Homología singular de espacios topológicos

En el presente trabajo, se exploran conceptos fundamentales del Álgebra Homológica, tales como Módulos, Homomorfismos y Sucesiones Exactas. Se analizan en profundidad los Complejos de Cadena y la Homología, y se discuten teoremas clave como el Lema de la Serpiente y el Teorema Fundamental del Álgebr...

Full description

Autores:
Blanquicett Mangones, Andrés Julián
Agámez Portilla, Andrei Sebastian
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2024
Institución:
Universidad de Córdoba
Repositorio:
Repositorio Institucional Unicórdoba
Idioma:
spa
OAI Identifier:
oai:repositorio.unicordoba.edu.co:ucordoba/8209
Acceso en línea:
https://repositorio.unicordoba.edu.co/handle/ucordoba/8209
https://repositorio.unicordoba.edu.co
Palabra clave:
Homología singular
Álgebra homológica
Lema de la serpiente
Homotopía
Singular homology
Homological algebra
Snake lemma
Homotopy
Rights
openAccess
License
https://creativecommons.org/licenses/by-nc-nd/4.0/
Description
Summary:En el presente trabajo, se exploran conceptos fundamentales del Álgebra Homológica, tales como Módulos, Homomorfismos y Sucesiones Exactas. Se analizan en profundidad los Complejos de Cadena y la Homología, y se discuten teoremas clave como el Lema de la Serpiente y el Teorema Fundamental del Álgebra Homológica. Además, se examina la Homotopía entre Homomorfismos de Complejos de Cadena. Todo lo anterior es con el fin de llegar a la base central de estre poyecto, la Homología. Para ello se estudian los Simplejos y el Complejo de Cadenas Singulares. Luego, se abordan temas como el 0-ésimo Grupo de Homología, la Homología de un punto y la Homología reducida. Se destaca la Funtorialidad y se presenta el Teorema de Invarianza por Homotopía. Posteriormente, se exploran conceptos más avanzados como la Homología Relativa, la Homología de Pares Topológicos, la Escisión y la Sucesión de Mayer-Vietoris. Finalmente, se discute la Homología de un Cociente de Espacios.