Elucidating multi-input processing 3-node gene regulatory network topologies capable of generating striped gene expression patterns
ABSTRACT: A central problem in developmental and synthetic biology is understanding the mechanisms by which cells in a tissue or a Petri dish process external cues and transform such information into a coherent response, e.g., a terminal differentiation state. It was long believed that this type of...
- Autores:
-
Arboleda Rivera, Juan Camilo
Rodríguez Rey, Boris Anghelo
Machado Rodríguez, Gloria
Gutiérrez, Jayson
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2022
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/30700
- Acceso en línea:
- https://hdl.handle.net/10495/30700
- Palabra clave:
- Expresión Génica
Gene Expression
Biología Evolutiva
Developmental Biology
Biología Computacional
Computational Biology
Redes Reguladoras de Genes
Gene Regulatory Networks
- Rights
- openAccess
- License
- http://purl.org/coar/access_right/c_abf2
id |
UDEA2_008f5373769d7e4da987f360d69018ca |
---|---|
oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/30700 |
network_acronym_str |
UDEA2 |
network_name_str |
Repositorio UdeA |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Elucidating multi-input processing 3-node gene regulatory network topologies capable of generating striped gene expression patterns |
title |
Elucidating multi-input processing 3-node gene regulatory network topologies capable of generating striped gene expression patterns |
spellingShingle |
Elucidating multi-input processing 3-node gene regulatory network topologies capable of generating striped gene expression patterns Expresión Génica Gene Expression Biología Evolutiva Developmental Biology Biología Computacional Computational Biology Redes Reguladoras de Genes Gene Regulatory Networks |
title_short |
Elucidating multi-input processing 3-node gene regulatory network topologies capable of generating striped gene expression patterns |
title_full |
Elucidating multi-input processing 3-node gene regulatory network topologies capable of generating striped gene expression patterns |
title_fullStr |
Elucidating multi-input processing 3-node gene regulatory network topologies capable of generating striped gene expression patterns |
title_full_unstemmed |
Elucidating multi-input processing 3-node gene regulatory network topologies capable of generating striped gene expression patterns |
title_sort |
Elucidating multi-input processing 3-node gene regulatory network topologies capable of generating striped gene expression patterns |
dc.creator.fl_str_mv |
Arboleda Rivera, Juan Camilo Rodríguez Rey, Boris Anghelo Machado Rodríguez, Gloria Gutiérrez, Jayson |
dc.contributor.author.none.fl_str_mv |
Arboleda Rivera, Juan Camilo Rodríguez Rey, Boris Anghelo Machado Rodríguez, Gloria Gutiérrez, Jayson |
dc.subject.decs.none.fl_str_mv |
Expresión Génica Gene Expression Biología Evolutiva Developmental Biology Biología Computacional Computational Biology Redes Reguladoras de Genes Gene Regulatory Networks |
topic |
Expresión Génica Gene Expression Biología Evolutiva Developmental Biology Biología Computacional Computational Biology Redes Reguladoras de Genes Gene Regulatory Networks |
description |
ABSTRACT: A central problem in developmental and synthetic biology is understanding the mechanisms by which cells in a tissue or a Petri dish process external cues and transform such information into a coherent response, e.g., a terminal differentiation state. It was long believed that this type of positional information could be entirely attributed to a gradient of concentration of a specific signaling molecule (i.e., a morphogen). However, advances in experimental methodologies and computer modeling have demonstrated the crucial role of the dynamics of a cell’s gene regulatory network (GRN) in decoding the information carried by the morphogen, which is eventually translated into a spatial pattern. This morphogen interpretation mechanism has gained much attention in systems biology as a tractable system to investigate the emergent properties of complex genotype-phenotype maps. In this study, we apply a Markov chain Monte Carlo (MCMC)-like algorithm to probe the design space of three-node GRNs with the ability to generate a band-like expression pattern (target phenotype) in the middle of an arrangement of 30 cells, which resemble a simple (1-D) morphogenetic field in a developing embryo. Unlike most modeling studies published so far, here we explore the space of GRN topologies with nodes having the potential to perceive the same input signal differently. This allows for a lot more flexibility during the search space process, and thus enables us to identify a larger set of potentially interesting and realizable morphogen interpretation mechanisms. Out of 2061 GRNs selected using the search space algorithm, we found 714 classes of network topologies that could correctly interpret the morphogen. Notably, the main network motif that generated the target phenotype in response to the input signal was the type 3 Incoherent Feed-Forward Loop (I3-FFL), which agrees with previous theoretical expectations and experimental observations. Particularly, compared to a previously reported pattern forming GRN topologies, we have uncovered a great variety of novel network designs, some of which might be worth inquiring through synthetic biology methodologies to test for the ability of network design with minimal regulatory complexity to interpret a developmental cue robustly. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-09-19T19:35:40Z |
dc.date.available.none.fl_str_mv |
2022-09-19T19:35:40Z |
dc.date.issued.none.fl_str_mv |
2022 |
dc.type.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.hasversion.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/ART |
dc.type.local.spa.fl_str_mv |
Artículo de investigación |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.citation.spa.fl_str_mv |
Arboleda-Rivera JC, Machado-Rodr´ıguez G, Rodrı´guez BA, Gutie´rrez J (2022) Elucidating multi-input processing 3-node gene regulatory network topologies capable of generating striped gene expression patterns. PLoS Comput Biol 18(2): e1009704. https://doi.org/10.1371/journal. pcbi.1009704 |
dc.identifier.issn.none.fl_str_mv |
1553-734X |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10495/30700 |
dc.identifier.doi.none.fl_str_mv |
10.1371/journal.pcbi.1009704 |
dc.identifier.eissn.none.fl_str_mv |
1553-7358 |
identifier_str_mv |
Arboleda-Rivera JC, Machado-Rodr´ıguez G, Rodrı´guez BA, Gutie´rrez J (2022) Elucidating multi-input processing 3-node gene regulatory network topologies capable of generating striped gene expression patterns. PLoS Comput Biol 18(2): e1009704. https://doi.org/10.1371/journal. pcbi.1009704 1553-734X 10.1371/journal.pcbi.1009704 1553-7358 |
url |
https://hdl.handle.net/10495/30700 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournalabbrev.spa.fl_str_mv |
PLoS Comput Biol |
dc.rights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.accessrights.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.creativecommons.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_abf2 https://creativecommons.org/licenses/by/4.0/ |
dc.format.extent.spa.fl_str_mv |
21 |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Public Library of Science |
dc.publisher.group.spa.fl_str_mv |
Fundamentos y Enseñanza de la Física y los Sistemas Dinámicos |
dc.publisher.place.spa.fl_str_mv |
San Francisco, Estados Unidos |
institution |
Universidad de Antioquia |
bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstream/10495/30700/1/Arboleda-Rivera%20et%20al.%20-%202022%20-%20Elucidating%20multi-input%20processing%203-node%20gene%20reg.pdf https://bibliotecadigital.udea.edu.co/bitstream/10495/30700/2/license.txt |
bitstream.checksum.fl_str_mv |
3da4a2159490ff1c8c4a2700149222ff 8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Antioquia |
repository.mail.fl_str_mv |
andres.perez@udea.edu.co |
_version_ |
1812173267296845824 |
spelling |
Arboleda Rivera, Juan CamiloRodríguez Rey, Boris AngheloMachado Rodríguez, GloriaGutiérrez, Jayson2022-09-19T19:35:40Z2022-09-19T19:35:40Z2022Arboleda-Rivera JC, Machado-Rodr´ıguez G, Rodrı´guez BA, Gutie´rrez J (2022) Elucidating multi-input processing 3-node gene regulatory network topologies capable of generating striped gene expression patterns. PLoS Comput Biol 18(2): e1009704. https://doi.org/10.1371/journal. pcbi.10097041553-734Xhttps://hdl.handle.net/10495/3070010.1371/journal.pcbi.10097041553-7358ABSTRACT: A central problem in developmental and synthetic biology is understanding the mechanisms by which cells in a tissue or a Petri dish process external cues and transform such information into a coherent response, e.g., a terminal differentiation state. It was long believed that this type of positional information could be entirely attributed to a gradient of concentration of a specific signaling molecule (i.e., a morphogen). However, advances in experimental methodologies and computer modeling have demonstrated the crucial role of the dynamics of a cell’s gene regulatory network (GRN) in decoding the information carried by the morphogen, which is eventually translated into a spatial pattern. This morphogen interpretation mechanism has gained much attention in systems biology as a tractable system to investigate the emergent properties of complex genotype-phenotype maps. In this study, we apply a Markov chain Monte Carlo (MCMC)-like algorithm to probe the design space of three-node GRNs with the ability to generate a band-like expression pattern (target phenotype) in the middle of an arrangement of 30 cells, which resemble a simple (1-D) morphogenetic field in a developing embryo. Unlike most modeling studies published so far, here we explore the space of GRN topologies with nodes having the potential to perceive the same input signal differently. This allows for a lot more flexibility during the search space process, and thus enables us to identify a larger set of potentially interesting and realizable morphogen interpretation mechanisms. Out of 2061 GRNs selected using the search space algorithm, we found 714 classes of network topologies that could correctly interpret the morphogen. Notably, the main network motif that generated the target phenotype in response to the input signal was the type 3 Incoherent Feed-Forward Loop (I3-FFL), which agrees with previous theoretical expectations and experimental observations. Particularly, compared to a previously reported pattern forming GRN topologies, we have uncovered a great variety of novel network designs, some of which might be worth inquiring through synthetic biology methodologies to test for the ability of network design with minimal regulatory complexity to interpret a developmental cue robustly.COL013955921application/pdfengPublic Library of ScienceFundamentos y Enseñanza de la Física y los Sistemas DinámicosSan Francisco, Estados Unidosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARTArtículo de investigaciónhttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2https://creativecommons.org/licenses/by/4.0/Elucidating multi-input processing 3-node gene regulatory network topologies capable of generating striped gene expression patternsExpresión GénicaGene ExpressionBiología EvolutivaDevelopmental BiologyBiología ComputacionalComputational BiologyRedes Reguladoras de GenesGene Regulatory NetworksPLoS Comput BiolPLoS Computational Biology121182Universidad de Antioquia. Vicerrectoría de investigación. Comité para el Desarrollo de la Investigación - CODI2017-14367ORIGINALArboleda-Rivera et al. - 2022 - Elucidating multi-input processing 3-node gene reg.pdfArboleda-Rivera et al. - 2022 - Elucidating multi-input processing 3-node gene reg.pdfArtículo de investigaciónapplication/pdf2975310https://bibliotecadigital.udea.edu.co/bitstream/10495/30700/1/Arboleda-Rivera%20et%20al.%20-%202022%20-%20Elucidating%20multi-input%20processing%203-node%20gene%20reg.pdf3da4a2159490ff1c8c4a2700149222ffMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstream/10495/30700/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5210495/30700oai:bibliotecadigital.udea.edu.co:10495/307002022-09-19 14:58:39.157Repositorio Institucional Universidad de Antioquiaandres.perez@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |