Un estudio computacional sobre defectos en la heterobicapa AlN⁄grafeno

En esta investigación, se estudian los energéticos de la heterobicapa (4x4)AlN/(5x5)grafeno, con y sin defectos. La heterobicapa (4x4) AlN/(5x5) grafeno se modela, usando el esquema del slab periódico: una monocapa de (4x4) AlN, se acopla a una monocapa de (5×5)grafeno, las cuales presentan un misma...

Full description

Autores:
Corzo Valderrama, Giovanny
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2025
Institución:
Universidad de Córdoba
Repositorio:
Repositorio Institucional Unicórdoba
Idioma:
spa
OAI Identifier:
oai:repositorio.unicordoba.edu.co:ucordoba/9020
Acceso en línea:
https://repositorio.unicordoba.edu.co/handle/ucordoba/9020
https://repositorio.unicordoba.edu.co
Palabra clave:
Heterobicapa
AlN (Nitruro de Aluminio)
Defectos estructurales
Energía de enlace
Energía de formación
Trabajo de adhesión
Stacking
Monovacancias
Interacciones Van der Waals
Quantum Espresso
Pseudopotenciales
Corrección de Grimme
Heterobilayer
AlN (Aluminum Nitride)
Structural defects
binding energy
Formation energy
Adhesion work
Stacking
Single vacancies
Van der Waals interactions
Pseudopotentials
Grimme Correction
Rights
openAccess
License
Copyright Universidad de Córdoba, 2025
id UCORDOBA2_c7a33bae8442f59b3e3e157d5ffc54ab
oai_identifier_str oai:repositorio.unicordoba.edu.co:ucordoba/9020
network_acronym_str UCORDOBA2
network_name_str Repositorio Institucional Unicórdoba
repository_id_str
dc.title.none.fl_str_mv Un estudio computacional sobre defectos en la heterobicapa AlN⁄grafeno
title Un estudio computacional sobre defectos en la heterobicapa AlN⁄grafeno
spellingShingle Un estudio computacional sobre defectos en la heterobicapa AlN⁄grafeno
Heterobicapa
AlN (Nitruro de Aluminio)
Defectos estructurales
Energía de enlace
Energía de formación
Trabajo de adhesión
Stacking
Monovacancias
Interacciones Van der Waals
Quantum Espresso
Pseudopotenciales
Corrección de Grimme
Heterobilayer
AlN (Aluminum Nitride)
Structural defects
binding energy
Formation energy
Adhesion work
Stacking
Single vacancies
Van der Waals interactions
Pseudopotentials
Grimme Correction
title_short Un estudio computacional sobre defectos en la heterobicapa AlN⁄grafeno
title_full Un estudio computacional sobre defectos en la heterobicapa AlN⁄grafeno
title_fullStr Un estudio computacional sobre defectos en la heterobicapa AlN⁄grafeno
title_full_unstemmed Un estudio computacional sobre defectos en la heterobicapa AlN⁄grafeno
title_sort Un estudio computacional sobre defectos en la heterobicapa AlN⁄grafeno
dc.creator.fl_str_mv Corzo Valderrama, Giovanny
dc.contributor.advisor.none.fl_str_mv Casiano Jiménez, Gladyz Rocío
dc.contributor.author.none.fl_str_mv Corzo Valderrama, Giovanny
dc.contributor.jury.none.fl_str_mv Ortega Lopez, César
Alcalá Varilla, Luis Arturo
dc.subject.proposal.none.fl_str_mv Heterobicapa
AlN (Nitruro de Aluminio)
Defectos estructurales
Energía de enlace
Energía de formación
Trabajo de adhesión
Stacking
Monovacancias
Interacciones Van der Waals
Quantum Espresso
Pseudopotenciales
Corrección de Grimme
topic Heterobicapa
AlN (Nitruro de Aluminio)
Defectos estructurales
Energía de enlace
Energía de formación
Trabajo de adhesión
Stacking
Monovacancias
Interacciones Van der Waals
Quantum Espresso
Pseudopotenciales
Corrección de Grimme
Heterobilayer
AlN (Aluminum Nitride)
Structural defects
binding energy
Formation energy
Adhesion work
Stacking
Single vacancies
Van der Waals interactions
Pseudopotentials
Grimme Correction
dc.subject.keywords.none.fl_str_mv Heterobilayer
AlN (Aluminum Nitride)
Structural defects
binding energy
Formation energy
Adhesion work
Stacking
Single vacancies
Van der Waals interactions
Pseudopotentials
Grimme Correction
description En esta investigación, se estudian los energéticos de la heterobicapa (4x4)AlN/(5x5)grafeno, con y sin defectos. La heterobicapa (4x4) AlN/(5x5) grafeno se modela, usando el esquema del slab periódico: una monocapa de (4x4) AlN, se acopla a una monocapa de (5×5)grafeno, las cuales presentan un mismatch inferior al 1%. La monocapa (5×5) grafeno, solo se considera como el sustrato para la monocapa de (4x4) AlN hexagonal planar. Para incluir la periodicidad en el sistema heterobicapa, el slab contiene una región vacía lo suficientemente grande (≈20 Å) de modo que no se den interacciones entre el sistema heterobicapa y su imagen. Aquí, se prueban cuatro (4) stacking diferentes AA, AA', A^' B y A'B' de los cuales se escogen las configuraciones: AA y AA’, puesto que estos stacking poseen las energías de enlace más favorables, y corresponden a un átomo de nitrógeno o un átomo de aluminio justo en el centro de un hexágono de grafeno, respectivamente. Así mismo, hasta donde se conoce, las configuraciones AA y AA’ no se han reportado en la literatura científica. Se encuentra que los valores obtenidos para la energía de enlace, energías de formación, trabajo de adhesión , para las configuraciones AA y AA’ libres de defectos, son -19.13 , -16.69 , 19.13 y -46.42 meV/Å^2 , y -20.42 , -16.77 , 16.77 respectivamente. Asimismo, los valores obtenidos, para las configuraciones AA y AA’ con vacancia de aluminio, son -18.94 , -16.84 , 16.84 y -46.30 meV/Å^2 , y -19.54 , -17.40 , 17.40 respectivamente. Finalmente, los valores obtenidos para las configuraciones AA y AA’ con vacancia de Nitrógeno, son -25.40 , -27.49 , 27.49 y -56.95 meV/Å^2 , y -26.99 , -28.87 , 28.87 respectivamente.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-02-06T12:09:11Z
dc.date.available.none.fl_str_mv 2025-02-06T12:09:11Z
dc.date.issued.none.fl_str_mv 2025-02-05
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.none.fl_str_mv Text
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unicordoba.edu.co/handle/ucordoba/9020
dc.identifier.instname.none.fl_str_mv Universidad de Córdoba
dc.identifier.reponame.none.fl_str_mv Repositorio Institucional Unicórdoba
dc.identifier.repourl.none.fl_str_mv https://repositorio.unicordoba.edu.co
url https://repositorio.unicordoba.edu.co/handle/ucordoba/9020
https://repositorio.unicordoba.edu.co
identifier_str_mv Universidad de Córdoba
Repositorio Institucional Unicórdoba
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv [1] Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., & Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. Science, 306(5696), 666–669. https://doi.org/10.1126/science.1102896
[2] Pan, Y., Wang, Y., Ye, M., Quhe, R., Zhong, H., Song, Z., Peng, X., Yu, D., Yang, J., Shi, J., & Lu, J. (2016). Monolayer phosphorene–metal contacts. Chemistry of Materials, 28(6), 2100–2109. https://doi.org/10.1021/acs.chemmater.5b04899
[3] Demirci, S., Avazlı, N., Durgun, E., & Cahangirov, S. (2017). Structural and electronic properties of monolayer group III monochalcogenides. Physical Review B, 95(11), 115409. https://doi.org/10.1103/PhysRevB.95.115409
[4] Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N., & Strano, M. S. (2012). Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology, 7(11), 699–712. https://doi.org/10.1038/nnano.2012.193
[5] Duan, X., Wang, C., Pan, A., Yu, R., & Duan, X. (Año de publicación). Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: Opportunities and challenges. Volumen(Número), páginas. https://doi.org/[DOI
[6] Choi, W., Choudhary, N., Han, G. H., Park, J., Akinwande, D., & Lee, Y. H. (2017). Recent development of two-dimensional transition metal dichalcogenides and their applications. Materials Today, 20(3), 116–130. https://doi.org/10.1016/j.mattod.2016.10.002
[7] Gao, Z., Zhou, Z., & Tománek, D. (Año de publicación). Degenerately doped transition metal dichalcogenides as Ohmic homojunction contacts to transition metal dichalcogenide semiconductors. [Nombre de la revista], Volumen(Número), páginas. https://doi.org/[DOI]
[8] Gao, J., Xu, Z., Chen, S., Bharathi, M. S., & Zhang, Y.-W. (2018). Computational understanding of the growth of 2D materials. Advanced Theory and Simulations, 1(8), 1800085. https://doi.org/10.1002/adts.201800085
[9] Mannix, A. J., Zhang, Z., Guisinger, N. P., Yakobson, B. I., & Hersam, M. C. (2018). Borophene as a prototype for synthetic 2D materials development. Nature Nanotechnology, 13(6), 444–450. https://doi.org/10.1038/s41565-018-0157-4
[10] Liu, X., Zhang, Z., Luo, Z., Lv, B., & Ding, Z. (2019). Tunable electronic properties of graphene/g-AlN heterostructure: The effect of vacancy and strain engineering. Nanomaterials, 9(12), 1674. https://doi.org/10.3390/nano9121674
[11] Diaz, H. C., Avila, J., Chen, C., Addou, R., Asensio, M. C., & Batzill, M. (2015). Direct observation of interlayer hybridization and Dirac relativistic carriers in graphene/MoS₂ van der Waals heterostructures. ACS Nano, 9(1), 1086–1091. https://doi.org/10.1021/nn505980q
[12] Casiano-Jiménez, G., Ortega-López, C., Rodríguez-Martínez, J. A., Moreno-Armenta, M. G., & Espitia-Rico, M. J. (2022). Electronic structure of graphene on the hexagonal boron nitride surface: A density functional theory study. Coatings, 12(2), 237. https://doi.org/10.3390/coatings12020237
[13] Neupane, H. K., & Adhikari, N. P. (2021). Effect of vacancy defects in 2D vdW graphene/h-BN heterostructure: First-principles study. AIP Advances, 11(8), 085218. https://doi.org/10.1063/5.0059814
[14] Deng, Z., & Wang, X. (2019). Strain engineering on the electronic states of two-dimensional GaN/graphene heterostructure. RSC Advances, 9(45), 26052–26060. https://doi.org/10.1039/C9RA05164K
[15] Deng, Z., Wang, X., & Cui, J. (2019). Effect of interfacial defects on the electronic properties of graphene/g-GaN heterostructures. RSC Advances, 9(24), 13702–13709. https://doi.org/10.1039/C9RA01947H
[16] Liu, X., Zhang, Z., Lv, B., Ding, Z., & Luo, Z. (2020). The external electric field-induced tunability of the Schottky barrier height in graphene/AlN interface: A study by first-principles. Nanomaterials, 10(9), 1794. https://doi.org/10.3390/nano10091794
[17] Chung, K., Lee, C.-H., & Yi, G.-C. (2010). Transferable GaN layers grown on ZnO-coated graphene layers for optoelectronic devices. Science, 330(6004), 655–657. https://doi.org/10.1126/science.1195403
[18] Schulz, H., & Thiemann, K. H. (1977). Crystal structure refinement of AlN and GaN. Solid State Communications, 23(4), 493-496. https://doi.org/10.1016/0038-1098(77)90959-0
[19] Beshkova, M., & Yakimova, R. (2020). Properties and potential applications of two-dimensional AlN. Vacuum, 176, 109231. https://doi.org/10.1016/j.vacuum.2020.109231
[20] Tsipas, P., Kassavetis, S., Tsoutsou, D., Xenogiannopoulou, E., Golias, E., Giamini, S. A., Grazianetti, C., Chiappe, D., Molle, A., Fanciulli, M., & Dimoulas, A. (2013). Evidence for graphite-like hexagonal AlN nanosheets epitaxially grown on single crystal Ag(111). Applied Physics Letters, 103(25), 251605. https://doi.org/10.1063/1.4851239
[21] Kim, D.-H., Min, S.-J., Oh, J.-M., & Koo, S.-M. (2020). Fabrication and characterization of oxygenated AlN/4H-SiC heterojunction diodes. Materials, 13(19), 4335. https://doi.org/10.3390/ma13194335
[22] Portail, M., Frayssinet, E., Michon, A., Rennesson, S., Semond, F., Courville, A., Zielinski, M., Comyn, R., Nguyen, L., Cordier, Y., & Vennéguès, P. (2022). CVD elaboration of 3C-SiC on AlN/Si heterostructures: Structural trends and evolution during growth. Crystals, 12(11), 1605. https://doi.org/10.3390/cryst12111605
[23] Suemitsu, M., & Fukidome, H. (2010). Epitaxial graphene on silicon substrates. Journal of Physics D: Applied Physics, 43(37), 374012. https://doi.org/10.1088/0022-3727/43/37/374012
[24] Liu, X., Zhang, Z., Lv, B., Ding, Z., & Luo, Z. (2020). The external electric field-induced tunability of the Schottky barrier height in graphene/AlN interface: A study by first-principles. Nanomaterials, 10(9), 1794. https://doi.org/10.3390/nano10091794
[25] Max Born; J. Robert Oppenheimer (1927). "Zur Quantentheorie der Molekeln" [On the Quantum Theory of Molecules]. Annalen der Physik (in German). 389 (20): 457– 484. Bibcode:1927AnP...389..457B. doi:10.1002/andp.19273892002.
[26] Hamann, D., Schluter, M., & Chiang, C. (1979). Norm-Conserving Pseudopotentials. Phys. Rev. Lett., 43, 1494–1497.
[27] 2Hartree, D. R. (1928). "The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods". Mathematical Proceedings of the Cambridge Philosophical Society. Cambridge University Press (CUP). 24 (1): 89– 110. Bibcode:1928PCPS...24...89H. doi:10.1017/s0305004100011919. ISSN 0305- 0041. S2CID 122077124
[28] Laasonen K. Car, R. et al. Implementation of ultrasoft pseudopotentials in ab initio molecular dynamics. Phys. Rev. B 43:6796, 1991.
[29] Slater, J. C. (1928). "The Self Consistent Field and the Structure of Atoms". Phys. Rev. 32 (3): 339–348. Bibcode:1928PhRv...32..339S. doi:10.1103/PhysRev.32.339
[30] Slater, J. C. (1930). "Note on Hartree's Method". Phys. Rev. 35 (2): 210–211. Bibcode:1930PhRv...35..210S. doi:10.1103/PhysRev.35.210.2
[31] Lieb, E.H. and Simon, B.: The Thomas-Fermi theory of atoms, molecules and solids, Adv. In Math 23 (1977), 22-116.
[32] Hohenberg, P.; Kohn, W. (1964). "Inhomogeneous Electron Gas". Physical Review. 136 (3B): B864. Bibcode:1964PhRv..136..864H. doi:10.1103/PhysRev.136.B864.
[33] Kohn, W.; Sham, L. J. (1965). "Self-Consistent Equations Including Exchange and Correlation Effects". Physical Review. 140 (4A): A1133.
[34] Perdew, J., & Zunger, A. (1981). Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B, 23, 5048–5079.
[35] Perdew, J.P., Burke, K. and Ernzerhof, M. (1996) Generalized Gradient Approximation Made Simple. Physical Review Letter, 77, 3865-3868. http://dx.doi.org/10.1103/PhysRevLett.77.3865
[36] Ortega, C. Rodríguez, J. (2009) Adsorción de átomos de Ru sobre la superficie (0001)GaN y superredes hexagonales (0001)GaN/RuN.
[37] Vanderbilt, D. (1990). Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B, 41, 7892–7895.
[38] Laasonen K., Pasquarello, A., et al. Car-Parrinello molecular dynamics with Vanderbilt ultrasoft pseudopotentials. Phys. Rev. B 47:10142, 1993.
[39] Fiolhais, C., Nogueira, F., & Marques, M. A. L. (2003). A primer in density functional theory. Lecture Notes in Physics, 620.
[40] Martin, R. M. (2004). Electronic Structure: Basic Theory and Practical Methods.
[41] Helgaker, T., Jorgensen, P., & Olsen, J. (2000). Molecular Electronic-Structure Theory.
[42] Szabo, A., & Ostlund, N. S. (1982). Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory.
[43] Grimme, Stefan. (2011). Density functional theory with London dispersion correction. Wiley Interdisciplinary Reviews: Computational Molecular Science. 1. 211 - 228. 10.1002/wcms.30.
[44] Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem. 2006 Nov 30;27(15):1787-99. doi: 10.1002/jcc.20495. PMID: 16955487.
[45] G. Henkelman, A. Arnaldsson, and H. Jónsson, A fast and robust algorithm for Bader decomposition of charge density, Comput. Mater. Sci. 36 254-360 (2006).
[46] Bader, R. F. W. (1985). The Atoms in Molecules Approach to the Theory of Chemical Reactivity. Accounts of Chemical Research, 18(1), 9–15.
[47] Tang, W., & Sanville, E. (2011). Using Bader analysis to understand chemical bonding in light-element materials. Journal of Physics: Condensed Matter, 23(2), 022201.
[48] Espinosa, E., Molins, E., & Lecomte, C. (1998). Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chemical Physics Letters, 285(3–4), 170–173.
[49] Johnson, E. R., Keinan, S., Mori-Sánchez, P., Contreras-García, J., Cohen, A. J., & Yang, W. (2010). Revealing noncovalent interactions. Journal of the American Chemical Society, 132(18), 6498–6506.
[50] Garrity, K. F., Bennett, J. W., Rabe, K. M., & Vanderbilt, D. (2014). Pseudopotentials for high-throughput DFT calculations. Computational Materials Science, 81, 446–452. https://doi.org/10.1016/j.commatsci.2013.08.053
[51] Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77(18), 3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865
[52] Grimme, S. (2006). Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Journal of Computational Chemistry, 27(15), 1787–1799. https://doi.org/10.1002/jcc.20495
[53] Bai, Y., Deng, K., & Kan, E. (2015). Electronic and magnetic properties of an AlN monolayer doped with first-row elements: A first-principles study. RSC Advances, 5(25), 19273–19278. https://doi.org/10.1039/c4ra13522a
[54] Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6(3), 183–191. https://doi.org/10.1038/nmat1849
[55] Liu, X., Zhang, Z., Luo, Z., Lv, B., & Ding, Z. (2019). Tunable electronic properties of graphene/g-AlN heterostructure: The effect of vacancy and strain engineering. Nanomaterials, 9(12), 1674. https://doi.org/10.3390/nano9121674
[56] Liu, X., Zhang, Z., Lv, B., Ding, Z., & Luo, Z. (2020). The external electric field-induced tunability of the Schottky barrier height in graphene/AlN interface: A study by first-principles. Nanomaterials, 10(9), 1794. https://doi.org/10.3390/nano10091794
[57] Fan, Y., Ma, X., Liu, X., Wang, J., Ai, H., & Zhao, M. (2018). Theoretical design of an InSe/GaTe vdW heterobilayer: A potential visible-light photocatalyst for water splitting. The Journal of Physical Chemistry C, 122(49), 28283–28290. https://doi.org/10.1021/acs.jpcc.8b07692
[58] Ferdous, N., Islam, M. S., Park, J., & Hashimoto, A. (2019). Tunable electronic properties in stanene and two-dimensional silicon-carbide heterobilayer: A first-principles investigation. AIP Advances, 9(2), 025120. https://doi.org/10.1063/1.5066029
[59] Peng, Q., Wang, Z., Sa, B., Wu, B., & Sun, Z. (2016). Electronic structures and enhanced optical properties of blue phosphorene/transition metal dichalcogenides van der Waals heterostructures. Scientific Reports, 6, Article 31994. https://doi.org/10.1038/srep31994
[60] Casiano Jiménez, G., Morinson-Negrete, J. D., Peniche Blanquicett, F., Ortega-López, C., & Espitia-Rico, M. J. (2022). Effects of mono-vacancies and co-vacancies of nitrogen and boron on the energetics and electronic properties of heterobilayer h-BN/graphene. Materials, 15(18), 6369. https://doi.org/10.3390/ma15186369
dc.rights.none.fl_str_mv Copyright Universidad de Córdoba, 2025
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.license.none.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Copyright Universidad de Córdoba, 2025
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de Córdoba
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias Básicas
dc.publisher.place.none.fl_str_mv Montería, Córdoba, Colombia
dc.publisher.program.none.fl_str_mv Física
publisher.none.fl_str_mv Universidad de Córdoba
institution Universidad de Córdoba
bitstream.url.fl_str_mv https://repositorio.unicordoba.edu.co/bitstreams/bb0801c5-f84b-437f-a11b-e87679a77ecd/download
https://repositorio.unicordoba.edu.co/bitstreams/32394878-0dda-4002-9433-95a23f95c6b9/download
https://repositorio.unicordoba.edu.co/bitstreams/ea3595a5-82b3-4d8d-8f57-f77d47c49cfc/download
https://repositorio.unicordoba.edu.co/bitstreams/b957badd-d6ee-4e8e-a3bf-7d7227ed96cc/download
https://repositorio.unicordoba.edu.co/bitstreams/0eb26787-17e5-456e-9865-6da77f4b56af/download
https://repositorio.unicordoba.edu.co/bitstreams/c77784c7-56a2-4e35-8df3-964ad339d4bf/download
https://repositorio.unicordoba.edu.co/bitstreams/62cadebc-e6f0-479a-abb8-7de5f6e463f4/download
bitstream.checksum.fl_str_mv c9dbc6343ab76d23287f318cf087d725
96ec3f880441972074ea0ac7ded00c9d
73a5432e0b76442b22b026844140d683
758bfd7d1613f04128ba98fec6b79b03
091f758a6ec5436cc7661935c93aa4df
ad5d06b920d222028fdce2457c3ff97c
28c59b3f5d4e7fcde0195a0f2ea40e13
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de Córdoba
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1839636109590528000
spelling Casiano Jiménez, Gladyz Rocío597e5502-e41d-48d1-b211-ddc085758609-1Corzo Valderrama, Giovanny3de7fb00-128a-40df-9ee3-29c1e629a76b-1Ortega Lopez, César326e5843-fd0b-4bad-9439-246a9ce34a5a-1Alcalá Varilla, Luis Arturof4bfafd8-e6a5-4959-ae92-47927d2e2508-12025-02-06T12:09:11Z2025-02-06T12:09:11Z2025-02-05https://repositorio.unicordoba.edu.co/handle/ucordoba/9020Universidad de CórdobaRepositorio Institucional Unicórdobahttps://repositorio.unicordoba.edu.coEn esta investigación, se estudian los energéticos de la heterobicapa (4x4)AlN/(5x5)grafeno, con y sin defectos. La heterobicapa (4x4) AlN/(5x5) grafeno se modela, usando el esquema del slab periódico: una monocapa de (4x4) AlN, se acopla a una monocapa de (5×5)grafeno, las cuales presentan un mismatch inferior al 1%. La monocapa (5×5) grafeno, solo se considera como el sustrato para la monocapa de (4x4) AlN hexagonal planar. Para incluir la periodicidad en el sistema heterobicapa, el slab contiene una región vacía lo suficientemente grande (≈20 Å) de modo que no se den interacciones entre el sistema heterobicapa y su imagen. Aquí, se prueban cuatro (4) stacking diferentes AA, AA', A^' B y A'B' de los cuales se escogen las configuraciones: AA y AA’, puesto que estos stacking poseen las energías de enlace más favorables, y corresponden a un átomo de nitrógeno o un átomo de aluminio justo en el centro de un hexágono de grafeno, respectivamente. Así mismo, hasta donde se conoce, las configuraciones AA y AA’ no se han reportado en la literatura científica. Se encuentra que los valores obtenidos para la energía de enlace, energías de formación, trabajo de adhesión , para las configuraciones AA y AA’ libres de defectos, son -19.13 , -16.69 , 19.13 y -46.42 meV/Å^2 , y -20.42 , -16.77 , 16.77 respectivamente. Asimismo, los valores obtenidos, para las configuraciones AA y AA’ con vacancia de aluminio, son -18.94 , -16.84 , 16.84 y -46.30 meV/Å^2 , y -19.54 , -17.40 , 17.40 respectivamente. Finalmente, los valores obtenidos para las configuraciones AA y AA’ con vacancia de Nitrógeno, son -25.40 , -27.49 , 27.49 y -56.95 meV/Å^2 , y -26.99 , -28.87 , 28.87 respectivamente.1. Introducción2. Marco teórico2.1 El problema de la estructura de la materia2.2 Aproximación adiabática (Born-Oppenheimer)2.3 Enfoques químicos2. 4 Teoría Funcional de la Densidad (DFT)2.5 Aproximación densidad local (LDA)2.6 Aproximación gradiente generalizado (GGA)2.7 La aproximación del pseudopotencial2.7.1 Pseudopotenciales que conservan la norma2.7.2 Pseudopotenciales ultrasuaves2.8 Conjuntos base2.8.1. Conjuntos de Base de Ondas Planas (Plane-Wave Basis Sets)2.8.2. Conjuntos de Base de Funciones de Bloch2.8.3. Conjuntos de Base de Funciones Gaussianas2.8.4. Conjuntos de Base de Funciones Atómicas2.9 Dispersión2.9.1 Corrección D2/D3 de Grimme2.10 Carga Bader3. Detalles computacionales4. Resultados y análisis4.1 Construcción de la heterobicapa/Apilamientos (stacking) o configuraciones/Propiedades estructurales de las configuraciones escogidas.4.2 Energéticos en la heterobicapa (4x4) AlN/(5x5) grafeno, con y sin defectos4.3 Energía de Formación4.4 Energía de Enlace4.5 Trabajo de Adhesión5. Conclusiones6. ReferenciasPregradoFísico(a)Artículoapplication/pdfspaUniversidad de CórdobaFacultad de Ciencias BásicasMontería, Córdoba, ColombiaFísicaCopyright Universidad de Córdoba, 2025https://creativecommons.org/licenses/by-nc-nd/4.0/Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Un estudio computacional sobre defectos en la heterobicapa AlN⁄grafenoTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/acceptedVersionText[1] Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., & Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. Science, 306(5696), 666–669. https://doi.org/10.1126/science.1102896[2] Pan, Y., Wang, Y., Ye, M., Quhe, R., Zhong, H., Song, Z., Peng, X., Yu, D., Yang, J., Shi, J., & Lu, J. (2016). Monolayer phosphorene–metal contacts. Chemistry of Materials, 28(6), 2100–2109. https://doi.org/10.1021/acs.chemmater.5b04899[3] Demirci, S., Avazlı, N., Durgun, E., & Cahangirov, S. (2017). Structural and electronic properties of monolayer group III monochalcogenides. Physical Review B, 95(11), 115409. https://doi.org/10.1103/PhysRevB.95.115409[4] Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N., & Strano, M. S. (2012). Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology, 7(11), 699–712. https://doi.org/10.1038/nnano.2012.193[5] Duan, X., Wang, C., Pan, A., Yu, R., & Duan, X. (Año de publicación). Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: Opportunities and challenges. Volumen(Número), páginas. https://doi.org/[DOI[6] Choi, W., Choudhary, N., Han, G. H., Park, J., Akinwande, D., & Lee, Y. H. (2017). Recent development of two-dimensional transition metal dichalcogenides and their applications. Materials Today, 20(3), 116–130. https://doi.org/10.1016/j.mattod.2016.10.002[7] Gao, Z., Zhou, Z., & Tománek, D. (Año de publicación). Degenerately doped transition metal dichalcogenides as Ohmic homojunction contacts to transition metal dichalcogenide semiconductors. [Nombre de la revista], Volumen(Número), páginas. https://doi.org/[DOI][8] Gao, J., Xu, Z., Chen, S., Bharathi, M. S., & Zhang, Y.-W. (2018). Computational understanding of the growth of 2D materials. Advanced Theory and Simulations, 1(8), 1800085. https://doi.org/10.1002/adts.201800085[9] Mannix, A. J., Zhang, Z., Guisinger, N. P., Yakobson, B. I., & Hersam, M. C. (2018). Borophene as a prototype for synthetic 2D materials development. Nature Nanotechnology, 13(6), 444–450. https://doi.org/10.1038/s41565-018-0157-4[10] Liu, X., Zhang, Z., Luo, Z., Lv, B., & Ding, Z. (2019). Tunable electronic properties of graphene/g-AlN heterostructure: The effect of vacancy and strain engineering. Nanomaterials, 9(12), 1674. https://doi.org/10.3390/nano9121674[11] Diaz, H. C., Avila, J., Chen, C., Addou, R., Asensio, M. C., & Batzill, M. (2015). Direct observation of interlayer hybridization and Dirac relativistic carriers in graphene/MoS₂ van der Waals heterostructures. ACS Nano, 9(1), 1086–1091. https://doi.org/10.1021/nn505980q[12] Casiano-Jiménez, G., Ortega-López, C., Rodríguez-Martínez, J. A., Moreno-Armenta, M. G., & Espitia-Rico, M. J. (2022). Electronic structure of graphene on the hexagonal boron nitride surface: A density functional theory study. Coatings, 12(2), 237. https://doi.org/10.3390/coatings12020237[13] Neupane, H. K., & Adhikari, N. P. (2021). Effect of vacancy defects in 2D vdW graphene/h-BN heterostructure: First-principles study. AIP Advances, 11(8), 085218. https://doi.org/10.1063/5.0059814[14] Deng, Z., & Wang, X. (2019). Strain engineering on the electronic states of two-dimensional GaN/graphene heterostructure. RSC Advances, 9(45), 26052–26060. https://doi.org/10.1039/C9RA05164K[15] Deng, Z., Wang, X., & Cui, J. (2019). Effect of interfacial defects on the electronic properties of graphene/g-GaN heterostructures. RSC Advances, 9(24), 13702–13709. https://doi.org/10.1039/C9RA01947H[16] Liu, X., Zhang, Z., Lv, B., Ding, Z., & Luo, Z. (2020). The external electric field-induced tunability of the Schottky barrier height in graphene/AlN interface: A study by first-principles. Nanomaterials, 10(9), 1794. https://doi.org/10.3390/nano10091794[17] Chung, K., Lee, C.-H., & Yi, G.-C. (2010). Transferable GaN layers grown on ZnO-coated graphene layers for optoelectronic devices. Science, 330(6004), 655–657. https://doi.org/10.1126/science.1195403[18] Schulz, H., & Thiemann, K. H. (1977). Crystal structure refinement of AlN and GaN. Solid State Communications, 23(4), 493-496. https://doi.org/10.1016/0038-1098(77)90959-0[19] Beshkova, M., & Yakimova, R. (2020). Properties and potential applications of two-dimensional AlN. Vacuum, 176, 109231. https://doi.org/10.1016/j.vacuum.2020.109231[20] Tsipas, P., Kassavetis, S., Tsoutsou, D., Xenogiannopoulou, E., Golias, E., Giamini, S. A., Grazianetti, C., Chiappe, D., Molle, A., Fanciulli, M., & Dimoulas, A. (2013). Evidence for graphite-like hexagonal AlN nanosheets epitaxially grown on single crystal Ag(111). Applied Physics Letters, 103(25), 251605. https://doi.org/10.1063/1.4851239[21] Kim, D.-H., Min, S.-J., Oh, J.-M., & Koo, S.-M. (2020). Fabrication and characterization of oxygenated AlN/4H-SiC heterojunction diodes. Materials, 13(19), 4335. https://doi.org/10.3390/ma13194335[22] Portail, M., Frayssinet, E., Michon, A., Rennesson, S., Semond, F., Courville, A., Zielinski, M., Comyn, R., Nguyen, L., Cordier, Y., & Vennéguès, P. (2022). CVD elaboration of 3C-SiC on AlN/Si heterostructures: Structural trends and evolution during growth. Crystals, 12(11), 1605. https://doi.org/10.3390/cryst12111605[23] Suemitsu, M., & Fukidome, H. (2010). Epitaxial graphene on silicon substrates. Journal of Physics D: Applied Physics, 43(37), 374012. https://doi.org/10.1088/0022-3727/43/37/374012[24] Liu, X., Zhang, Z., Lv, B., Ding, Z., & Luo, Z. (2020). The external electric field-induced tunability of the Schottky barrier height in graphene/AlN interface: A study by first-principles. Nanomaterials, 10(9), 1794. https://doi.org/10.3390/nano10091794[25] Max Born; J. Robert Oppenheimer (1927). "Zur Quantentheorie der Molekeln" [On the Quantum Theory of Molecules]. Annalen der Physik (in German). 389 (20): 457– 484. Bibcode:1927AnP...389..457B. doi:10.1002/andp.19273892002.[26] Hamann, D., Schluter, M., & Chiang, C. (1979). Norm-Conserving Pseudopotentials. Phys. Rev. Lett., 43, 1494–1497.[27] 2Hartree, D. R. (1928). "The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods". Mathematical Proceedings of the Cambridge Philosophical Society. Cambridge University Press (CUP). 24 (1): 89– 110. Bibcode:1928PCPS...24...89H. doi:10.1017/s0305004100011919. ISSN 0305- 0041. S2CID 122077124[28] Laasonen K. Car, R. et al. Implementation of ultrasoft pseudopotentials in ab initio molecular dynamics. Phys. Rev. B 43:6796, 1991.[29] Slater, J. C. (1928). "The Self Consistent Field and the Structure of Atoms". Phys. Rev. 32 (3): 339–348. Bibcode:1928PhRv...32..339S. doi:10.1103/PhysRev.32.339[30] Slater, J. C. (1930). "Note on Hartree's Method". Phys. Rev. 35 (2): 210–211. Bibcode:1930PhRv...35..210S. doi:10.1103/PhysRev.35.210.2[31] Lieb, E.H. and Simon, B.: The Thomas-Fermi theory of atoms, molecules and solids, Adv. In Math 23 (1977), 22-116.[32] Hohenberg, P.; Kohn, W. (1964). "Inhomogeneous Electron Gas". Physical Review. 136 (3B): B864. Bibcode:1964PhRv..136..864H. doi:10.1103/PhysRev.136.B864.[33] Kohn, W.; Sham, L. J. (1965). "Self-Consistent Equations Including Exchange and Correlation Effects". Physical Review. 140 (4A): A1133.[34] Perdew, J., & Zunger, A. (1981). Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B, 23, 5048–5079.[35] Perdew, J.P., Burke, K. and Ernzerhof, M. (1996) Generalized Gradient Approximation Made Simple. Physical Review Letter, 77, 3865-3868. http://dx.doi.org/10.1103/PhysRevLett.77.3865[36] Ortega, C. Rodríguez, J. (2009) Adsorción de átomos de Ru sobre la superficie (0001)GaN y superredes hexagonales (0001)GaN/RuN.[37] Vanderbilt, D. (1990). Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B, 41, 7892–7895.[38] Laasonen K., Pasquarello, A., et al. Car-Parrinello molecular dynamics with Vanderbilt ultrasoft pseudopotentials. Phys. Rev. B 47:10142, 1993.[39] Fiolhais, C., Nogueira, F., & Marques, M. A. L. (2003). A primer in density functional theory. Lecture Notes in Physics, 620.[40] Martin, R. M. (2004). Electronic Structure: Basic Theory and Practical Methods.[41] Helgaker, T., Jorgensen, P., & Olsen, J. (2000). Molecular Electronic-Structure Theory.[42] Szabo, A., & Ostlund, N. S. (1982). Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory.[43] Grimme, Stefan. (2011). Density functional theory with London dispersion correction. Wiley Interdisciplinary Reviews: Computational Molecular Science. 1. 211 - 228. 10.1002/wcms.30.[44] Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem. 2006 Nov 30;27(15):1787-99. doi: 10.1002/jcc.20495. PMID: 16955487.[45] G. Henkelman, A. Arnaldsson, and H. Jónsson, A fast and robust algorithm for Bader decomposition of charge density, Comput. Mater. Sci. 36 254-360 (2006).[46] Bader, R. F. W. (1985). The Atoms in Molecules Approach to the Theory of Chemical Reactivity. Accounts of Chemical Research, 18(1), 9–15.[47] Tang, W., & Sanville, E. (2011). Using Bader analysis to understand chemical bonding in light-element materials. Journal of Physics: Condensed Matter, 23(2), 022201.[48] Espinosa, E., Molins, E., & Lecomte, C. (1998). Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chemical Physics Letters, 285(3–4), 170–173.[49] Johnson, E. R., Keinan, S., Mori-Sánchez, P., Contreras-García, J., Cohen, A. J., & Yang, W. (2010). Revealing noncovalent interactions. Journal of the American Chemical Society, 132(18), 6498–6506.[50] Garrity, K. F., Bennett, J. W., Rabe, K. M., & Vanderbilt, D. (2014). Pseudopotentials for high-throughput DFT calculations. Computational Materials Science, 81, 446–452. https://doi.org/10.1016/j.commatsci.2013.08.053[51] Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77(18), 3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865[52] Grimme, S. (2006). Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Journal of Computational Chemistry, 27(15), 1787–1799. https://doi.org/10.1002/jcc.20495[53] Bai, Y., Deng, K., & Kan, E. (2015). Electronic and magnetic properties of an AlN monolayer doped with first-row elements: A first-principles study. RSC Advances, 5(25), 19273–19278. https://doi.org/10.1039/c4ra13522a[54] Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6(3), 183–191. https://doi.org/10.1038/nmat1849[55] Liu, X., Zhang, Z., Luo, Z., Lv, B., & Ding, Z. (2019). Tunable electronic properties of graphene/g-AlN heterostructure: The effect of vacancy and strain engineering. Nanomaterials, 9(12), 1674. https://doi.org/10.3390/nano9121674[56] Liu, X., Zhang, Z., Lv, B., Ding, Z., & Luo, Z. (2020). The external electric field-induced tunability of the Schottky barrier height in graphene/AlN interface: A study by first-principles. Nanomaterials, 10(9), 1794. https://doi.org/10.3390/nano10091794[57] Fan, Y., Ma, X., Liu, X., Wang, J., Ai, H., & Zhao, M. (2018). Theoretical design of an InSe/GaTe vdW heterobilayer: A potential visible-light photocatalyst for water splitting. The Journal of Physical Chemistry C, 122(49), 28283–28290. https://doi.org/10.1021/acs.jpcc.8b07692[58] Ferdous, N., Islam, M. S., Park, J., & Hashimoto, A. (2019). Tunable electronic properties in stanene and two-dimensional silicon-carbide heterobilayer: A first-principles investigation. AIP Advances, 9(2), 025120. https://doi.org/10.1063/1.5066029[59] Peng, Q., Wang, Z., Sa, B., Wu, B., & Sun, Z. (2016). Electronic structures and enhanced optical properties of blue phosphorene/transition metal dichalcogenides van der Waals heterostructures. Scientific Reports, 6, Article 31994. https://doi.org/10.1038/srep31994[60] Casiano Jiménez, G., Morinson-Negrete, J. D., Peniche Blanquicett, F., Ortega-López, C., & Espitia-Rico, M. J. (2022). Effects of mono-vacancies and co-vacancies of nitrogen and boron on the energetics and electronic properties of heterobilayer h-BN/graphene. Materials, 15(18), 6369. https://doi.org/10.3390/ma15186369HeterobicapaAlN (Nitruro de Aluminio)Defectos estructuralesEnergía de enlaceEnergía de formaciónTrabajo de adhesiónStackingMonovacanciasInteracciones Van der WaalsQuantum EspressoPseudopotencialesCorrección de GrimmeHeterobilayerAlN (Aluminum Nitride)Structural defectsbinding energyFormation energyAdhesion workStackingSingle vacanciesVan der Waals interactionsPseudopotentialsGrimme CorrectionPublicationORIGINALCorzo Valderrama, Giovanny.pdfCorzo Valderrama, Giovanny.pdfapplication/pdf1176474https://repositorio.unicordoba.edu.co/bitstreams/bb0801c5-f84b-437f-a11b-e87679a77ecd/downloadc9dbc6343ab76d23287f318cf087d725MD51Formato de autorización.pdfFormato de autorización.pdfapplication/pdf454501https://repositorio.unicordoba.edu.co/bitstreams/32394878-0dda-4002-9433-95a23f95c6b9/download96ec3f880441972074ea0ac7ded00c9dMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://repositorio.unicordoba.edu.co/bitstreams/ea3595a5-82b3-4d8d-8f57-f77d47c49cfc/download73a5432e0b76442b22b026844140d683MD53TEXTCorzo Valderrama, Giovanny.pdf.txtCorzo Valderrama, Giovanny.pdf.txtExtracted texttext/plain83427https://repositorio.unicordoba.edu.co/bitstreams/b957badd-d6ee-4e8e-a3bf-7d7227ed96cc/download758bfd7d1613f04128ba98fec6b79b03MD54Formato de autorización.pdf.txtFormato de autorización.pdf.txtExtracted texttext/plain5675https://repositorio.unicordoba.edu.co/bitstreams/0eb26787-17e5-456e-9865-6da77f4b56af/download091f758a6ec5436cc7661935c93aa4dfMD56THUMBNAILCorzo Valderrama, Giovanny.pdf.jpgCorzo Valderrama, Giovanny.pdf.jpgGenerated Thumbnailimage/jpeg8072https://repositorio.unicordoba.edu.co/bitstreams/c77784c7-56a2-4e35-8df3-964ad339d4bf/downloadad5d06b920d222028fdce2457c3ff97cMD55Formato de autorización.pdf.jpgFormato de autorización.pdf.jpgGenerated Thumbnailimage/jpeg14148https://repositorio.unicordoba.edu.co/bitstreams/62cadebc-e6f0-479a-abb8-7de5f6e463f4/download28c59b3f5d4e7fcde0195a0f2ea40e13MD57ucordoba/9020oai:repositorio.unicordoba.edu.co:ucordoba/90202025-02-07 03:00:52.461https://creativecommons.org/licenses/by-nc-nd/4.0/Copyright Universidad de Córdoba, 2025open.accesshttps://repositorio.unicordoba.edu.coRepositorio Universidad de Córdobabdigital@metabiblioteca.comPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K