedades similares às do osso, o que facilita sua integração com o tecido ósseo, ajudando à regeneração do mesmo. Tradicionais os implantes de cerâmica são de hidroxiapatitas, mas, devido a suas pobres propriedades mecânicas, têm sido substituídos por cerâmicas inertes, que têm melhores propriedades mecânicas. Portanto, o objetivo deste estudo foi fabricar scaffolds de dióxido de titânio, por meio de diferentes técnicas, utilizando colágeno, polivinil álcool (PVA), cloreto de sódio e farinha de milho como aglutinante para influenciar o tamanho do poro. Os scaffolds caracterizaram-se por meio de microscopia eletrônica de varredura (SEM) e avaliaram-se com provas de compressão e degradabilidade em um fluído corporal simulado (SBF). Os scaffolds elaborados apresentaram comportamentos mecânicos que estão entre a faixa normal do osso; o scaffold obtido por meio de infiltração, com 10% de PVA, apresentou valores de força de compressão (6.75 MPa), módulos elásticos (0.23 GPa) e porosidade (54-67%) próximos a aqueles reportados para o osso trabecular.COL005504910application/pdfengUniversidad Pedagógica y Tecnológica de Colombia, Facultad de IngenieríaGrupo de Investigación en BiomaterialesTunja, Colombiainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARTArtículo de investigaciónhttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/co/http://purl.org/coar/access_right/c_abf2https://creativecommons.org/licenses/by/4.0/Manufacture of titanium dioxide scaffolds for medical applicationsElaboración de scaffolds de dióxido de titanio para aplicaciones médicasElaboração de scaffolds de dióxido de titânio para aplicações médicasAndamios del tejidoTissue ScaffoldsInfiltraciónSeepageLiofilizaciónFreeze DryingDióxido de titanioTitanium dioxidehttp://aims.fao.org/aos/agrovoc/c_331330Rev. Fac. Ing.Revista Facultad de Ingeniería17252748CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8927http://bibliotecadigital.udea.edu.co/bitstream/10495/27002/2/license_rdf1646d1f6b96dbbbc38035efc9239ac9cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://bibliotecadigital.udea.edu.co/bitstream/10495/27002/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53ORIGINALCuervoGiovanni_2018_ManufactureTitaniumDioxide.pdfCuervoGiovanni_2018_ManufactureTitaniumDioxide.pdfArtículo de investigaciónapplication/pdf923735http://bibliotecadigital.udea.edu.co/bitstream/10495/27002/1/CuervoGiovanni_2018_ManufactureTitaniumDioxide.pdf8c9cf35f5172d4c242fdf585ac2b3ca7MD5110495/27002oai:bibliotecadigital.udea.edu.co:10495/270022022-03-26 11:52:57.031Repositorio Institucional Universidad de Antioquiaandres.perez@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |