Generalidades de la regresión cuantil y aplicaciones en R
En este trabajo presentamos algunas aplicaciones y generalidades de la regresión cuantil. Se puntualizan los escenarios en los que es pertinente utilizar este tipo de herramientas en contextos donde la regresión clásica no es adecuada. Además, se evidencia la preeminencia y efectividad de la regresi...
- Autores:
-
Soto Garcés, Rafael Enrique
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2023
- Institución:
- Universidad de Córdoba
- Repositorio:
- Repositorio Institucional Unicórdoba
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unicordoba.edu.co:ucordoba/7387
- Acceso en línea:
- https://repositorio.unicordoba.edu.co/handle/ucordoba/7387
- Palabra clave:
- Regresión cuantil
Regresión lineal
MNBN
Quantile regression
Linear regression
MNBN
- Rights
- openAccess
- License
- Copyright Universidad de Córdoba, 2023
Summary: | En este trabajo presentamos algunas aplicaciones y generalidades de la regresión cuantil. Se puntualizan los escenarios en los que es pertinente utilizar este tipo de herramientas en contextos donde la regresión clásica no es adecuada. Además, se evidencia la preeminencia y efectividad de la regresión cuantil sobre la regresión lineal clásica, especialmente cuando se busca conocer o evaluar un parámetro diferente a la respuesta media de la variable dependiente. Un ejemplo de su utilidad es en el análisis de supervivencia, donde se puede utilizar la regresión cuantil para estimar la mediana de la duración de una enfermedad o el tiempo hasta un evento de interés, como la muerte. Además, cabe destacar que la regresión cuantil no precisa de supuestos distribuciona les, lo que la diferencia de la regresión clásica cuyos supuestos son extremadamente restrictivos: homocedasticidad, ausencia de correlación y normalidad en los errores del modelo. Por último, se presentan dos aplicaciones en R, conteo de daño celular pa ra evaluar el riesgo de cáncer en cuatro departamentos de Colombia y otra aplicación del precio de viviendas bajo el software Python con el fin de resaltar la capacidad y la versatilidad de la regresión cuantil. |
---|