Evaluación de la eficiencia de un extracto de pringamoza (Cnidoscolus urens) como bioestimulante de crecimiento y desarrollo de plantas de tomate chonto (Lycopersicon esculentum Mill)
El estudio se centra en evaluar la eficacia de un extracto de pringamoza (Cnidoscolus urens) como bioestimulante para el crecimiento y desarrollo de plantas de tomate chonto (Lycopersicon esculentum Mill). El objetivo principal es analizar cómo este extracto afecta positivamente el rendimiento y des...
- Autores:
-
Carmona Camargo, Jesús Del Carmen
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad de Córdoba
- Repositorio:
- Repositorio Institucional Unicórdoba
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unicordoba.edu.co:ucordoba/8146
- Acceso en línea:
- https://repositorio.unicordoba.edu.co/handle/ucordoba/8146
https://repositorio.unicordoba.edu.co
- Palabra clave:
- Biofertilizante
Bacterias solubilizadoras de fósforo
Bacterias fijadoras de Nitrógeno
Ácido Indol Acético
Biofertilizer
Phosphorus-solubilizing bacteria
Nitrogen-fixing bacteria
Indole Acetic Acid
- Rights
- openAccess
- License
- Copyright Universidad de Córdoba, 2024
id |
UCORDOBA2_cc97de90494f8c802ff4ee34f878b24d |
---|---|
oai_identifier_str |
oai:repositorio.unicordoba.edu.co:ucordoba/8146 |
network_acronym_str |
UCORDOBA2 |
network_name_str |
Repositorio Institucional Unicórdoba |
repository_id_str |
|
dc.title.none.fl_str_mv |
Evaluación de la eficiencia de un extracto de pringamoza (Cnidoscolus urens) como bioestimulante de crecimiento y desarrollo de plantas de tomate chonto (Lycopersicon esculentum Mill) |
title |
Evaluación de la eficiencia de un extracto de pringamoza (Cnidoscolus urens) como bioestimulante de crecimiento y desarrollo de plantas de tomate chonto (Lycopersicon esculentum Mill) |
spellingShingle |
Evaluación de la eficiencia de un extracto de pringamoza (Cnidoscolus urens) como bioestimulante de crecimiento y desarrollo de plantas de tomate chonto (Lycopersicon esculentum Mill) Biofertilizante Bacterias solubilizadoras de fósforo Bacterias fijadoras de Nitrógeno Ácido Indol Acético Biofertilizer Phosphorus-solubilizing bacteria Nitrogen-fixing bacteria Indole Acetic Acid |
title_short |
Evaluación de la eficiencia de un extracto de pringamoza (Cnidoscolus urens) como bioestimulante de crecimiento y desarrollo de plantas de tomate chonto (Lycopersicon esculentum Mill) |
title_full |
Evaluación de la eficiencia de un extracto de pringamoza (Cnidoscolus urens) como bioestimulante de crecimiento y desarrollo de plantas de tomate chonto (Lycopersicon esculentum Mill) |
title_fullStr |
Evaluación de la eficiencia de un extracto de pringamoza (Cnidoscolus urens) como bioestimulante de crecimiento y desarrollo de plantas de tomate chonto (Lycopersicon esculentum Mill) |
title_full_unstemmed |
Evaluación de la eficiencia de un extracto de pringamoza (Cnidoscolus urens) como bioestimulante de crecimiento y desarrollo de plantas de tomate chonto (Lycopersicon esculentum Mill) |
title_sort |
Evaluación de la eficiencia de un extracto de pringamoza (Cnidoscolus urens) como bioestimulante de crecimiento y desarrollo de plantas de tomate chonto (Lycopersicon esculentum Mill) |
dc.creator.fl_str_mv |
Carmona Camargo, Jesús Del Carmen |
dc.contributor.advisor.none.fl_str_mv |
Oviedo Zumaqué, Luis Eliecer |
dc.contributor.author.none.fl_str_mv |
Carmona Camargo, Jesús Del Carmen |
dc.contributor.jury.none.fl_str_mv |
Agamez Ramos, Elkin Yabid Aleman Romero, Arnulfo Leonardo |
dc.subject.proposal.none.fl_str_mv |
Biofertilizante Bacterias solubilizadoras de fósforo Bacterias fijadoras de Nitrógeno Ácido Indol Acético |
topic |
Biofertilizante Bacterias solubilizadoras de fósforo Bacterias fijadoras de Nitrógeno Ácido Indol Acético Biofertilizer Phosphorus-solubilizing bacteria Nitrogen-fixing bacteria Indole Acetic Acid |
dc.subject.keywords.none.fl_str_mv |
Biofertilizer Phosphorus-solubilizing bacteria Nitrogen-fixing bacteria Indole Acetic Acid |
description |
El estudio se centra en evaluar la eficacia de un extracto de pringamoza (Cnidoscolus urens) como bioestimulante para el crecimiento y desarrollo de plantas de tomate chonto (Lycopersicon esculentum Mill). El objetivo principal es analizar cómo este extracto afecta positivamente el rendimiento y desarrollo de las plantas de tomate, considerando su potencial como una alternativa beneficiosa para mejorar la producción agrícola. Se realizó un diseño completamente al azar-DCA con 4 tratamientos y 4 repeticiones, con un total de 16 unidades experimentales. Los datos de las variables de respuesta, altura de la planta, número de frutos por planta y número de racimos por planta, se analizaron mediante el análisis de varianza Anova. Las medias se analizaron mediante diferencia mínima significativa (DMS) y prueba de Tukey para conocer el mejor tratamiento. Todas las pruebas se realizaron con un nivel de significancia del 5%. Se utilizó el software estadístico R. Las concentraciones empleadas y las cepas inoculadas ejercieron una influencia positiva en el crecimiento y desarrollo de las plantas, evidenciando la efectividad de la concentración de 3 ml.L-1 del extracto. Estos resultados respaldan la importancia de considerar cuidadosamente las concentraciones utilizadas en futuras investigaciones y destacan el potencial beneficio de esta estrategia de inoculación en la agricultura y la mejora de los rendimientos vegetales. |
publishDate |
2023 |
dc.date.issued.none.fl_str_mv |
2023-01-29 |
dc.date.accessioned.none.fl_str_mv |
2024-01-30T15:22:05Z |
dc.date.available.none.fl_str_mv |
2024-01-30T15:22:05Z |
dc.type.none.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.none.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unicordoba.edu.co/handle/ucordoba/8146 |
dc.identifier.instname.none.fl_str_mv |
Universidad de Córdoba |
dc.identifier.reponame.none.fl_str_mv |
Repositorio universidad de Córdoba |
dc.identifier.repourl.none.fl_str_mv |
https://repositorio.unicordoba.edu.co |
url |
https://repositorio.unicordoba.edu.co/handle/ucordoba/8146 https://repositorio.unicordoba.edu.co |
identifier_str_mv |
Universidad de Córdoba Repositorio universidad de Córdoba |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.relation.references.none.fl_str_mv |
Aguilar-Piedras, J. J., Xiqui-Vásquez, M. L., García-García, S., & Baca, B. E. (2008). Indole-acetic acid production in Azospirillum | Producción del ácido indol-3-acético en Azospirillum. Revista Latinoamericana de Microbiologia, 50(1–2), 29–37. https://www.researchgate.net/profile/Beatriz-Baca/publication/287473721_Indole-acetic_acid_production_in_Azospirillum/links/5681538608ae1975838f77a5/Indole-acetic-acid-production-in-Azospirillum.pdf Ahmad, F., Ahmad, I., & Khan, M. S. (2008). Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiological Research, 163(2), 173–181. https://doi.org/10.1016/j.micres.2006.04.001 Almaghrabi, O. A., Massoud, S. I., & Abdelmoneim, T. S. (2013). Influence of inoculation with plant growth promoting rhizobacteria (PGPR) on tomato plant growth and nematode reproduction under greenhouse conditions. Saudi Journal of Biological Sciences, 20(1), 57–61. https://doi.org/10.1016/j.sjbs.2012.10.004 Alonso-Salinas, R., López-Miranda, S., Pérez-López, A. J., Noguera-Artiaga, L., Carbonell-Barrachina, Á. A., Núñez-Delicado, E., & Acosta-Motos, J. R. (2022). Novel combination of ethylene oxidisers to delay losses on postharvest quality, volatile compounds and sensorial analysis of tomato fruit. LWT, 170, 114054. https://doi.org/10.1016/J.LWT.2022.114054 Aloo, B. N., Dessureault-Rompré, J., Tripathi, V., Nyongesa, B. O., & Were, B. A. (2023). Signaling and crosstalk of rhizobacterial and plant hormones that mediate abiotic stress tolerance in plants. In Frontiers in Microbiology (Vol. 14). https://doi.org/10.3389/fmicb.2023.1171104 Anwarzai, N., Kattegoudar, J., Anjanappa, M., Sood, M., Reddy, A., & Kumar, S. M. (2020). Evaluation of Cherry Tomato (Solanum lycopersicum L. var. cerasiforme) Genotypes for Yield and Quality Parameters. International Journal of Current Microbiology and Applied Sciences, 9(3), 467–472. https://doi.org/10.20546/ijcmas.2020.903.054 Bashan, Y. (1998). Inoculants of plant growth-promoting bacteria for use in agriculture. In Biotechnology Advances (Vol. 16, Issue 4, pp. 729–770). Elsevier Sci Ltd. https://doi.org/10.1016/S0734-9750(98)00003-2 Bhatia, R., Gulati, D., & Sethi, G. (2021). Biofilms and nanoparticles: applications in agriculture. In Folia Microbiologica (Vol. 66, Issue 2, pp. 159–170). Springer Science and Business Media B.V. https://doi.org/10.1007/s12223-021-00851-7 Bhatia, R., Ruppel, S., & Narula, N. (2008). Diversity studies of Azotobacter spp. from cotton-wheat cropping systems of India. Journal of Basic Microbiology, 48(6), 455–463. https://doi.org/10.1002/jobm.200800059 Bishnoi, U. (2015). PGPR Interaction: An Ecofriendly Approach Promoting the Sustainable Agriculture System. Advances in Botanical Research, 75, 81–113. https://doi.org/10.1016/bs.abr.2015.09.006 Bouabid, K., Lamchouri, F., Toufik, H., & Faouzi, M. E. A. (2020). Phytochemical investigation, in vitro and in vivo antioxidant properties of aqueous and organic extracts of toxic plant: Atractylis gummifera L. In Journal of Ethnopharmacology (Vol. 253, p. 112640). Elsevier. https://doi.org/10.1016/j.jep.2020.112640 Brunel, C., Pouteau, R., Dawson, W., Pester, M., Ramirez, K. S., & van Kleunen, M. (2020). Towards Unraveling Macroecological Patterns in Rhizosphere Microbiomes. In Trends in Plant Science (Vol. 25, Issue 10, pp. 1017–1029). https://doi.org/10.1016/j.tplants.2020.04.015 Chacón-Pacheco, J., Viloria-Rivas, J., & Ramos-Madera, C. (2017). Murciélagos asociados al campus de la Universidad de Córdoba, Montería, Colombia. Revista Colombiana de Ciencia Animal - RECIA, 9(1), 25–30. https://doi.org/10.24188/recia.v9.n1.2017.494 Chang, C. H., & Yang, S. S. (2009). Thermo-tolerant phosphate-solubilizing microbes for multi-functional biofertilizer preparation. Bioresource Technology, 100(4), 1648–1658. https://doi.org/10.1016/j.biortech.2008.09.009 Chaves-Bedoya, G., & Ortíz-Rojas, L. Y. (2022). Estudio fitoquímico de Cnidoscolus urens (L.) Arthur procedente de la región de Cúcuta (Colombia). Información Tecnológica, 33(6), 21–30. https://doi.org/10.4067/s0718-07642022000600021 Compant, S., Clément, C., & Sessitsch, A. (2010a). Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. In Soil Biology and Biochemistry (Vol. 42, Issue 5, pp. 669–678). https://doi.org/10.1016/j.soilbio.2009.11.024 Compant, S., Clément, C., & Sessitsch, A. (2010b). Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. In Soil Biology and Biochemistry (Vol. 42, Issue 5, pp. 669–678). https://doi.org/10.1016/j.soilbio.2009.11.024 Dakora, F. D., & Phillips, D. A. (2002). Root exudates as mediators of mineral acquisition in low-nutrient environments. In Food Security in Nutrient-Stressed Environments: Exploiting Plants’ Genetic Capabilities (pp. 201–213). Springer Netherlands. https://doi.org/10.1007/978-94-017-1570-6_23 de Andrade, L. A., Santos, C. H. B., Frezarin, E. T., Sales, L. R., & Rigobelo, E. C. (2023). Plant Growth-Promoting Rhizobacteria for Sustainable Agricultural Production. In Microorganisms (Vol. 11, Issue 4). https://doi.org/10.3390/microorganisms11041088 Dennis, P. G., Miller, A. J., & Hirsch, P. R. (2010). Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? In FEMS Microbiology Ecology (Vol. 72, Issue 3, pp. 313–327). https://doi.org/10.1111/j.1574-6941.2010.00860.x Dodd, I. C., Zinovkina, N. Y., Safronova, V. I., & Belimov, A. A. (2010). Rhizobacterial mediation of plant hormone status. In Annals of Applied Biology (Vol. 157, Issue 3, pp. 361–379). https://doi.org/10.1111/j.1744-7348.2010.00439.x Egamberdieva, D. (2010). Growth response of wheat cultivars to bacterial inoculation in calcareous soil. Plant, Soil and Environment, 56(12), 570–573. https://doi.org/10.17221/75/2010-pse El Khetabi, A., El Ghadraoui, L., Ouaabou, R., Ennahli, S., Barka, E. A., & Lahlali, R. (2023). Antifungal activities of aqueous extracts of moroccan medicinal plants against Monilinia spp. agent of brown rot disease. Journal of Natural Pesticide Research, 5, 100038. https://doi.org/10.1016/J.NAPERE.2023.100038 FAOSTAT. (2022). FAOSTAT. Organización de Las Naciones Unidas Para La Agricultura y La Alimentación, 2022. Producción de Yuca En Todos Los Países, 1961–2020. https://www.fao.org/faostat/en/#data/QCL Feng, X., Ray, P. P., Jarrett, J. P., Karpinski, L., Jones, B., & Knowlton, K. F. (2018). Short communication: Effect of abomasal inorganic phosphorus infusion on phosphorus absorption in large intestine, milk production, and phosphorus excretion of dairy cattle. Journal of Dairy Science, 101(8), 7208–7211. https://doi.org/10.3168/jds.2018-14515 Figueira, J., Câmara, H., Pereira, J., & Câmara, J. S. (2014). Evaluation of volatile metabolites as markers in Lycopersicon esculentum L. cultivars discrimination by multivariate analysis of headspace solid phase microextraction and mass spectrometry data. Food Chemistry, 145, 653–663. https://doi.org/10.1016/j.foodchem.2013.08.061 Garbanzo-León, G., Alemán-Montes, B., Alvarado-Hernández, A., & Henríquez-Henríquez, C. (2017). Validación de modelos geoestadísticos y convencionales en la determinación de la variación espacial de la fertilidad de suelos del Pacífico Sur de Costa Rica. Investigaciones Geograficas, 2017(93), 20–41. https://doi.org/10.14350/rig.54706 Gil, R., Bojacá, C. R., & Schrevens, E. (2019). Understanding the heterogeneity of smallholder production systems in the Andean tropics – The case of Colombian tomato growers. NJAS - Wageningen Journal of Life Sciences, 88, 1–9. https://doi.org/10.1016/j.njas.2019.02.002 Gouda, S., Kerry, R. G., Das, G., Paramithiotis, S., Shin, H. S., & Patra, J. K. (2018). Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. In Microbiological Research (Vol. 206, pp. 131–140). https://doi.org/10.1016/j.micres.2017.08.016 Gupta, R., Kumari, A., Sharma, S., Alzahrani, O. M., Noureldeen, A., & Darwish, H. (2022). Identification, characterization and optimization of phosphate solubilizing rhizobacteria (PSRB) from rice rhizosphere. Saudi Journal of Biological Sciences, 29(1), 35–42. https://doi.org/10.1016/j.sjbs.2021.09.075 Gutiérrez-Santa Ana, A., Carrillo-Cerda, H. A., Rodriguez-Campos, J., Kirchmayr, M. R., Contreras-Ramos, S. M., & Velázquez-Fernández, J. B. (2020). Volatile emission compounds from plant growth-promoting bacteria are responsible for the antifungal activity against F. solani. 3 Biotech, 10(7). https://doi.org/10.1007/s13205-020-02290-6 Hellal, F., & Mahfouz, S. (2011). Partial substitution of mineral nitrogen fertilizer by bio-fertilizer on (Anethum graveolens L.) plant. Agriculture and Biology Journal of North America, 2(4), 652–660. https://doi.org/10.5251/abjna.2011.2.4.652.660 Jahanian, A., Chaichi, M., & Rezaei, K. (2012). The Effect of Plant Growth Promoting Rhizobacteria (PGPR) on Germination and Primary Growth of Artichoke (Cynara scolymus). International Journal of Agriculture and Crop Sciences, 923–929. https://www.cabdirect.org/cabdirect/abstract/20123364547 Jiménez-Arellanes, M. A., García-Martínez, I., & Rojas-Tomé, S. (2014). Potencial biológico de especies medicinales del género Cnidoscolus (Euphorbiacea). Revista Mexicana de Ciencias Farmaceuticas, 45(4). https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1870-01952014000400003 Khan, M. S., Zaidi, A., & Wani, P. A. (2009). Role of phosphate solubilizing microorganisms in sustainable agriculture - A review. In Sustainable Agriculture (pp. 551–570). Springer Netherlands. https://doi.org/10.1007/978-90-481-2666-8_34 Kochar, M., & Srivastava, S. (2012). Surface colonization by Azospirillum brasilense SM in the indole-3-acetic acid dependent growth improvement of sorghum. Journal of Basic Microbiology, 52(2), 123–131. https://doi.org/10.1002/jobm.201100038 Kour, D., Rana, K. L., Yadav, A. N., Yadav, N., Kumar, M., Kumar, V., Vyas, P., Dhaliwal, H. S., & Saxena, A. K. (2020). Microbial biofertilizers: Bioresources and eco-friendly technologies for agricultural and environmental sustainability. In Biocatalysis and Agricultural Biotechnology (Vol. 23). https://doi.org/10.1016/j.bcab.2019.101487 Lambers, H., Mougel, C., Jaillard, B., & Hinsinger, P. (2009). Plant-microbe-soil interactions in the rhizosphere: An evolutionary perspective. In Plant and Soil (Vol. 321, Issues 1–2, pp. 83–115). https://doi.org/10.1007/s11104-009-0042-x Lara, M. C., García, T. L. P., & Oviedo, Z. L. E. (2010). Medio de cultivo utilizando residuos- sólidos para el crecimiento de una bacteria nativa con potencial biofertilizante Using a solid waste culture medium for growing a native strain having biofertiliser potential. Revita Colombiana de Biotecnología, 12(1), 103–112. http://www.scielo.org.co/scielo.php?pid=S0123-34752010000100011&script=sci_arttext Lara, M. C., Villalba, A. M., & Oviedo, Z. L. E. (2008). Bacterias fijadoras asimbióticas de nitrógeno de la zona agrícola de San Carlos. Córdoba, Colombia. Revista Colombiana de Biotecnología, 9(2), 6–14. https://revistas.unal.edu.co/index.php/biotecnologia/article/view/711 Li, H., Qiu, Y., Yao, T., Ma, Y., Zhang, H., & Yang, X. (2020). Effects of PGPR microbial inoculants on the growth and soil properties of Avena sativa, Medicago sativa, and Cucumis sativus seedlings. Soil and Tillage Research, 199. https://doi.org/10.1016/j.still.2020.104577 Li, Z., Wang, Y., Liu, Z., Han, F., Chen, S., & Zhou, W. (2023). Integrated application of phosphorus-accumulating bacteria and phosphorus-solubilizing bacteria to achieve sustainable phosphorus management in saline soils. Science of The Total Environment, 885, 163971. https://doi.org/10.1016/J.SCITOTENV.2023.163971 Licker, R., Johnston, M., Foley, J. A., Barford, C., Kucharik, C. J., Monfreda, C., & Ramankutty, N. (2010). Mind the gap: How do climate and agricultural management explain the “yield gap” of croplands around the world? Global Ecology and Biogeography, 19(6), 769–782. https://doi.org/10.1111/j.1466-8238.2010.00563.x Machaca, M. L. (2017). Bacterias solubilizadoras de fosfato del género Bacillus en suelos de la provincia de El Collao (Puno) y su efecto en la germinación y crecimiento de quinua. https://alicia.concytec.gob.pe/vufind/Record/RNAP_b63d597c3fe9f55a697194a713ea52df Mamta, Rahi, P., Pathania, V., Gulati, A., Singh, B., Bhanwra, R. K., & Tewari, R. (2010). Stimulatory effect of phosphate-solubilizing bacteria on plant growth, stevioside and rebaudioside-A contents of Stevia rebaudiana Bertoni. Applied Soil Ecology, 46(2), 222–229. https://doi.org/10.1016/j.apsoil.2010.08.008 Marques, A. P. G. C., Pires, C., Moreira, H., Rangel, A. O. S. S., & Castro, P. M. L. (2010). Assessment of the plant growth promotion abilities of six bacterial isolates using Zea mays as indicator plant. Soil Biology and Biochemistry, 42(8), 1229–1235. https://doi.org/10.1016/j.soilbio.2010.04.014 Marschner, P., Yang, C. H., Lieberei, R., & Crowley, D. E. (2001). Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biology and Biochemistry, 33(11), 1437–1445. https://doi.org/10.1016/S0038-0717(01)00052-9 Martínez-Viveros, O., Jorquera, M. A., Crowley, D. E., Gajardo, G., & Mora, M. L. (2010). Mechanisms and practical considerations involved in plant growth promotion by Rhizobacteria. Journal of Soil Science and Plant Nutrition, 10(3), 293–319. https://doi.org/10.4067/S0718-95162010000100006 Matias, S. R., Pagano, M. C., Muzzi, F. C., Oliveira, C. A., Carneiro, A. A., Horta, S. N., & Scotti, M. R. (2009). Effect of rhizobia, mycorrhizal fungi and phosphate-solubilizing microorganisms in the rhizosphere of native plants used to recover an iron ore area in Brazil. European Journal of Soil Biology, 45(3), 259–266. https://doi.org/10.1016/j.ejsobi.2009.02.003 Palacio-Rodríguez, R., Nava-Reyes, B., Sánchez-Galván, H., Quezada-Rivera, J. J., & Sáenz-Mata, J. (2022). Efecto de la inoculación de rizobacterias promotoras del crecimiento vegetal de tomate en condiciones de casa sombra comercial. Revista Mexicana de Ciencias Agrícolas, 13(28), 231–242. https://doi.org/10.29312/remexca.v13i28.3278 Pathania, P., Bhatia, R., & Khatri, M. (2020). Cross-competence and affectivity of maize rhizosphere bacteria Bacillus sp. MT7 in tomato rhizosphere. Scientia Horticulturae, 272. https://doi.org/10.1016/j.scienta.2020.109480 Pathania, P., Gulati, D., Setia, H., & Bhatia, R. (2023). Characterization and performance evaluation of plant growth promoting bacteria in tomato rhizosphere. South African Journal of Botany, 161, 388–394. https://doi.org/10.1016/j.sajb.2023.08.037 Pérez, E., Sulbarán, M., Ball, M. M., & Yarzábal, L. A. (2007). Isolation and characterization of mineral phosphate-solubilizing bacteria naturally colonizing a limonitic crust in the south-eastern Venezuelan region. Soil Biology and Biochemistry, 39(11), 2905–2914. https://doi.org/10.1016/j.soilbio.2007.06.017 Pérez, F. L. P., & Oviedo, Z. L. E. (2019). CARACTERIZACIÓN DE BACTERIAS NATIVAS CON POTENCIAL BIOFERTILIZANTE AISLADAS DE SUELOS DEL DEPARTAMENTO DE SUCRE. In Biotecnología aplicada al sector agropecuario en el departamento de Sucre. https://doi.org/10.21892/9789585547063.11 Philippot, L., Raaijmakers, J. M., Lemanceau, P., & Van Der Putten, W. H. (2013). Going back to the roots: The microbial ecology of the rhizosphere. In Nature Reviews Microbiology (Vol. 11, Issue 11, pp. 789–799). https://doi.org/10.1038/nrmicro3109 Poonguzhali, S., Madhaiyan, M., & Sa, T. (2007). Quorum-sensing signals produced by plant-growth promoting Burkholderia strains under in vitro and in planta conditions. Research in Microbiology, 158(3), 287–294. https://doi.org/10.1016/j.resmic.2006.11.013 Reyes, I., Alvarez, L., El-Ayoubi, H., & Valery, A. (2008). Selección y evaluación de rizobacterias promotoras del crecimiento en pimentón y maíz. Bioagro, 20(1). http://ve.scielo.org/scielo.php?pid=S1316-33612008000100005&script=sci_arttext Ryu, R. J., & Patten, C. L. (2008). Aromatic amino acid-dependent expression of indole-3-pyruvate decarboxylase is regulated by tyrr in Enterobacter cloacae UW5. Journal of Bacteriology, 190(21), 7200–7208. https://doi.org/10.1128/JB.00804-08 Saravanakumar, D., Vijayakumar, C., Kumar, N., & Samiyappan, R. (2007). PGPR-induced defense responses in the tea plant against blister blight disease. Crop Protection, 26(4), 556–565. https://doi.org/10.1016/j.cropro.2006.05.007 Sasse, J., Martinoia, E., & Northen, T. (2018). Feed Your Friends: Do Plant Exudates Shape the Root Microbiome? In Trends in Plant Science (Vol. 23, Issue 1, pp. 25–41). https://doi.org/10.1016/j.tplants.2017.09.003 Schneijderberg, M., Cheng, X., Franken, C., de Hollander, M., van Velzen, R., Schmitz, L., Heinen, R., Geurts, R., van der Putten, W. H., Bezemer, T. M., & Bisseling, T. (2020). Quantitative comparison between the rhizosphere effect of Arabidopsis thaliana and co-occurring plant species with a longer life history. ISME Journal, 14(10), 2433–2448. https://doi.org/10.1038/s41396-020-0695-2 Shang, X. chao, Zhang, M., Zhang, Y., Hou, X., & Yang, L. (2023). Waste seaweed compost and rhizosphere bacteria Pseudomonas koreensis promote tomato seedlings growth by benefiting properties, enzyme activities and rhizosphere bacterial community in coastal saline soil of Yellow River Delta, China. Waste Management, 172, 33–42. https://doi.org/10.1016/j.wasman.2023.09.003 Shilev, S. (2020). Plant-growth-promoting bacteria mitigating soil salinity stress in plants. In Applied Sciences (Switzerland) (Vol. 10, Issue 20, pp. 1–20). https://doi.org/10.3390/app10207326 Singh, J. S., Pandey, V. C., & Singh, D. P. (2011). Efficient soil microorganisms: A new dimension for sustainable agriculture and environmental development. In Agriculture, Ecosystems and Environment (Vol. 140, Issues 3–4, pp. 339–353). https://doi.org/10.1016/j.agee.2011.01.017 Solís, S., Contreras-Ramos, S. M., Bacame-Valenzuela, F. J., Reyes-Vidal, Y., González-Jasso, E., & Bustos, E. (2023). Comparison of the effects of biological and electrical stimulation on the growth of Zea mays. Electrochimica Acta, 448, 142193. https://doi.org/10.1016/j.electacta.2023.142193 Spaepen, S., Vanderleyden, J., & Remans, R. (2007). Indole-3-acetic acid in microbial and microorganism-plant signaling. In FEMS Microbiology Reviews (Vol. 31, Issue 4, pp. 425–448). https://doi.org/10.1111/j.1574-6976.2007.00072.x Sriwati, R., Maulidia, V., Intan, N., Oktarina, H., Syamsuddin, Khairan, K., Skala, L., & Mahmud, T. (2023). Endophytic bacteria as biological agents to control fusarium wilt disease and promote tomato plant growth. Physiological and Molecular Plant Pathology, 125, 101994. https://doi.org/10.1016/j.pmpp.2023.101994 Sukumar, P., Legué, V., Vayssières, A., Martin, F., Tuskan, G. A., & Kalluri, U. C. (2013). Involvement of auxin pathways in modulating root architecture during beneficial plant-microorganism interactions. Plant, Cell and Environment, 36(5), 909–919. https://doi.org/10.1111/pce.12036 Tejera-Hernández, B., Heydrich-Pérez, M., & Rojas-Badía, M. M. (2013). Aislamiento de Bacillus solubilizadores de fosfatos asociados al cultivo del arroz. Agronomía Mesoamericana, 24(2), 357. https://doi.org/10.15517/am.v24i2.12535 Timmusk, S., Grantcharova, N., & Wagner, E. G. H. (2005). Paenibacillus polymyxa invades plant roots and forms biofilms. Applied and Environmental Microbiology, 71(11), 7292–7300. https://doi.org/10.1128/AEM.71.11.7292-7300.2005 Trujillo, M. ., Pedraza, R., Abud, Y. ., & Ochoa, M. . (2013). Perspectivas del Empleo de Rizobacterias Como Agentes de Control Biológico en Cultivos de Importancia Económica. Revista Biológicas, 12(1), 65–71. https://www.redalyc.org/pdf/612/61224107.pdf Vanlauwe, B., Bationo, A., Chianu, J., Giller, K. E., Merckx, R., Mokwunye, U., Ohiokpehai, O., Pypers, P., Tabo, R., Shepherd, K. D., Smaling, E. M. A., Woomer, P. L., & Sanginga, N. (2010). Integrated soil fertility management: Operational definition and consequences for implementation and dissemination. Outlook on Agriculture, 39(1), 17–24. https://doi.org/10.5367/000000010791169998 Wang, Z. J., Li, X., Wang, J. H., Qi, S. S., Dai, Z. C., & Du, D. L. (2022). Effect of nitrogen-fixing bacteria on resource investment of the root system in an invasive clonal plant under low nutritional environment. Flora: Morphology, Distribution, Functional Ecology of Plants, 297, 152166. https://doi.org/10.1016/j.flora.2022.152166 Wang, Z. J., Li, X., Wang, J. H., Qi, S. S., Dai, Z. C., & Du, D. L. (2022). Effect of nitrogen-fixing bacteria on resource investment of the root system in an invasive clonal plant under low nutritional environment. Flora: Morphology, Distribution, Functional Ecology of Plants, 297, 152166. https://doi.org/10.1016/j.flora.2022.152166 Woodward, A., Botany, B. B.-A. of, & 2005, U. (2005). Auxin: regulation, action, and interaction. Academic.Oup.ComAW Woodward, B BartelAnnals of Botany, 2005•academic.Oup.Com. https://academic.oup.com/aob/article-abstract/95/5/707/201283 Yepes, E. J. A. (2014). EFECTO DE LA INOCULACIÓN DE BACTERIAS NATIVAS SOBRE EL CRECIMIENTO Y DESARROLLO DE PLANTAS DE AJÍ (Capsicum annuum L.) EN CONDICIONES DE UMBRÁCULO. Universidad de Córdoba. Yuan, J., Zhang, N., Huang, Q., Raza, W., Li, R., Vivanco, J. M., & Shen, Q. (2015). Organic acids from root exudates of banana help root colonization of PGPR strain Bacillus amyloliquefaciens NJN-6. Scientific Reports, 5. https://doi.org/10.1038/srep13438 Zhang, G., Shi, L., Liu, C., Huang, Z., Zheng, Y., & Dong, L. (2023). Rhizosphere effects on the microbial community: Specificity and conservatism across geographically disjunct Panax species. Applied Soil Ecology, 192, 105075. https://doi.org/10.1016/j.apsoil.2023.105075 Zhu, U., Wang, S., Huang, Z., Zhang, S., Liao, Q., Zhang, C., Lin, T., Qin, M., Peng, M., Yang, C., Cao, X., Han, X., Wang, X., van der Knaap, E., Zhang, Z., Cui, X., Klee, H., Fernie, A. R., Luo, J., & Huang, S. (2018). Rewiring of the Fruit Metabolome in Tomato Breeding. Cell, 172(1–2), 249-261.e12. https://doi.org/10.1016/j.cell.2017.12.019 |
dc.rights.none.fl_str_mv |
Copyright Universidad de Córdoba, 2024 |
dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.license.none.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Copyright Universidad de Córdoba, 2024 https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de Cordoba |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias Básicas |
dc.publisher.place.none.fl_str_mv |
Montería, Córdoba, Colombia |
dc.publisher.program.none.fl_str_mv |
Maestría en Biotecnología |
publisher.none.fl_str_mv |
Universidad de Cordoba |
institution |
Universidad de Córdoba |
bitstream.url.fl_str_mv |
https://repositorio.unicordoba.edu.co/bitstreams/150fcff3-f34f-4000-ba8d-4a45e0b29cc0/download https://repositorio.unicordoba.edu.co/bitstreams/dc11f29e-fd5a-40c1-9e03-f2093166f2bf/download https://repositorio.unicordoba.edu.co/bitstreams/837bbc99-32ae-46c8-bf71-c6e5a959cb9c/download https://repositorio.unicordoba.edu.co/bitstreams/ff92470a-695b-458f-88ad-89d37cd34f6f/download https://repositorio.unicordoba.edu.co/bitstreams/4cce41b4-52dc-439e-aa32-b66e6d726d08/download https://repositorio.unicordoba.edu.co/bitstreams/a986b33f-33c7-453d-a2fa-5a8e84d42d56/download https://repositorio.unicordoba.edu.co/bitstreams/84cc387a-401f-4491-bc43-254fc8bf52e8/download |
bitstream.checksum.fl_str_mv |
9e7c37dbf259696fb6146615e8c7bdf5 cc626b0635aa8ffda19a19695809954f 73a5432e0b76442b22b026844140d683 c34bb3e83fa11d775508a821abf74b6c 6344921220fac2f4a6c773d90df916db 043ff0baf13a3e565d27f5d622a72fd1 37d986cab7af000053578a33d945b669 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Universidad de Córdoba |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1839636108606963712 |
spelling |
Oviedo Zumaqué, Luis Eliecera759c7c2-cc80-4455-83d5-15758c879851-1Carmona Camargo, Jesús Del Carmen5a661409-3421-407b-a7d8-c786aeca29ca-1Agamez Ramos, Elkin Yabid796c9b64-5ab3-4518-afd7-a110c92baea6-1Aleman Romero, Arnulfo Leonardo38f2159a-395d-48e1-b19f-381a9aae816f-12024-01-30T15:22:05Z2024-01-30T15:22:05Z2023-01-29https://repositorio.unicordoba.edu.co/handle/ucordoba/8146Universidad de CórdobaRepositorio universidad de Córdobahttps://repositorio.unicordoba.edu.coEl estudio se centra en evaluar la eficacia de un extracto de pringamoza (Cnidoscolus urens) como bioestimulante para el crecimiento y desarrollo de plantas de tomate chonto (Lycopersicon esculentum Mill). El objetivo principal es analizar cómo este extracto afecta positivamente el rendimiento y desarrollo de las plantas de tomate, considerando su potencial como una alternativa beneficiosa para mejorar la producción agrícola. Se realizó un diseño completamente al azar-DCA con 4 tratamientos y 4 repeticiones, con un total de 16 unidades experimentales. Los datos de las variables de respuesta, altura de la planta, número de frutos por planta y número de racimos por planta, se analizaron mediante el análisis de varianza Anova. Las medias se analizaron mediante diferencia mínima significativa (DMS) y prueba de Tukey para conocer el mejor tratamiento. Todas las pruebas se realizaron con un nivel de significancia del 5%. Se utilizó el software estadístico R. Las concentraciones empleadas y las cepas inoculadas ejercieron una influencia positiva en el crecimiento y desarrollo de las plantas, evidenciando la efectividad de la concentración de 3 ml.L-1 del extracto. Estos resultados respaldan la importancia de considerar cuidadosamente las concentraciones utilizadas en futuras investigaciones y destacan el potencial beneficio de esta estrategia de inoculación en la agricultura y la mejora de los rendimientos vegetales.Resumen .................... 11Introducción ............................. 121. Objetivos ................................. 141.1 Objetivo general ...................................... 141.2 Objetivos específicos............................... 142. Marco teórico ..................................................... 152.1 Planta de tomate Cherry .............................. 152.3. Estimulación biológica del crecimiento vegetal................... 152.4. La rizosfera y su efecto en los microorganismos del suelo ......... 162.5. Efectos benéficos de las bacterias de la rizosfera sobre la planta .. 172.6. Fijación no simbiótica de nitrógeno atmosférico. ................ 192.7. Producción de auxinas ............................ 202.8. Solubilización de fosfatos ................... 223. Metodología ................................................................ 243.1 Tipo de estudio ...................................... 243.2 Área de estudio ............................................................. 243.3 Determinación de la concentración de bacterias promotoras del crecimiento vegetal presentes en el extracto de pringamoza (Cnidoscolus urens) ................. 243.3.1 Recolección de plantas de pringamoza (Cnidoscolus urens) para la preparación del extracto ……….…………………243.3.2 Preparación del extracto de pringamoza (Cnidoscolus urens) .. 253.3.3 Análisis de Microorganismos eficientes ......... 253.4 Análisis químico del potencial bioestimulante del extracto de Pringamoza (Cnidoscolus urens) ………………………….253.4.1 Evaluación de la actividad Solubilizadora de fósforo .... 253.4.2 Evaluación de la actividad fijadora de Nitrógeno ............ 263.4.3 Evaluación de la producción de Ácido Indol Acético-AIA ....... 263.5 Evaluación del efecto de la inoculación con extracto de pringamoza (Cnidoscolus urens) sobre el crecimiento y desarrollo de plantas de tomate (Solanum lycopersicum L) en condiciones de invernadero. ......... 263.5.1 Tratamiento para eliminar la capa de plaguicida y/o fungicida protectante de la semilla................. 263.5.2 Inoculación, germinación de las semillas y trasplante de las plantulas ... 273.6 Diseño experimental .............. 273.7 Parámetros biométricos y rendimientos de tomate .......... 273.8 Análisis estadístico ....... 274. Resultados y análisis ........... 294.1 Determinación de la concentración de bacterias promotoras del crecimiento vegetal presentes en el extracto de pringamoza (Cnidoscolus urens) ....................... 294.1.1 Análisis de Microorganismos eficientes ............... 294.2 Evaluación del efecto de la inoculación con extracto de pringamoza (Cnidoscolus urens) sobre el crecimiento y desarrollo de plantas de tomate (Solanum lycopersicum L) en condiciones de invernadero. ............. 304.3 Altura de la planta ........................................... 324.4 Numero de frutos por planta................................. 334.5 Numero de racimos por planta .................... 345. Conclusiones ............. 386. Recomendaciones ............................................................. 397. Referencias bibliográficas ............................... 40ANEXOS ................................................................. 51PregradoMagíster en BiotecnologíaTrabajos de Investigación y/o Extensiónapplication/pdfspaUniversidad de CordobaFacultad de Ciencias BásicasMontería, Córdoba, ColombiaMaestría en BiotecnologíaCopyright Universidad de Córdoba, 2024https://creativecommons.org/licenses/by-nc-nd/4.0/Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Evaluación de la eficiencia de un extracto de pringamoza (Cnidoscolus urens) como bioestimulante de crecimiento y desarrollo de plantas de tomate chonto (Lycopersicon esculentum Mill)Trabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAguilar-Piedras, J. J., Xiqui-Vásquez, M. L., García-García, S., & Baca, B. E. (2008). Indole-acetic acid production in Azospirillum | Producción del ácido indol-3-acético en Azospirillum. Revista Latinoamericana de Microbiologia, 50(1–2), 29–37. https://www.researchgate.net/profile/Beatriz-Baca/publication/287473721_Indole-acetic_acid_production_in_Azospirillum/links/5681538608ae1975838f77a5/Indole-acetic-acid-production-in-Azospirillum.pdfAhmad, F., Ahmad, I., & Khan, M. S. (2008). Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiological Research, 163(2), 173–181. https://doi.org/10.1016/j.micres.2006.04.001Almaghrabi, O. A., Massoud, S. I., & Abdelmoneim, T. S. (2013). Influence of inoculation with plant growth promoting rhizobacteria (PGPR) on tomato plant growth and nematode reproduction under greenhouse conditions. Saudi Journal of Biological Sciences, 20(1), 57–61. https://doi.org/10.1016/j.sjbs.2012.10.004Alonso-Salinas, R., López-Miranda, S., Pérez-López, A. J., Noguera-Artiaga, L., Carbonell-Barrachina, Á. A., Núñez-Delicado, E., & Acosta-Motos, J. R. (2022). Novel combination of ethylene oxidisers to delay losses on postharvest quality, volatile compounds and sensorial analysis of tomato fruit. LWT, 170, 114054. https://doi.org/10.1016/J.LWT.2022.114054Aloo, B. N., Dessureault-Rompré, J., Tripathi, V., Nyongesa, B. O., & Were, B. A. (2023). Signaling and crosstalk of rhizobacterial and plant hormones that mediate abiotic stress tolerance in plants. In Frontiers in Microbiology (Vol. 14). https://doi.org/10.3389/fmicb.2023.1171104Anwarzai, N., Kattegoudar, J., Anjanappa, M., Sood, M., Reddy, A., & Kumar, S. M. (2020). Evaluation of Cherry Tomato (Solanum lycopersicum L. var. cerasiforme) Genotypes for Yield and Quality Parameters. International Journal of Current Microbiology and Applied Sciences, 9(3), 467–472. https://doi.org/10.20546/ijcmas.2020.903.054Bashan, Y. (1998). Inoculants of plant growth-promoting bacteria for use in agriculture. In Biotechnology Advances (Vol. 16, Issue 4, pp. 729–770). Elsevier Sci Ltd. https://doi.org/10.1016/S0734-9750(98)00003-2Bhatia, R., Gulati, D., & Sethi, G. (2021). Biofilms and nanoparticles: applications in agriculture. In Folia Microbiologica (Vol. 66, Issue 2, pp. 159–170). Springer Science and Business Media B.V. https://doi.org/10.1007/s12223-021-00851-7Bhatia, R., Ruppel, S., & Narula, N. (2008). Diversity studies of Azotobacter spp. from cotton-wheat cropping systems of India. Journal of Basic Microbiology, 48(6), 455–463. https://doi.org/10.1002/jobm.200800059Bishnoi, U. (2015). PGPR Interaction: An Ecofriendly Approach Promoting the Sustainable Agriculture System. Advances in Botanical Research, 75, 81–113. https://doi.org/10.1016/bs.abr.2015.09.006Bouabid, K., Lamchouri, F., Toufik, H., & Faouzi, M. E. A. (2020). Phytochemical investigation, in vitro and in vivo antioxidant properties of aqueous and organic extracts of toxic plant: Atractylis gummifera L. In Journal of Ethnopharmacology (Vol. 253, p. 112640). Elsevier. https://doi.org/10.1016/j.jep.2020.112640Brunel, C., Pouteau, R., Dawson, W., Pester, M., Ramirez, K. S., & van Kleunen, M. (2020). Towards Unraveling Macroecological Patterns in Rhizosphere Microbiomes. In Trends in Plant Science (Vol. 25, Issue 10, pp. 1017–1029). https://doi.org/10.1016/j.tplants.2020.04.015Chacón-Pacheco, J., Viloria-Rivas, J., & Ramos-Madera, C. (2017). Murciélagos asociados al campus de la Universidad de Córdoba, Montería, Colombia. Revista Colombiana de Ciencia Animal - RECIA, 9(1), 25–30. https://doi.org/10.24188/recia.v9.n1.2017.494Chang, C. H., & Yang, S. S. (2009). Thermo-tolerant phosphate-solubilizing microbes for multi-functional biofertilizer preparation. Bioresource Technology, 100(4), 1648–1658. https://doi.org/10.1016/j.biortech.2008.09.009Chaves-Bedoya, G., & Ortíz-Rojas, L. Y. (2022). Estudio fitoquímico de Cnidoscolus urens (L.) Arthur procedente de la región de Cúcuta (Colombia). Información Tecnológica, 33(6), 21–30. https://doi.org/10.4067/s0718-07642022000600021Compant, S., Clément, C., & Sessitsch, A. (2010a). Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. In Soil Biology and Biochemistry (Vol. 42, Issue 5, pp. 669–678). https://doi.org/10.1016/j.soilbio.2009.11.024Compant, S., Clément, C., & Sessitsch, A. (2010b). Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. In Soil Biology and Biochemistry (Vol. 42, Issue 5, pp. 669–678). https://doi.org/10.1016/j.soilbio.2009.11.024Dakora, F. D., & Phillips, D. A. (2002). Root exudates as mediators of mineral acquisition in low-nutrient environments. In Food Security in Nutrient-Stressed Environments: Exploiting Plants’ Genetic Capabilities (pp. 201–213). Springer Netherlands. https://doi.org/10.1007/978-94-017-1570-6_23de Andrade, L. A., Santos, C. H. B., Frezarin, E. T., Sales, L. R., & Rigobelo, E. C. (2023). Plant Growth-Promoting Rhizobacteria for Sustainable Agricultural Production. In Microorganisms (Vol. 11, Issue 4). https://doi.org/10.3390/microorganisms11041088Dennis, P. G., Miller, A. J., & Hirsch, P. R. (2010). Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? In FEMS Microbiology Ecology (Vol. 72, Issue 3, pp. 313–327). https://doi.org/10.1111/j.1574-6941.2010.00860.xDodd, I. C., Zinovkina, N. Y., Safronova, V. I., & Belimov, A. A. (2010). Rhizobacterial mediation of plant hormone status. In Annals of Applied Biology (Vol. 157, Issue 3, pp. 361–379). https://doi.org/10.1111/j.1744-7348.2010.00439.xEgamberdieva, D. (2010). Growth response of wheat cultivars to bacterial inoculation in calcareous soil. Plant, Soil and Environment, 56(12), 570–573. https://doi.org/10.17221/75/2010-pseEl Khetabi, A., El Ghadraoui, L., Ouaabou, R., Ennahli, S., Barka, E. A., & Lahlali, R. (2023). Antifungal activities of aqueous extracts of moroccan medicinal plants against Monilinia spp. agent of brown rot disease. Journal of Natural Pesticide Research, 5, 100038. https://doi.org/10.1016/J.NAPERE.2023.100038FAOSTAT. (2022). FAOSTAT. Organización de Las Naciones Unidas Para La Agricultura y La Alimentación, 2022. Producción de Yuca En Todos Los Países, 1961–2020. https://www.fao.org/faostat/en/#data/QCLFeng, X., Ray, P. P., Jarrett, J. P., Karpinski, L., Jones, B., & Knowlton, K. F. (2018). Short communication: Effect of abomasal inorganic phosphorus infusion on phosphorus absorption in large intestine, milk production, and phosphorus excretion of dairy cattle. Journal of Dairy Science, 101(8), 7208–7211. https://doi.org/10.3168/jds.2018-14515Figueira, J., Câmara, H., Pereira, J., & Câmara, J. S. (2014). Evaluation of volatile metabolites as markers in Lycopersicon esculentum L. cultivars discrimination by multivariate analysis of headspace solid phase microextraction and mass spectrometry data. Food Chemistry, 145, 653–663. https://doi.org/10.1016/j.foodchem.2013.08.061Garbanzo-León, G., Alemán-Montes, B., Alvarado-Hernández, A., & Henríquez-Henríquez, C. (2017). Validación de modelos geoestadísticos y convencionales en la determinación de la variación espacial de la fertilidad de suelos del Pacífico Sur de Costa Rica. Investigaciones Geograficas, 2017(93), 20–41. https://doi.org/10.14350/rig.54706Gil, R., Bojacá, C. R., & Schrevens, E. (2019). Understanding the heterogeneity of smallholder production systems in the Andean tropics – The case of Colombian tomato growers. NJAS - Wageningen Journal of Life Sciences, 88, 1–9. https://doi.org/10.1016/j.njas.2019.02.002Gouda, S., Kerry, R. G., Das, G., Paramithiotis, S., Shin, H. S., & Patra, J. K. (2018). Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. In Microbiological Research (Vol. 206, pp. 131–140). https://doi.org/10.1016/j.micres.2017.08.016Gupta, R., Kumari, A., Sharma, S., Alzahrani, O. M., Noureldeen, A., & Darwish, H. (2022). Identification, characterization and optimization of phosphate solubilizing rhizobacteria (PSRB) from rice rhizosphere. Saudi Journal of Biological Sciences, 29(1), 35–42. https://doi.org/10.1016/j.sjbs.2021.09.075Gutiérrez-Santa Ana, A., Carrillo-Cerda, H. A., Rodriguez-Campos, J., Kirchmayr, M. R., Contreras-Ramos, S. M., & Velázquez-Fernández, J. B. (2020). Volatile emission compounds from plant growth-promoting bacteria are responsible for the antifungal activity against F. solani. 3 Biotech, 10(7). https://doi.org/10.1007/s13205-020-02290-6Hellal, F., & Mahfouz, S. (2011). Partial substitution of mineral nitrogen fertilizer by bio-fertilizer on (Anethum graveolens L.) plant. Agriculture and Biology Journal of North America, 2(4), 652–660. https://doi.org/10.5251/abjna.2011.2.4.652.660Jahanian, A., Chaichi, M., & Rezaei, K. (2012). The Effect of Plant Growth Promoting Rhizobacteria (PGPR) on Germination and Primary Growth of Artichoke (Cynara scolymus). International Journal of Agriculture and Crop Sciences, 923–929. https://www.cabdirect.org/cabdirect/abstract/20123364547Jiménez-Arellanes, M. A., García-Martínez, I., & Rojas-Tomé, S. (2014). Potencial biológico de especies medicinales del género Cnidoscolus (Euphorbiacea). Revista Mexicana de Ciencias Farmaceuticas, 45(4). https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1870-01952014000400003Khan, M. S., Zaidi, A., & Wani, P. A. (2009). Role of phosphate solubilizing microorganisms in sustainable agriculture - A review. In Sustainable Agriculture (pp. 551–570). Springer Netherlands. https://doi.org/10.1007/978-90-481-2666-8_34Kochar, M., & Srivastava, S. (2012). Surface colonization by Azospirillum brasilense SM in the indole-3-acetic acid dependent growth improvement of sorghum. Journal of Basic Microbiology, 52(2), 123–131. https://doi.org/10.1002/jobm.201100038Kour, D., Rana, K. L., Yadav, A. N., Yadav, N., Kumar, M., Kumar, V., Vyas, P., Dhaliwal, H. S., & Saxena, A. K. (2020). Microbial biofertilizers: Bioresources and eco-friendly technologies for agricultural and environmental sustainability. In Biocatalysis and Agricultural Biotechnology (Vol. 23). https://doi.org/10.1016/j.bcab.2019.101487Lambers, H., Mougel, C., Jaillard, B., & Hinsinger, P. (2009). Plant-microbe-soil interactions in the rhizosphere: An evolutionary perspective. In Plant and Soil (Vol. 321, Issues 1–2, pp. 83–115). https://doi.org/10.1007/s11104-009-0042-xLara, M. C., García, T. L. P., & Oviedo, Z. L. E. (2010). Medio de cultivo utilizando residuos- sólidos para el crecimiento de una bacteria nativa con potencial biofertilizante Using a solid waste culture medium for growing a native strain having biofertiliser potential. Revita Colombiana de Biotecnología, 12(1), 103–112. http://www.scielo.org.co/scielo.php?pid=S0123-34752010000100011&script=sci_arttextLara, M. C., Villalba, A. M., & Oviedo, Z. L. E. (2008). Bacterias fijadoras asimbióticas de nitrógeno de la zona agrícola de San Carlos. Córdoba, Colombia. Revista Colombiana de Biotecnología, 9(2), 6–14. https://revistas.unal.edu.co/index.php/biotecnologia/article/view/711Li, H., Qiu, Y., Yao, T., Ma, Y., Zhang, H., & Yang, X. (2020). Effects of PGPR microbial inoculants on the growth and soil properties of Avena sativa, Medicago sativa, and Cucumis sativus seedlings. Soil and Tillage Research, 199. https://doi.org/10.1016/j.still.2020.104577Li, Z., Wang, Y., Liu, Z., Han, F., Chen, S., & Zhou, W. (2023). Integrated application of phosphorus-accumulating bacteria and phosphorus-solubilizing bacteria to achieve sustainable phosphorus management in saline soils. Science of The Total Environment, 885, 163971. https://doi.org/10.1016/J.SCITOTENV.2023.163971Licker, R., Johnston, M., Foley, J. A., Barford, C., Kucharik, C. J., Monfreda, C., & Ramankutty, N. (2010). Mind the gap: How do climate and agricultural management explain the “yield gap” of croplands around the world? Global Ecology and Biogeography, 19(6), 769–782. https://doi.org/10.1111/j.1466-8238.2010.00563.xMachaca, M. L. (2017). Bacterias solubilizadoras de fosfato del género Bacillus en suelos de la provincia de El Collao (Puno) y su efecto en la germinación y crecimiento de quinua. https://alicia.concytec.gob.pe/vufind/Record/RNAP_b63d597c3fe9f55a697194a713ea52dfMamta, Rahi, P., Pathania, V., Gulati, A., Singh, B., Bhanwra, R. K., & Tewari, R. (2010). Stimulatory effect of phosphate-solubilizing bacteria on plant growth, stevioside and rebaudioside-A contents of Stevia rebaudiana Bertoni. Applied Soil Ecology, 46(2), 222–229. https://doi.org/10.1016/j.apsoil.2010.08.008Marques, A. P. G. C., Pires, C., Moreira, H., Rangel, A. O. S. S., & Castro, P. M. L. (2010). Assessment of the plant growth promotion abilities of six bacterial isolates using Zea mays as indicator plant. Soil Biology and Biochemistry, 42(8), 1229–1235. https://doi.org/10.1016/j.soilbio.2010.04.014Marschner, P., Yang, C. H., Lieberei, R., & Crowley, D. E. (2001). Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biology and Biochemistry, 33(11), 1437–1445. https://doi.org/10.1016/S0038-0717(01)00052-9Martínez-Viveros, O., Jorquera, M. A., Crowley, D. E., Gajardo, G., & Mora, M. L. (2010). Mechanisms and practical considerations involved in plant growth promotion by Rhizobacteria. Journal of Soil Science and Plant Nutrition, 10(3), 293–319. https://doi.org/10.4067/S0718-95162010000100006Matias, S. R., Pagano, M. C., Muzzi, F. C., Oliveira, C. A., Carneiro, A. A., Horta, S. N., & Scotti, M. R. (2009). Effect of rhizobia, mycorrhizal fungi and phosphate-solubilizing microorganisms in the rhizosphere of native plants used to recover an iron ore area in Brazil. European Journal of Soil Biology, 45(3), 259–266. https://doi.org/10.1016/j.ejsobi.2009.02.003Palacio-Rodríguez, R., Nava-Reyes, B., Sánchez-Galván, H., Quezada-Rivera, J. J., & Sáenz-Mata, J. (2022). Efecto de la inoculación de rizobacterias promotoras del crecimiento vegetal de tomate en condiciones de casa sombra comercial. Revista Mexicana de Ciencias Agrícolas, 13(28), 231–242. https://doi.org/10.29312/remexca.v13i28.3278Pathania, P., Bhatia, R., & Khatri, M. (2020). Cross-competence and affectivity of maize rhizosphere bacteria Bacillus sp. MT7 in tomato rhizosphere. Scientia Horticulturae, 272. https://doi.org/10.1016/j.scienta.2020.109480Pathania, P., Gulati, D., Setia, H., & Bhatia, R. (2023). Characterization and performance evaluation of plant growth promoting bacteria in tomato rhizosphere. South African Journal of Botany, 161, 388–394. https://doi.org/10.1016/j.sajb.2023.08.037Pérez, E., Sulbarán, M., Ball, M. M., & Yarzábal, L. A. (2007). Isolation and characterization of mineral phosphate-solubilizing bacteria naturally colonizing a limonitic crust in the south-eastern Venezuelan region. Soil Biology and Biochemistry, 39(11), 2905–2914. https://doi.org/10.1016/j.soilbio.2007.06.017Pérez, F. L. P., & Oviedo, Z. L. E. (2019). CARACTERIZACIÓN DE BACTERIAS NATIVAS CON POTENCIAL BIOFERTILIZANTE AISLADAS DE SUELOS DEL DEPARTAMENTO DE SUCRE. In Biotecnología aplicada al sector agropecuario en el departamento de Sucre. https://doi.org/10.21892/9789585547063.11Philippot, L., Raaijmakers, J. M., Lemanceau, P., & Van Der Putten, W. H. (2013). Going back to the roots: The microbial ecology of the rhizosphere. In Nature Reviews Microbiology (Vol. 11, Issue 11, pp. 789–799). https://doi.org/10.1038/nrmicro3109Poonguzhali, S., Madhaiyan, M., & Sa, T. (2007). Quorum-sensing signals produced by plant-growth promoting Burkholderia strains under in vitro and in planta conditions. Research in Microbiology, 158(3), 287–294. https://doi.org/10.1016/j.resmic.2006.11.013Reyes, I., Alvarez, L., El-Ayoubi, H., & Valery, A. (2008). Selección y evaluación de rizobacterias promotoras del crecimiento en pimentón y maíz. Bioagro, 20(1). http://ve.scielo.org/scielo.php?pid=S1316-33612008000100005&script=sci_arttextRyu, R. J., & Patten, C. L. (2008). Aromatic amino acid-dependent expression of indole-3-pyruvate decarboxylase is regulated by tyrr in Enterobacter cloacae UW5. Journal of Bacteriology, 190(21), 7200–7208. https://doi.org/10.1128/JB.00804-08Saravanakumar, D., Vijayakumar, C., Kumar, N., & Samiyappan, R. (2007). PGPR-induced defense responses in the tea plant against blister blight disease. Crop Protection, 26(4), 556–565. https://doi.org/10.1016/j.cropro.2006.05.007Sasse, J., Martinoia, E., & Northen, T. (2018). Feed Your Friends: Do Plant Exudates Shape the Root Microbiome? In Trends in Plant Science (Vol. 23, Issue 1, pp. 25–41). https://doi.org/10.1016/j.tplants.2017.09.003Schneijderberg, M., Cheng, X., Franken, C., de Hollander, M., van Velzen, R., Schmitz, L., Heinen, R., Geurts, R., van der Putten, W. H., Bezemer, T. M., & Bisseling, T. (2020). Quantitative comparison between the rhizosphere effect of Arabidopsis thaliana and co-occurring plant species with a longer life history. ISME Journal, 14(10), 2433–2448. https://doi.org/10.1038/s41396-020-0695-2Shang, X. chao, Zhang, M., Zhang, Y., Hou, X., & Yang, L. (2023). Waste seaweed compost and rhizosphere bacteria Pseudomonas koreensis promote tomato seedlings growth by benefiting properties, enzyme activities and rhizosphere bacterial community in coastal saline soil of Yellow River Delta, China. Waste Management, 172, 33–42. https://doi.org/10.1016/j.wasman.2023.09.003Shilev, S. (2020). Plant-growth-promoting bacteria mitigating soil salinity stress in plants. In Applied Sciences (Switzerland) (Vol. 10, Issue 20, pp. 1–20). https://doi.org/10.3390/app10207326Singh, J. S., Pandey, V. C., & Singh, D. P. (2011). Efficient soil microorganisms: A new dimension for sustainable agriculture and environmental development. In Agriculture, Ecosystems and Environment (Vol. 140, Issues 3–4, pp. 339–353). https://doi.org/10.1016/j.agee.2011.01.017Solís, S., Contreras-Ramos, S. M., Bacame-Valenzuela, F. J., Reyes-Vidal, Y., González-Jasso, E., & Bustos, E. (2023). Comparison of the effects of biological and electrical stimulation on the growth of Zea mays. Electrochimica Acta, 448, 142193. https://doi.org/10.1016/j.electacta.2023.142193Spaepen, S., Vanderleyden, J., & Remans, R. (2007). Indole-3-acetic acid in microbial and microorganism-plant signaling. In FEMS Microbiology Reviews (Vol. 31, Issue 4, pp. 425–448). https://doi.org/10.1111/j.1574-6976.2007.00072.xSriwati, R., Maulidia, V., Intan, N., Oktarina, H., Syamsuddin, Khairan, K., Skala, L., & Mahmud, T. (2023). Endophytic bacteria as biological agents to control fusarium wilt disease and promote tomato plant growth. Physiological and Molecular Plant Pathology, 125, 101994. https://doi.org/10.1016/j.pmpp.2023.101994Sukumar, P., Legué, V., Vayssières, A., Martin, F., Tuskan, G. A., & Kalluri, U. C. (2013). Involvement of auxin pathways in modulating root architecture during beneficial plant-microorganism interactions. Plant, Cell and Environment, 36(5), 909–919. https://doi.org/10.1111/pce.12036Tejera-Hernández, B., Heydrich-Pérez, M., & Rojas-Badía, M. M. (2013). Aislamiento de Bacillus solubilizadores de fosfatos asociados al cultivo del arroz. Agronomía Mesoamericana, 24(2), 357. https://doi.org/10.15517/am.v24i2.12535Timmusk, S., Grantcharova, N., & Wagner, E. G. H. (2005). Paenibacillus polymyxa invades plant roots and forms biofilms. Applied and Environmental Microbiology, 71(11), 7292–7300. https://doi.org/10.1128/AEM.71.11.7292-7300.2005Trujillo, M. ., Pedraza, R., Abud, Y. ., & Ochoa, M. . (2013). Perspectivas del Empleo de Rizobacterias Como Agentes de Control Biológico en Cultivos de Importancia Económica. Revista Biológicas, 12(1), 65–71. https://www.redalyc.org/pdf/612/61224107.pdfVanlauwe, B., Bationo, A., Chianu, J., Giller, K. E., Merckx, R., Mokwunye, U., Ohiokpehai, O., Pypers, P., Tabo, R., Shepherd, K. D., Smaling, E. M. A., Woomer, P. L., & Sanginga, N. (2010). Integrated soil fertility management: Operational definition and consequences for implementation and dissemination. Outlook on Agriculture, 39(1), 17–24. https://doi.org/10.5367/000000010791169998Wang, Z. J., Li, X., Wang, J. H., Qi, S. S., Dai, Z. C., & Du, D. L. (2022). Effect of nitrogen-fixing bacteria on resource investment of the root system in an invasive clonal plant under low nutritional environment. Flora: Morphology, Distribution, Functional Ecology of Plants, 297, 152166. https://doi.org/10.1016/j.flora.2022.152166Wang, Z. J., Li, X., Wang, J. H., Qi, S. S., Dai, Z. C., & Du, D. L. (2022). Effect of nitrogen-fixing bacteria on resource investment of the root system in an invasive clonal plant under low nutritional environment. Flora: Morphology, Distribution, Functional Ecology of Plants, 297, 152166. https://doi.org/10.1016/j.flora.2022.152166Woodward, A., Botany, B. B.-A. of, & 2005, U. (2005). Auxin: regulation, action, and interaction. Academic.Oup.ComAW Woodward, B BartelAnnals of Botany, 2005•academic.Oup.Com. https://academic.oup.com/aob/article-abstract/95/5/707/201283Yepes, E. J. A. (2014). EFECTO DE LA INOCULACIÓN DE BACTERIAS NATIVAS SOBRE EL CRECIMIENTO Y DESARROLLO DE PLANTAS DE AJÍ (Capsicum annuum L.) EN CONDICIONES DE UMBRÁCULO. Universidad de Córdoba.Yuan, J., Zhang, N., Huang, Q., Raza, W., Li, R., Vivanco, J. M., & Shen, Q. (2015). Organic acids from root exudates of banana help root colonization of PGPR strain Bacillus amyloliquefaciens NJN-6. Scientific Reports, 5. https://doi.org/10.1038/srep13438Zhang, G., Shi, L., Liu, C., Huang, Z., Zheng, Y., & Dong, L. (2023). Rhizosphere effects on the microbial community: Specificity and conservatism across geographically disjunct Panax species. Applied Soil Ecology, 192, 105075. https://doi.org/10.1016/j.apsoil.2023.105075Zhu, U., Wang, S., Huang, Z., Zhang, S., Liao, Q., Zhang, C., Lin, T., Qin, M., Peng, M., Yang, C., Cao, X., Han, X., Wang, X., van der Knaap, E., Zhang, Z., Cui, X., Klee, H., Fernie, A. R., Luo, J., & Huang, S. (2018). Rewiring of the Fruit Metabolome in Tomato Breeding. Cell, 172(1–2), 249-261.e12. https://doi.org/10.1016/j.cell.2017.12.019BiofertilizanteBacterias solubilizadoras de fósforoBacterias fijadoras de NitrógenoÁcido Indol AcéticoBiofertilizerPhosphorus-solubilizing bacteriaNitrogen-fixing bacteriaIndole Acetic AcidPublicationORIGINALcarmonacamargojesus.pdfcarmonacamargojesus.pdfapplication/pdf1055757https://repositorio.unicordoba.edu.co/bitstreams/150fcff3-f34f-4000-ba8d-4a45e0b29cc0/download9e7c37dbf259696fb6146615e8c7bdf5MD51Formato de Autorización.pdfFormato de Autorización.pdfapplication/pdf539938https://repositorio.unicordoba.edu.co/bitstreams/dc11f29e-fd5a-40c1-9e03-f2093166f2bf/downloadcc626b0635aa8ffda19a19695809954fMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://repositorio.unicordoba.edu.co/bitstreams/837bbc99-32ae-46c8-bf71-c6e5a959cb9c/download73a5432e0b76442b22b026844140d683MD52TEXTcarmonacamargojesus.pdf.txtcarmonacamargojesus.pdf.txtExtracted texttext/plain100840https://repositorio.unicordoba.edu.co/bitstreams/ff92470a-695b-458f-88ad-89d37cd34f6f/downloadc34bb3e83fa11d775508a821abf74b6cMD54Formato de Autorización.pdf.txtFormato de Autorización.pdf.txtExtracted texttext/plain5838https://repositorio.unicordoba.edu.co/bitstreams/4cce41b4-52dc-439e-aa32-b66e6d726d08/download6344921220fac2f4a6c773d90df916dbMD56THUMBNAILcarmonacamargojesus.pdf.jpgcarmonacamargojesus.pdf.jpgGenerated Thumbnailimage/jpeg9029https://repositorio.unicordoba.edu.co/bitstreams/a986b33f-33c7-453d-a2fa-5a8e84d42d56/download043ff0baf13a3e565d27f5d622a72fd1MD55Formato de Autorización.pdf.jpgFormato de Autorización.pdf.jpgGenerated Thumbnailimage/jpeg14214https://repositorio.unicordoba.edu.co/bitstreams/84cc387a-401f-4491-bc43-254fc8bf52e8/download37d986cab7af000053578a33d945b669MD57ucordoba/8146oai:repositorio.unicordoba.edu.co:ucordoba/81462024-02-08 12:27:43.813https://creativecommons.org/licenses/by-nc-nd/4.0/Copyright Universidad de Córdoba, 2024open.accesshttps://repositorio.unicordoba.edu.coRepositorio Universidad de Córdobabdigital@metabiblioteca.comPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K |