Energéticos y propiedades electrónicas del sulfuro de galio 3D y 2D hexagonal, un estudio de primeros principios

En este trabajo, se hace un estudio de las propiedades estructurales (constante de red, longitud de enlace, etc.) y electrónicas (densidad de estados (DOS), bandas y carga Bader) del sulfuro de galio (GaS) en su fase hexagonal (β-GaS), tanto en volumen como en la monocapa. Los cálculos se realizan u...

Full description

Autores:
Meléndez Martínez, Raúl Francisco
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2024
Institución:
Universidad de Córdoba
Repositorio:
Repositorio Institucional Unicórdoba
Idioma:
spa
OAI Identifier:
oai:repositorio.unicordoba.edu.co:ucordoba/8156
Acceso en línea:
https://repositorio.unicordoba.edu.co/handle/ucordoba/8156
https://repositorio.unicordoba.edu.co
Palabra clave:
Sistemas bidimensionales
Hexagonal
Monocapa
DFT
Primeros principios
Sulfuro de galio
GaS
Two-dimensional systems
Hexagonal,
Monolayer
DFT
Ab initio
Gallium sulfide
GaS
Rights
openAccess
License
Copyright Universidad de Córdoba, 2024
id UCORDOBA2_e9f490156adbd5926a81ccdc03b674f4
oai_identifier_str oai:repositorio.unicordoba.edu.co:ucordoba/8156
network_acronym_str UCORDOBA2
network_name_str Repositorio Institucional Unicórdoba
repository_id_str
dc.title.spa.fl_str_mv Energéticos y propiedades electrónicas del sulfuro de galio 3D y 2D hexagonal, un estudio de primeros principios
title Energéticos y propiedades electrónicas del sulfuro de galio 3D y 2D hexagonal, un estudio de primeros principios
spellingShingle Energéticos y propiedades electrónicas del sulfuro de galio 3D y 2D hexagonal, un estudio de primeros principios
Sistemas bidimensionales
Hexagonal
Monocapa
DFT
Primeros principios
Sulfuro de galio
GaS
Two-dimensional systems
Hexagonal,
Monolayer
DFT
Ab initio
Gallium sulfide
GaS
title_short Energéticos y propiedades electrónicas del sulfuro de galio 3D y 2D hexagonal, un estudio de primeros principios
title_full Energéticos y propiedades electrónicas del sulfuro de galio 3D y 2D hexagonal, un estudio de primeros principios
title_fullStr Energéticos y propiedades electrónicas del sulfuro de galio 3D y 2D hexagonal, un estudio de primeros principios
title_full_unstemmed Energéticos y propiedades electrónicas del sulfuro de galio 3D y 2D hexagonal, un estudio de primeros principios
title_sort Energéticos y propiedades electrónicas del sulfuro de galio 3D y 2D hexagonal, un estudio de primeros principios
dc.creator.fl_str_mv Meléndez Martínez, Raúl Francisco
dc.contributor.advisor.none.fl_str_mv Ortega Lopez, Cesar
Casiano Jimenez, Gladys Rocio
dc.contributor.author.none.fl_str_mv Meléndez Martínez, Raúl Francisco
dc.contributor.editor.none.fl_str_mv Espitia Rico, Miguel
dc.contributor.jury.none.fl_str_mv Alcalá Varilla, Luis
Espriella Vélez, Nicolás De la
dc.subject.proposal.spa.fl_str_mv Sistemas bidimensionales
Hexagonal
Monocapa
DFT
Primeros principios
Sulfuro de galio
GaS
topic Sistemas bidimensionales
Hexagonal
Monocapa
DFT
Primeros principios
Sulfuro de galio
GaS
Two-dimensional systems
Hexagonal,
Monolayer
DFT
Ab initio
Gallium sulfide
GaS
dc.subject.keywords.eng.fl_str_mv Two-dimensional systems
Hexagonal,
Monolayer
DFT
Ab initio
Gallium sulfide
GaS
description En este trabajo, se hace un estudio de las propiedades estructurales (constante de red, longitud de enlace, etc.) y electrónicas (densidad de estados (DOS), bandas y carga Bader) del sulfuro de galio (GaS) en su fase hexagonal (β-GaS), tanto en volumen como en la monocapa. Los cálculos se realizan utilizando la teoría del funcional de la densidad (DFT: del inglés Density Functional Theory) dentro de la aproximación del gradiente generalizado (GGA: del inglés Generalized Gradient Approximation) parametrizada por Perdew-Burke-Ernzerhof (PBE), junto con pseudopotenciales atómicos y una base de ondas planas implementada en el paquete QuantumESPRESSO. Para dar cuenta de las interacciones débiles de Van der Waals, se usan las correcciones de Grimme D2 y D3 (o GGA + D2 y GGA + D3)
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-01-30T23:18:15Z
dc.date.available.none.fl_str_mv 2024-01-30T23:18:15Z
dc.date.issued.none.fl_str_mv 2024-01-30
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.none.fl_str_mv Text
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unicordoba.edu.co/handle/ucordoba/8156
dc.identifier.instname.none.fl_str_mv Univeridad de Córdoba
dc.identifier.reponame.none.fl_str_mv https://repositorio.unicordoba.edu.co
dc.identifier.repourl.none.fl_str_mv https://repositorio.unicordoba.edu.co
url https://repositorio.unicordoba.edu.co/handle/ucordoba/8156
https://repositorio.unicordoba.edu.co
identifier_str_mv Univeridad de Córdoba
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv [1] A. Seral-Ascaso, S. Metel, A. Pokle, C. Backes, C. Zhang, H. Nerl, K. Rode, N. Berner, C. Downing, N. McEvoy, and E. Muñoz, Long-chain amine-templated synthesis of gallium sulfide and gallium selenide nanotubes, Nanoscale 8 (2016), pp. 11698–11706.
[2] X. Meng, K. He, D. Su, X. Zhang, C. Sun, Y. Ren, H.H. Wang, W. Weng, L. Trahey, C.P. Canlas, and J.W. Elam, Gallium sulfide–single-walled carbon nanotube composites: Highperformance anodes for lithium-ion batteries, Adv. Funct. Mater. 24 (2014), pp. 5435–5442.
[3] J. Molloy, M. Naftaly, Y.M. Andreev, K. Kokh, G. Lanskii, and V. Svetlichnyi, Solid solution GaSe 1- x S x crystals for THz applications, in 2014 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), IEEE, 2014, pp. 1–2
[4] Z.M. Huang, J.G. Huang, Y.Q. Gao, Q.J. Yang, Y.M. Andreev, K. Kokh, G. Lanskii, A. Lisenko, and V. Svetlichnyi, Down-converters with doped solid solution crystals GaSe 1-x S x for THz spectrometry, in Fourth International Symposium on Laser Interaction with Matter, Vol. 10173. International Society for Optics and Photonics, 2017, p. 101731W
[5] J. Luxa, Y. Wang, Z. Sofer, and M. Pumera, Layered post-transition-metal dichalcogenides (xm- m- x) and their properties, Chem. A Eur. J. 22 (2016), pp. 18810–18816.
[6] D.T. Do, S.D. Mahanti, and C.W. Lai, Spin splitting in 2d monochalcogenide semiconductors, Sci. Rep. 5 (2015), p. 17044.
[7] A. Kuhn, A. Chevy, and R. Chevalier, Refinement of the 2h gas β-type, Acta Crystallogr. Sect. B: Struct. Crystallogr. Cryst. Chem. 32 (1976), pp. 983–984.
[8] M.J. Allen, V.C. Tung, and R.B. Kaner, Honeycomb carbon: A review of graphene, Chem. Rev. 110 (2009), pp. 132–145.
[9] A. Harvey, C. Backes, Z. Gholamvand, D. Hanlon, D. McAteer, H.C. Nerl, E. McGuire, A. Seral-Ascaso, Q.M. Ramasse, N. McEvoy, and S. Winters, Preparation of gallium sulfide nanosheets by liquid exfoliation and their application as hydrogen evolution catalysts, Chem. Mater. 27 (2015), pp. 3483–3493.
[10] S. Yang, Y. Li, X. Wang, N. Huo, J.B. Xia, S.S. Li, and J. Li, High performance few-layer gas photodetector and its unique photo-response in different gas environments, Nanoscale 6 (2014), pp. 2582–2587.
[11] P. Hu, L. Wang, M. Yoon, J. Zhang, W. Feng, X. Wang, Z. Wen, J.C. Idrobo, Y. Miyamoto, D.B. Geohegan, and K. Xiao, Highly responsive ultrathin gas nanosheet photodetectors on rigid and flexible substrates, Nano. Lett. 13 (2013), pp. 1649–1654.
[12] W. Huang, L. Gan, H. Li, Y. Ma, and T. Zhai, 2d layered group iiia metal chalcogenides: Synthesis, properties and applications in electronics and optoelectronics, CrystEngComm 18 (2016), pp. 3968–3984.
[13] K. Xu, L. Yin, Y. Huang, T.A. Shifa, J. Chu, F. Wang, R. Cheng, Z. Wang and J. He, Synthesis, properties and applications of 2d layered m iii x vi (m= ga, in; x= s, se, te) materials, Nanoscale 8 (2016), pp. 16802–16818.
[14] S. Zhou, C.C. Liu, J. Zhao, and Y. Yao, Monolayer group-iii monochalcogenides by oxygen functionalization: A promising class of two-dimensional topological insulators, npj Quantum Materials3 (2018), pp. 16.
[15] Y. Ma, Y. Dai, M. Guo, L. Yu, and B. Huang, Tunable electronic and dielectric behavior of gas and gase monolayers, Phys. Chem. Chem. Phys. 15 (2013), pp. 7098–7105.
[16] S. Wu, X. Dai, H. Yu, H. Fan, J. Hu, and W. Yao, Magnetisms in p-type monolayer gallium chalcogenides (gase, gas), arXiv preprint arXiv:1409.4733 (2014)
[17] L. Huang, Z. Chen, and J. Li, Effects of strain on the band gap and effective mass in twodimensional monolayer gax (x= s, se, te), RSC. Adv. 5 (2015), pp. 5788–5794.
[18] S. Demirci, N. Avazlı, E. Durgun, and S. Cahangirov, Structural and electronic properties of monolayer group iii monochalcogenides, Phys. Rev. B 95 (2017), p. 115409.
[19] Max Born; J. Robert Oppenheimer (1927). "Zur Quantentheorie der Molekeln" [On the Quantum Theory of Molecules]. Annalen der Physik (in German). 389 (20): 457– 484. Bibcode:1927AnP...389..457B. doi:10.1002/andp.19273892002.
[20] Hartree, D. R. (1928). "The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods". Mathematical Proceedings of the Cambridge Philosophical Society. Cambridge University Press (CUP). 24 (1): 89– 110. Bibcode:1928PCPS...24...89H. doi:10.1017/s0305004100011919. ISSN 0305- 0041. S2CID 122077124.
[21] Slater, J. C. (1928). "The Self Consistent Field and the Structure of Atoms". Phys. Rev. 32 (3): 339–348. Bibcode:1928PhRv...32..339S. doi:10.1103/PhysRev.32.339
[22] Slater, J. C. (1930). "Note on Hartree's Method". Phys. Rev. 35 (2): 210– 211. Bibcode:1930PhRv...35..210S. doi:10.1103/PhysRev.35.210.2
[23] Lieb, E.H. and Simon, B.: The Thomas-Fermi theory of atoms, molecules and solids, Adv. in Math 23 (1977), 22-116
[24] Hohenberg, P.; Kohn, W. (1964). "Inhomogeneous Electron Gas". Physical Review. 136 (3B): B864. Bibcode:1964PhRv..136..864H. doi:10.1103/PhysRev.136.B864.
[25] Kohn, W.; Sham, L. J. (1965). "Self-Consistent Equations Including Exchange and Correlation Effects". Physical Review. 140 (4A): A1133.
[26] Perdew, J., & Zunger, A. (1981). Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B, 23, 5048–5079.
[27] Perdew, J.P., Burke, K. and Ernzerhof, M. (1996) Generalized Gradient Approximation Made Simple. Physical Review Letter, 77, 3865-3868. http://dx.doi.org/10.1103/PhysRevLett.77.3865
[28] Ortega, C. Rodríguez, J. (2009) Adsorción de átomos de Ru sobre la superficie (0001)GaN y superredes hexagonales (0001)GaN/RuN
[29] Hamann, D., Schluter, M., & Chiang, C. (1979). Norm-Conserving Pseudopotentials. Phys. Rev. Lett., 43, 1494–1497.
[30] Vanderbilt, D. (1990). Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B, 41, 7892–7895.
[31] Laasonen K. Car, R. et al. Implementation of ultrasoft pseudopotentials in ab initio molecular dynamics. Phys. Rev. B 43:6796, 1991.
[32] Laasonen K., Pasquarello, A., et al. Car-Parrinello molecular dynamics with Vanderbilt ultrasoft pseudopotentials. Phys. Rev. B 47:10142, 1993.
[33] Fiolhais, C., Nogueira, F., & Marques, M. A. L. (2003). A primer in density functional theory. Lecture Notes in Physics, 620.
[34] Martin, R. M. (2004). Electronic Structure: Basic Theory and Practical Methods.
[35] Helgaker, T., Jorgensen, P., & Olsen, J. (2000). Molecular Electronic-Structure Theory.
[36] Szabo, A., & Ostlund, N. S. (1982). Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory.
[37] Grimme, Stefan. (2011). Density functional theory with London dispersion correction. Wiley Interdisciplinary Reviews: Computational Molecular Science. 1. 211 - 228. 10.1002/wcms.30.
[38] Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem. 2006 Nov 30;27(15):1787-99. doi: 10.1002/jcc.20495. PMID: 16955487.
[39] G. Henkelman, A. Arnaldsson, and H. Jónsson, A fast and robust algorithm for Bader decomposition of charge density, Comput. Mater. Sci. 36 254-360 (2006).
[40] Bader, R. F. W. (1985). The Atoms in Molecules Approach to the Theory of Chemical Reactivity. Accounts of Chemical Research, 18(1), 9–15.
[41] Tang, W., & Sanville, E. (2011). Using Bader analysis to understand chemical bonding in light-element materials. Journal of Physics: Condensed Matter, 23(2), 022201.
[42] Espinosa, E., Molins, E., & Lecomte, C. (1998). Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chemical Physics Letters, 285(3–4), 170–173.
[43] Johnson, E. R., Keinan, S., Mori-Sánchez, P., Contreras-García, J., Cohen, A. J., & Yang, W. (2010). Revealing noncovalent interactions. Journal of the American Chemical Society, 132(18), 6498–6506.
[44] arXiv:0906.2569v2. J. Phys.: Condens. Matter 21, 395502 (2009) https://doi.org/10.48550/arXiv.0906.2569
[45] Häglund, J., Fernandez Guillermet, A., Grimvall, G., & Korling, M. (1993). Theory of bonding in transition-metal carbides and nitrides. Phys. Rev. B, 48, 11685–11691.
[46] D. M. Hoat (2019). Comparative study of structural, electronic, optical and thermoelectric properties of GaS bulk and monolayer. Philosophical Magazine, 99(6), 736-751.
[47] H.F. Lin, L.M. Liu, and J. Zhao, Electronic and magnetic properties of transition metal decorated monolayer gas, Phys. E: Low-Dimens. Syst. Nanostruct. 101 (2018), pp. 131– 138.
[48] Debbichi, L., Kim, H., Bjorkman, T., Eriksson, O., & Lebegue, S. (2016). First-principles investigation of two-dimensional trichalcogenide and sesquichalcogenide monolayers. Phys. Rev. B, 93, 245307.
[49] Mounet, N., Gibertini, M., Schwaller, P. et al. Two-dimensional materials from highthroughput computational exfoliation of experimentally known compounds. Nature Nanotech 13, 246–252 (2018). https://doi.org/10.1038/s41565-017-0035-5
[50] Bjorkman, T., Gulans, A., Krasheninnikov, A., & Nieminen, R. (2012). van der Waals Bonding in Layered Compounds from Advanced Density-Functional First-Principles Calculations. Phys. Rev. Lett., 108, 235502.
[51] Pauling, L. (1932). THE NATURE OF THE CHEMICAL BOND. IV. THE ENERGY OF SINGLE BONDS AND THE RELATIVE ELECTRONEGATIVITY OF ATOMS. Journal of the American Chemical Society, 54(9), 3570–3582. doi:10.1021/ja01348a011
[52] Li, W., Li, J. Piezoelectricity in two-dimensional group-III monochalcogenides. Nano Res. 8, 3796–3802 (2015). https://doi.org/10.1007/s12274-015-0878-8
[53] Pushkar Mishra, Deobrat Singh, Yogesh Sonvane, & Rajeev Ahuja (2020). Enhancement of hydrogen storage capacity on co-functionalized GaS monolayer under external electric field. International Journal of Hydrogen Energy, 45(22), 12384-12393.
[54] Çınar, M. N., Sargın, G. Ö., Sevim, K., Özdamar, B., Kurt, G., & Sevinçli, H. (2021). Ballistic thermoelectric transport properties of two-dimensional group III-VI monolayers. Physical Review B, 103(16), 165422. doi:10.1103/PhysRevB.103.165422
[55] Rodrigues Del Grande, Rafael & Menezes, Marcos & Capaz, Rodrigo. (2019). Layer breathing and shear modes in multilayer graphene: A DFT-vdW study.
[56] Jung, J., Park, C.H., & Ihm, J. (2018). A Rigorous Method of Calculating Exfoliation Energies from First Principles. Nano Letters, 18(5), 2759-2765.
[57] Zhuang, H., & Hennig, R. (2013). Computational Search for Single-Layer Transition-Metal Dichalcogenide Photocatalysts. The Journal of Physical Chemistry C, 117(40), 20440-20445.
[58] An, Y., Hou, Y., Gong, S., Wu, R., Zhao, C., Wang, T., Jiao, Z., Wang, H., & Liu, W. (2020). Evaluating the exfoliation of two-dimensional materials with a Green's function surface model. Phys. Rev. B, 101, 075416.
[59] Choudhary, K., Kalish, I., Beams, R. et al. High-throughput Identification and Characterization of Two-dimensional Materials using Density functional theory. Sci Rep 7, 5179 (2017). https://doi.org/10.1038/s41598-017-05402-0
[60] Casiano Jiménez, G. (2019). Estudio de la interfaz grafeno/BN mediante DFT
[61] Yael Gutiérrez, Dilson Juan, Stefano Dicorato, Gonzalo Santos, Matthias Duwe, Peter H. Thiesen, Maria M. Giangregorio, Fabio Palumbo, Kurt Hingerl, Christoph Cobet, Pablo GarcíaFernández, Javier Junquera, Fernando Moreno, and Maria Losurdo, "Layered gallium sulfide optical properties from monolayer to CVD crystalline thin films," Opt. Express 30, 27609-27622 (2022).
dc.rights.spa.fl_str_mv Copyright Universidad de Córdoba, 2024
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.license.none.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Copyright Universidad de Córdoba, 2024
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de Córdoba
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias Básicas
dc.publisher.place.none.fl_str_mv Montería, Córdoba, Colombia
dc.publisher.program.none.fl_str_mv Física
publisher.none.fl_str_mv Universidad de Córdoba
dc.source.none.fl_str_mv https://repositorio.unicordoba.edu.co
institution Universidad de Córdoba
bitstream.url.fl_str_mv https://repositorio.unicordoba.edu.co/bitstreams/0b9031e9-5431-402c-b524-03ab2f94f474/download
https://repositorio.unicordoba.edu.co/bitstreams/c9e15e3a-fb65-4fde-ab13-071b5ee55a7a/download
https://repositorio.unicordoba.edu.co/bitstreams/bca6ebea-118e-46c1-90e5-80f11a916a53/download
https://repositorio.unicordoba.edu.co/bitstreams/4c6a5819-3ddb-4c59-8459-281a901990e4/download
https://repositorio.unicordoba.edu.co/bitstreams/ee2fe5e3-4526-4e44-b3e4-eb5ea9f18613/download
https://repositorio.unicordoba.edu.co/bitstreams/7c827a85-23d7-4d77-89b0-63cd389a85c8/download
https://repositorio.unicordoba.edu.co/bitstreams/d5a132a9-2ad6-486f-9035-6628cf924a43/download
bitstream.checksum.fl_str_mv 73a5432e0b76442b22b026844140d683
3d572cb93883859003b932f4c0fc94a4
21c334a58f4c53a33b19a80d3cd72d4b
cf5cbbbe1c777457ca4b229c2ee16b82
6d93d3216dc4a7f5df47d4876fbec4d3
46e0e3a92dfaf201ff3fa324435f9b75
6664e50bb8ffb3490525be329efa10bb
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de Córdoba
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1812173350602014720
spelling Ortega Lopez, Cesarecd0f83f-a04c-4f75-933c-debc209f32cc-1Casiano Jimenez, Gladys Rociode5bb731-7778-4f88-88da-76934ab30bad600Meléndez Martínez, Raúl Francisco7aa68fc2-63ea-4bf1-b1fa-f6d9fb673fec-1Espitia Rico, MiguelAlcalá Varilla, Luis559802d0-e718-412b-b0fe-a996e373a676-1Espriella Vélez, Nicolás De la82e858d0-3ea2-499c-8636-48b69f7150b2-12024-01-30T23:18:15Z2024-01-30T23:18:15Z2024-01-30https://repositorio.unicordoba.edu.co/handle/ucordoba/8156Univeridad de Córdobahttps://repositorio.unicordoba.edu.cohttps://repositorio.unicordoba.edu.coEn este trabajo, se hace un estudio de las propiedades estructurales (constante de red, longitud de enlace, etc.) y electrónicas (densidad de estados (DOS), bandas y carga Bader) del sulfuro de galio (GaS) en su fase hexagonal (β-GaS), tanto en volumen como en la monocapa. Los cálculos se realizan utilizando la teoría del funcional de la densidad (DFT: del inglés Density Functional Theory) dentro de la aproximación del gradiente generalizado (GGA: del inglés Generalized Gradient Approximation) parametrizada por Perdew-Burke-Ernzerhof (PBE), junto con pseudopotenciales atómicos y una base de ondas planas implementada en el paquete QuantumESPRESSO. Para dar cuenta de las interacciones débiles de Van der Waals, se usan las correcciones de Grimme D2 y D3 (o GGA + D2 y GGA + D3)In this work, a study is carried out on the structural properties (lattice constant, bond length, etc.) and electronic properties (density of states (DOS), bands, and Bader charge) of gallium sulfide (GaS) in its hexagonal phase (β-GaS), both in bulk and monolayer. The calculations are performed using Density Functional Theory (DFT) within the Generalized Gradient Approximation (GGA) as parameterized by Perdew-Burke-Ernzerhof (PBE), along with atomic pseudopotentials and a plane-wave basis set implemented in the QuantumESPRESSO package. To account for weak Van der Waals interactions, Grimme D2 and D3 corrections (or GGA+D2 and GGA+D3) are employed.Introducción………………………………………………………………………… 4Marco Teórico………………………………………………………………………. 5El problema de la estructura de la materia……………………..…………………….. 5Aproximación adiabática (Born-Oppenheimer) ……………….……………………. 6Enfoques químicos……………………………………………..……………………. 6Teoría del funcional de la densidad (DFT)………………………………………….. 7Aproximación densidad local (LDA)………………………....….…… ……………. 10Aproximación gradiente generalizado (GGA)……………………………………… 11Aproximación al pseudopotencial…………………………....………...……………. 12Conjuntos bases………………………………………………………..…………….. 13Dispersión………………………………………………….....………...……………. 15Carga Bader………………………………………………...………….……………. 17Detalles Computacionales y Condiciones de Cálculo………...…………………… 19Resultados y Análisis…………………………………………..…………………… 20β-GaS en volumen…………………………………………..………………………. 20Estabilidad del sistema y parámetros estructurales…......……………………………. 21Propiedades electrónicas del β-GaS en volumen……….……………………………. 24β-GaS en monocapa………………………………………..………………………... 27Estabilidad del sistema y parámetros estructurales...…...……………………………. 28Propiedades electrónicas del β-GaS en monocapa……..…………………………….. 32Conclusiones…………………………………………………..……………………... 35Referencias…………………………………………………………………………... 36Este trabajo se realizo usando el paquete computacional Quantum Espresso con los programas auxiliares de Xcrysden y Bader en los computadores proporcionados por el grupo GAMASCO.PregradoFísico(a)Trabajos de Investigación y/o Extensiónapplication/pdfspaUniversidad de CórdobaFacultad de Ciencias BásicasMontería, Córdoba, ColombiaFísicaCopyright Universidad de Córdoba, 2024https://creativecommons.org/licenses/by-nc-nd/4.0/Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2https://repositorio.unicordoba.edu.coEnergéticos y propiedades electrónicas del sulfuro de galio 3D y 2D hexagonal, un estudio de primeros principiosTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/acceptedVersionText[1] A. Seral-Ascaso, S. Metel, A. Pokle, C. Backes, C. Zhang, H. Nerl, K. Rode, N. Berner, C. Downing, N. McEvoy, and E. Muñoz, Long-chain amine-templated synthesis of gallium sulfide and gallium selenide nanotubes, Nanoscale 8 (2016), pp. 11698–11706.[2] X. Meng, K. He, D. Su, X. Zhang, C. Sun, Y. Ren, H.H. Wang, W. Weng, L. Trahey, C.P. Canlas, and J.W. Elam, Gallium sulfide–single-walled carbon nanotube composites: Highperformance anodes for lithium-ion batteries, Adv. Funct. Mater. 24 (2014), pp. 5435–5442.[3] J. Molloy, M. Naftaly, Y.M. Andreev, K. Kokh, G. Lanskii, and V. Svetlichnyi, Solid solution GaSe 1- x S x crystals for THz applications, in 2014 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), IEEE, 2014, pp. 1–2[4] Z.M. Huang, J.G. Huang, Y.Q. Gao, Q.J. Yang, Y.M. Andreev, K. Kokh, G. Lanskii, A. Lisenko, and V. Svetlichnyi, Down-converters with doped solid solution crystals GaSe 1-x S x for THz spectrometry, in Fourth International Symposium on Laser Interaction with Matter, Vol. 10173. International Society for Optics and Photonics, 2017, p. 101731W[5] J. Luxa, Y. Wang, Z. Sofer, and M. Pumera, Layered post-transition-metal dichalcogenides (xm- m- x) and their properties, Chem. A Eur. J. 22 (2016), pp. 18810–18816.[6] D.T. Do, S.D. Mahanti, and C.W. Lai, Spin splitting in 2d monochalcogenide semiconductors, Sci. Rep. 5 (2015), p. 17044.[7] A. Kuhn, A. Chevy, and R. Chevalier, Refinement of the 2h gas β-type, Acta Crystallogr. Sect. B: Struct. Crystallogr. Cryst. Chem. 32 (1976), pp. 983–984.[8] M.J. Allen, V.C. Tung, and R.B. Kaner, Honeycomb carbon: A review of graphene, Chem. Rev. 110 (2009), pp. 132–145.[9] A. Harvey, C. Backes, Z. Gholamvand, D. Hanlon, D. McAteer, H.C. Nerl, E. McGuire, A. Seral-Ascaso, Q.M. Ramasse, N. McEvoy, and S. Winters, Preparation of gallium sulfide nanosheets by liquid exfoliation and their application as hydrogen evolution catalysts, Chem. Mater. 27 (2015), pp. 3483–3493.[10] S. Yang, Y. Li, X. Wang, N. Huo, J.B. Xia, S.S. Li, and J. Li, High performance few-layer gas photodetector and its unique photo-response in different gas environments, Nanoscale 6 (2014), pp. 2582–2587.[11] P. Hu, L. Wang, M. Yoon, J. Zhang, W. Feng, X. Wang, Z. Wen, J.C. Idrobo, Y. Miyamoto, D.B. Geohegan, and K. Xiao, Highly responsive ultrathin gas nanosheet photodetectors on rigid and flexible substrates, Nano. Lett. 13 (2013), pp. 1649–1654.[12] W. Huang, L. Gan, H. Li, Y. Ma, and T. Zhai, 2d layered group iiia metal chalcogenides: Synthesis, properties and applications in electronics and optoelectronics, CrystEngComm 18 (2016), pp. 3968–3984.[13] K. Xu, L. Yin, Y. Huang, T.A. Shifa, J. Chu, F. Wang, R. Cheng, Z. Wang and J. He, Synthesis, properties and applications of 2d layered m iii x vi (m= ga, in; x= s, se, te) materials, Nanoscale 8 (2016), pp. 16802–16818.[14] S. Zhou, C.C. Liu, J. Zhao, and Y. Yao, Monolayer group-iii monochalcogenides by oxygen functionalization: A promising class of two-dimensional topological insulators, npj Quantum Materials3 (2018), pp. 16.[15] Y. Ma, Y. Dai, M. Guo, L. Yu, and B. Huang, Tunable electronic and dielectric behavior of gas and gase monolayers, Phys. Chem. Chem. Phys. 15 (2013), pp. 7098–7105.[16] S. Wu, X. Dai, H. Yu, H. Fan, J. Hu, and W. Yao, Magnetisms in p-type monolayer gallium chalcogenides (gase, gas), arXiv preprint arXiv:1409.4733 (2014)[17] L. Huang, Z. Chen, and J. Li, Effects of strain on the band gap and effective mass in twodimensional monolayer gax (x= s, se, te), RSC. Adv. 5 (2015), pp. 5788–5794.[18] S. Demirci, N. Avazlı, E. Durgun, and S. Cahangirov, Structural and electronic properties of monolayer group iii monochalcogenides, Phys. Rev. B 95 (2017), p. 115409.[19] Max Born; J. Robert Oppenheimer (1927). "Zur Quantentheorie der Molekeln" [On the Quantum Theory of Molecules]. Annalen der Physik (in German). 389 (20): 457– 484. Bibcode:1927AnP...389..457B. doi:10.1002/andp.19273892002.[20] Hartree, D. R. (1928). "The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods". Mathematical Proceedings of the Cambridge Philosophical Society. Cambridge University Press (CUP). 24 (1): 89– 110. Bibcode:1928PCPS...24...89H. doi:10.1017/s0305004100011919. ISSN 0305- 0041. S2CID 122077124.[21] Slater, J. C. (1928). "The Self Consistent Field and the Structure of Atoms". Phys. Rev. 32 (3): 339–348. Bibcode:1928PhRv...32..339S. doi:10.1103/PhysRev.32.339[22] Slater, J. C. (1930). "Note on Hartree's Method". Phys. Rev. 35 (2): 210– 211. Bibcode:1930PhRv...35..210S. doi:10.1103/PhysRev.35.210.2[23] Lieb, E.H. and Simon, B.: The Thomas-Fermi theory of atoms, molecules and solids, Adv. in Math 23 (1977), 22-116[24] Hohenberg, P.; Kohn, W. (1964). "Inhomogeneous Electron Gas". Physical Review. 136 (3B): B864. Bibcode:1964PhRv..136..864H. doi:10.1103/PhysRev.136.B864.[25] Kohn, W.; Sham, L. J. (1965). "Self-Consistent Equations Including Exchange and Correlation Effects". Physical Review. 140 (4A): A1133.[26] Perdew, J., & Zunger, A. (1981). Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B, 23, 5048–5079.[27] Perdew, J.P., Burke, K. and Ernzerhof, M. (1996) Generalized Gradient Approximation Made Simple. Physical Review Letter, 77, 3865-3868. http://dx.doi.org/10.1103/PhysRevLett.77.3865[28] Ortega, C. Rodríguez, J. (2009) Adsorción de átomos de Ru sobre la superficie (0001)GaN y superredes hexagonales (0001)GaN/RuN[29] Hamann, D., Schluter, M., & Chiang, C. (1979). Norm-Conserving Pseudopotentials. Phys. Rev. Lett., 43, 1494–1497.[30] Vanderbilt, D. (1990). Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B, 41, 7892–7895.[31] Laasonen K. Car, R. et al. Implementation of ultrasoft pseudopotentials in ab initio molecular dynamics. Phys. Rev. B 43:6796, 1991.[32] Laasonen K., Pasquarello, A., et al. Car-Parrinello molecular dynamics with Vanderbilt ultrasoft pseudopotentials. Phys. Rev. B 47:10142, 1993.[33] Fiolhais, C., Nogueira, F., & Marques, M. A. L. (2003). A primer in density functional theory. Lecture Notes in Physics, 620.[34] Martin, R. M. (2004). Electronic Structure: Basic Theory and Practical Methods.[35] Helgaker, T., Jorgensen, P., & Olsen, J. (2000). Molecular Electronic-Structure Theory.[36] Szabo, A., & Ostlund, N. S. (1982). Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory.[37] Grimme, Stefan. (2011). Density functional theory with London dispersion correction. Wiley Interdisciplinary Reviews: Computational Molecular Science. 1. 211 - 228. 10.1002/wcms.30.[38] Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem. 2006 Nov 30;27(15):1787-99. doi: 10.1002/jcc.20495. PMID: 16955487.[39] G. Henkelman, A. Arnaldsson, and H. Jónsson, A fast and robust algorithm for Bader decomposition of charge density, Comput. Mater. Sci. 36 254-360 (2006).[40] Bader, R. F. W. (1985). The Atoms in Molecules Approach to the Theory of Chemical Reactivity. Accounts of Chemical Research, 18(1), 9–15.[41] Tang, W., & Sanville, E. (2011). Using Bader analysis to understand chemical bonding in light-element materials. Journal of Physics: Condensed Matter, 23(2), 022201.[42] Espinosa, E., Molins, E., & Lecomte, C. (1998). Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chemical Physics Letters, 285(3–4), 170–173.[43] Johnson, E. R., Keinan, S., Mori-Sánchez, P., Contreras-García, J., Cohen, A. J., & Yang, W. (2010). Revealing noncovalent interactions. Journal of the American Chemical Society, 132(18), 6498–6506.[44] arXiv:0906.2569v2. J. Phys.: Condens. Matter 21, 395502 (2009) https://doi.org/10.48550/arXiv.0906.2569[45] Häglund, J., Fernandez Guillermet, A., Grimvall, G., & Korling, M. (1993). Theory of bonding in transition-metal carbides and nitrides. Phys. Rev. B, 48, 11685–11691.[46] D. M. Hoat (2019). Comparative study of structural, electronic, optical and thermoelectric properties of GaS bulk and monolayer. Philosophical Magazine, 99(6), 736-751.[47] H.F. Lin, L.M. Liu, and J. Zhao, Electronic and magnetic properties of transition metal decorated monolayer gas, Phys. E: Low-Dimens. Syst. Nanostruct. 101 (2018), pp. 131– 138.[48] Debbichi, L., Kim, H., Bjorkman, T., Eriksson, O., & Lebegue, S. (2016). First-principles investigation of two-dimensional trichalcogenide and sesquichalcogenide monolayers. Phys. Rev. B, 93, 245307.[49] Mounet, N., Gibertini, M., Schwaller, P. et al. Two-dimensional materials from highthroughput computational exfoliation of experimentally known compounds. Nature Nanotech 13, 246–252 (2018). https://doi.org/10.1038/s41565-017-0035-5[50] Bjorkman, T., Gulans, A., Krasheninnikov, A., & Nieminen, R. (2012). van der Waals Bonding in Layered Compounds from Advanced Density-Functional First-Principles Calculations. Phys. Rev. Lett., 108, 235502.[51] Pauling, L. (1932). THE NATURE OF THE CHEMICAL BOND. IV. THE ENERGY OF SINGLE BONDS AND THE RELATIVE ELECTRONEGATIVITY OF ATOMS. Journal of the American Chemical Society, 54(9), 3570–3582. doi:10.1021/ja01348a011[52] Li, W., Li, J. Piezoelectricity in two-dimensional group-III monochalcogenides. Nano Res. 8, 3796–3802 (2015). https://doi.org/10.1007/s12274-015-0878-8[53] Pushkar Mishra, Deobrat Singh, Yogesh Sonvane, & Rajeev Ahuja (2020). Enhancement of hydrogen storage capacity on co-functionalized GaS monolayer under external electric field. International Journal of Hydrogen Energy, 45(22), 12384-12393.[54] Çınar, M. N., Sargın, G. Ö., Sevim, K., Özdamar, B., Kurt, G., & Sevinçli, H. (2021). Ballistic thermoelectric transport properties of two-dimensional group III-VI monolayers. Physical Review B, 103(16), 165422. doi:10.1103/PhysRevB.103.165422[55] Rodrigues Del Grande, Rafael & Menezes, Marcos & Capaz, Rodrigo. (2019). Layer breathing and shear modes in multilayer graphene: A DFT-vdW study.[56] Jung, J., Park, C.H., & Ihm, J. (2018). A Rigorous Method of Calculating Exfoliation Energies from First Principles. Nano Letters, 18(5), 2759-2765.[57] Zhuang, H., & Hennig, R. (2013). Computational Search for Single-Layer Transition-Metal Dichalcogenide Photocatalysts. The Journal of Physical Chemistry C, 117(40), 20440-20445.[58] An, Y., Hou, Y., Gong, S., Wu, R., Zhao, C., Wang, T., Jiao, Z., Wang, H., & Liu, W. (2020). Evaluating the exfoliation of two-dimensional materials with a Green's function surface model. Phys. Rev. B, 101, 075416.[59] Choudhary, K., Kalish, I., Beams, R. et al. High-throughput Identification and Characterization of Two-dimensional Materials using Density functional theory. Sci Rep 7, 5179 (2017). https://doi.org/10.1038/s41598-017-05402-0[60] Casiano Jiménez, G. (2019). Estudio de la interfaz grafeno/BN mediante DFT[61] Yael Gutiérrez, Dilson Juan, Stefano Dicorato, Gonzalo Santos, Matthias Duwe, Peter H. Thiesen, Maria M. Giangregorio, Fabio Palumbo, Kurt Hingerl, Christoph Cobet, Pablo GarcíaFernández, Javier Junquera, Fernando Moreno, and Maria Losurdo, "Layered gallium sulfide optical properties from monolayer to CVD crystalline thin films," Opt. Express 30, 27609-27622 (2022).Sistemas bidimensionalesHexagonalMonocapaDFTPrimeros principiosSulfuro de galioGaSTwo-dimensional systemsHexagonal,MonolayerDFTAb initioGallium sulfideGaSPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://repositorio.unicordoba.edu.co/bitstreams/0b9031e9-5431-402c-b524-03ab2f94f474/download73a5432e0b76442b22b026844140d683MD51ORIGINALMelendezMartinezRaul.pdfMelendezMartinezRaul.pdfapplication/pdf1778840https://repositorio.unicordoba.edu.co/bitstreams/c9e15e3a-fb65-4fde-ab13-071b5ee55a7a/download3d572cb93883859003b932f4c0fc94a4MD52AutorizaciónPublicación..pdfAutorizaciónPublicación..pdfapplication/pdf1738072https://repositorio.unicordoba.edu.co/bitstreams/bca6ebea-118e-46c1-90e5-80f11a916a53/download21c334a58f4c53a33b19a80d3cd72d4bMD53TEXTMelendezMartinezRaul.pdf.txtMelendezMartinezRaul.pdf.txtExtracted texttext/plain103663https://repositorio.unicordoba.edu.co/bitstreams/4c6a5819-3ddb-4c59-8459-281a901990e4/downloadcf5cbbbe1c777457ca4b229c2ee16b82MD54AutorizaciónPublicación..pdf.txtAutorizaciónPublicación..pdf.txtExtracted texttext/plain6https://repositorio.unicordoba.edu.co/bitstreams/ee2fe5e3-4526-4e44-b3e4-eb5ea9f18613/download6d93d3216dc4a7f5df47d4876fbec4d3MD56THUMBNAILMelendezMartinezRaul.pdf.jpgMelendezMartinezRaul.pdf.jpgGenerated Thumbnailimage/jpeg7225https://repositorio.unicordoba.edu.co/bitstreams/7c827a85-23d7-4d77-89b0-63cd389a85c8/download46e0e3a92dfaf201ff3fa324435f9b75MD55AutorizaciónPublicación..pdf.jpgAutorizaciónPublicación..pdf.jpgGenerated Thumbnailimage/jpeg14130https://repositorio.unicordoba.edu.co/bitstreams/d5a132a9-2ad6-486f-9035-6628cf924a43/download6664e50bb8ffb3490525be329efa10bbMD57ucordoba/8156oai:repositorio.unicordoba.edu.co:ucordoba/81562024-02-07 11:33:43.918https://creativecommons.org/licenses/by-nc-nd/4.0/Copyright Universidad de Córdoba, 2024open.accesshttps://repositorio.unicordoba.edu.coRepositorio Universidad de Córdobabdigital@metabiblioteca.comPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K