Determinación del número mínimo de animales al comparar las medias de tratamiento mediante análisis de potencia

Autores:
Altay, Yasin
Koskan, Ozgur
Koknaroglu, Hayati
Tipo de recurso:
Article of journal
Fecha de publicación:
2022
Institución:
Universidad de Córdoba
Repositorio:
Repositorio Institucional Unicórdoba
Idioma:
spa
OAI Identifier:
oai:repositorio.unicordoba.edu.co:ucordoba/6216
Acceso en línea:
https://repositorio.unicordoba.edu.co/handle/ucordoba/6216
https://doi.org/10.21897/rmvz.2572
Palabra clave:
Effect size
minimum number of animals
sample size
power analysis
simulation
Tamaño del efecto
Número mínimo de animales
Tamaño de la muestra
Análisis de potencia
simulación
Rights
openAccess
License
Yasin Altay, Ozgur Koskan, Hayati Koknaroglu - 2022
id UCORDOBA2_badb4856e39dd896135fcfda0b5ec52f
oai_identifier_str oai:repositorio.unicordoba.edu.co:ucordoba/6216
network_acronym_str UCORDOBA2
network_name_str Repositorio Institucional Unicórdoba
repository_id_str
dc.title.spa.fl_str_mv Determinación del número mínimo de animales al comparar las medias de tratamiento mediante análisis de potencia
dc.title.translated.eng.fl_str_mv Determination of minimum number of animals in comparing treatment means by power analysis
title Determinación del número mínimo de animales al comparar las medias de tratamiento mediante análisis de potencia
spellingShingle Determinación del número mínimo de animales al comparar las medias de tratamiento mediante análisis de potencia
Effect size
minimum number of animals
sample size
power analysis
simulation
Tamaño del efecto
Número mínimo de animales
Tamaño de la muestra
Análisis de potencia
simulación
title_short Determinación del número mínimo de animales al comparar las medias de tratamiento mediante análisis de potencia
title_full Determinación del número mínimo de animales al comparar las medias de tratamiento mediante análisis de potencia
title_fullStr Determinación del número mínimo de animales al comparar las medias de tratamiento mediante análisis de potencia
title_full_unstemmed Determinación del número mínimo de animales al comparar las medias de tratamiento mediante análisis de potencia
title_sort Determinación del número mínimo de animales al comparar las medias de tratamiento mediante análisis de potencia
dc.creator.fl_str_mv Altay, Yasin
Koskan, Ozgur
Koknaroglu, Hayati
dc.contributor.author.spa.fl_str_mv Altay, Yasin
Koskan, Ozgur
Koknaroglu, Hayati
dc.subject.eng.fl_str_mv Effect size
minimum number of animals
sample size
power analysis
simulation
topic Effect size
minimum number of animals
sample size
power analysis
simulation
Tamaño del efecto
Número mínimo de animales
Tamaño de la muestra
Análisis de potencia
simulación
dc.subject.spa.fl_str_mv Tamaño del efecto
Número mínimo de animales
Tamaño de la muestra
Análisis de potencia
simulación
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-07-31 22:38:42
2022-08-01T09:36:32Z
dc.date.available.none.fl_str_mv 2022-07-31 22:38:42
2022-08-01T09:36:32Z
dc.date.issued.none.fl_str_mv 2022-07-31
dc.type.spa.fl_str_mv Artículo de revista
dc.type.eng.fl_str_mv Journal article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_6501
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ARTREF
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 0122-0268
dc.identifier.uri.none.fl_str_mv https://repositorio.unicordoba.edu.co/handle/ucordoba/6216
dc.identifier.doi.none.fl_str_mv 10.21897/rmvz.2572
dc.identifier.url.none.fl_str_mv https://doi.org/10.21897/rmvz.2572
dc.identifier.eissn.none.fl_str_mv 1909-0544
identifier_str_mv 0122-0268
10.21897/rmvz.2572
1909-0544
url https://repositorio.unicordoba.edu.co/handle/ucordoba/6216
https://doi.org/10.21897/rmvz.2572
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Akobeng AK. Understanding type I and type II errors, statistical power and sample size. Acta Paediatrica. 2016; 105(6):605-609. https://doi.org/10.1111/apa.13384
Greenland S, Senn SJ, Rothman KJ, Carlin JB, Poole, C, Goodman SN, Altman DG. Statistical tests, P values, confidence intervals, and power: a guide to misinterpretations. Eur J Epidemiol. 2016; 31(4):337-350. https://doi.org/10.1007/s10654-016-0149-3
Cohen J. Statistical power analysis: Current Directions in Psychological Science 1992; 1(3):98-101. https://doi.org/10.1111/1467-8721.ep10768783
Wilcox RR. ANOVA: A paradigm for low power and misleading measures of effect size?. Rev Educ Res. 1995; 65(1):51-77. https://doi.org/10.3102/00346543065001051
Kelley K, Rausch, JR. Sample size planning for the standardized mean difference: Accuracy in parameter estimation via narrow confidence intervals. Psychol Methods. 2006; 11(4):363–385. https://doi.org/10.1037/1082-989X.11.4.363
Houle TT, Penzien DB, Houle CK. Statistical power and sample size estimation for headache research: An overview and power calculation tools. Headache. 2005; 45(5):414-418. https://doi.org/10.1111/j.1526-4610.2005.05092.x
Mascha EJ, Vetter TR. Significance, errors, power, and sample size: the blocking and tackling of statistics. Anesth Analg. 2018; 126(2):691-698. https://doi.org/10.1213/ANE.0000000000002741
Aslan E, Koşkan Ö, Altay Y. Determination of the Sample Size on Different Independent K Group Comparisons by Power Analysis. Turk Tarim Arast Derg. 2021; 8(1):34-41. https://doi.org/10.19159/tutad.792694
Szucs D, Ioannidis JP. Sample size evolution in neuroimaging research: An evaluation of highly-cited studies (1990–2012) and of latest practices (2017–2018) in high-impact journals. NeuroImage. 2020; 221:117-164. https://doi.org/10.1016/j.neuroimage.2020.117164
Murphy KR. Myors B. Statistical power analysis: A simple and general model for traditional and modern hypothesis tests. Second Edition (2rd ed.). Mahwah, New Jersey, USA: Lawrence Erlbaum Associates Publishers; 2004.
Lane SP, Hennes EP. Power struggles: Estimating sample size for multilevel relationships research. J Soc Pers Relat. 2018; 35(1):7-31. https://doi.org/10.1177/0265407517710342
Peterman RM. Statistical power analysis can improve fisheries research and management. Can J Fish Aquat Sci. 1990; 47(1):2–15. https://doi.org/10.1139/f90-001
Fairweather PG. Statistical power and design requirements for environmental monitoring. Mar Freshw Res. 1991; 42(5):555–567. https://doi.org/10.1071/MF9910555
Muller KE, Benignus VA. Increasing scientific power with statistical power. Neurotoxicol Teratol. 1992; 14(3):211–219. https://doi.org/10.1016/0892-0362(92)90019-7
Taylor BL, Gerrodette T. The uses of statistical power in conservation biology: the vaquita and northern spotted owl. Conserv Biol Ser. 1993; 7(3):489–500. https://doi.org/10.1046/j.1523-1739.1993.07030489.x
Searcy-Bernal R. Statistical power and aquacultural research. Aquaculture. 1994; 127(4):371–388. https://doi.org/10.1016/0044-8486(94)90239-9
Thomas L, Juanes F. The importance of statistical power analysis: an example from animal behaviour. Anim. Behav. 1996; 52(4):856–859. https://doi.org/10.1006/anbe.1996.0232
Thomas L, Retrospective power analysis. Conservation Biology. Conservation Biology. 1997; 11(1):276-280. https://www.jstor.org/stable/2387304
Pinu FR, Beale DJ, Paten AM, Kouremenos K, Swarup S, Schirra HJ, Wishart D. Systems biology and multi-omics integration: viewpoints from the metabolomics research community. Metabolites. 2019; 9(4):76. https://doi.org/10.3390/metabo9040076
Hoenig JM, Heisey DM. The abuse of power: the pervasive fallacy of power calculations for data analysis. Am Stat. 2001; 55(1):19-24. https://doi.org/10.1198/000313001300339897
Faul F, Erdfelder E, Lang AG, Buchner AG. Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007; 39(2):175-191. https://doi.org/10.3758/BF03193146
La Rosa PS, Brooks JP, Deych E, Boone EL, Edwards DJ, Wang Q, Sodergren E, Weinstock G, Shannon WD. Hypothesis testing and power calculations for taxonomic-based human microbiome data. PloS One. 2012; 7(12):e52078. https://doi.org/10.1371/journal.pone.0052078
Fanelli D. Do pressures to publish increase scientists’ bias? An empirical support from US States Data. PloS One. 2010; 5(4):e10271. https://doi.org/10.1371/journal.pone.0010271
Abt G, Boreham C, Davison G, Jackson R, Nevill A, Wallacea E, Williamsa M. Power, precision, and sample size estimation in sport and exercise science research. J Sports Sci. 2020; 38(17):1993-1935. https://10.1080/02640414.2020.1776002
Lewis KP. Statistical power, sample sizes, and the software to calculate them easily. BioScience. 2006; 56(7):607-612. https://doi.org/10.1641/0006-3568(2006)56[607:SPSSAT]2.0.CO;2
Zar JH. Biostatistical Analysis: Pearson New International Edition. New Jersey, NJ, USA: Pearson Higher Edition; 2013.
Hartley HO. The maximum F-ratio as a short-cut test for heterogeneity of variance. Biometrika. 1950; 37(3/4):308-312. https://doi.org/10.2307/2332383
Pearson ES, Hartley HO. Charts of the power function for analysis of variance tests, derived from the non-central F-distribution. Biometrika. 1951; 38(1/2):112-130. https://doi.org/10.2307/2332321
Başpınar E. Gürbüz F, The power of the test in comparing samples of different sample sizes taken from binary combinations of Normal, Beta, Gamma (Chi-square) and Weibull distributions. J Agric Sci. 2000; 6(1):116-127. https://doi.org/10.1501/Tarimbil_0000000940
Lenth RV. Statistical power calculations. J Anim Sci. 2007; 85(13):24-29. https://doi.org/10.2527/jas.2006-449
Başpınar E, Type I error and power of the test obtained by applying Student’s t, Welch and sorted t-tests on two samples of different sample sizes taken from normal populations with different variance ratios. J Anim Sci. 2001; 7(1):151-157. https://doi.org/10.1501/Tarimbil_0000000271
Koşkan Ö, Gürbüz F. Resampling approach and power of t-test and comparison of type I error. J Anim Prod. 2008; 49(1):29-37. https://dergipark.org.tr/en/pub/hayuretim/issue/7617/99817
Kalaycioğlu O, Akhanli SE. The importance and main principles of power analysis in health research: Application examples on medical case studies. Turk J Public Health. 2020;. 18(1):103-112. https://doi.org/10.20518/tjph.602400
Mewhort, DJ, A comparison of the randomization test with the F test when error is skewed. Behav Res Methods. 2005; 37(3):426-435. https://doi.org/10.3758/BF03192711
dc.relation.bitstream.none.fl_str_mv https://revistamvz.unicordoba.edu.co/article/download/2572/4026
https://revistamvz.unicordoba.edu.co/article/download/2572/4027
https://revistamvz.unicordoba.edu.co/article/download/2572/4028
https://revistamvz.unicordoba.edu.co/article/download/2572/4029
dc.relation.citationedition.spa.fl_str_mv Núm. 2 , Año 2022 : Revista MVZ Córdoba Volumen 27(2) Mayo-Agosto 2022
dc.relation.citationendpage.none.fl_str_mv e2572
dc.relation.citationissue.spa.fl_str_mv 2
dc.relation.citationstartpage.none.fl_str_mv e2572
dc.relation.citationvolume.spa.fl_str_mv 27
dc.relation.ispartofjournal.spa.fl_str_mv Revista MVZ Córdoba
dc.rights.spa.fl_str_mv Yasin Altay, Ozgur Koskan, Hayati Koknaroglu - 2022
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Yasin Altay, Ozgur Koskan, Hayati Koknaroglu - 2022
https://creativecommons.org/licenses/by-nc-sa/4.0
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
application/pdf
audio/mpeg
audio/mpeg
dc.publisher.spa.fl_str_mv Universidad de Córdoba
dc.source.spa.fl_str_mv https://revistamvz.unicordoba.edu.co/article/view/2572
institution Universidad de Córdoba
bitstream.url.fl_str_mv https://repositorio.unicordoba.edu.co/bitstreams/dc1cc32b-a0e4-4d62-a0c8-4bbfffdc41c2/download
bitstream.checksum.fl_str_mv 8a50faeb77a827ac80373b98bf9df832
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Universidad de Córdoba
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1839636121173098496
spelling Altay, Yasinfdf0dba9-5b14-417e-9e08-455030a7a89d-1Koskan, Ozgurfc2071d9-9b42-4350-8e91-ac2b01f002d9-1Koknaroglu, Hayati030cc5a8-b392-4675-9ae4-2a89b64a9f8b-12022-07-31 22:38:422022-08-01T09:36:32Z2022-07-31 22:38:422022-08-01T09:36:32Z2022-07-310122-0268https://repositorio.unicordoba.edu.co/handle/ucordoba/621610.21897/rmvz.2572https://doi.org/10.21897/rmvz.25721909-0544application/pdfapplication/pdfaudio/mpegaudio/mpegspaUniversidad de CórdobaYasin Altay, Ozgur Koskan, Hayati Koknaroglu - 2022https://creativecommons.org/licenses/by-nc-sa/4.0info:eu-repo/semantics/openAccessEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.http://purl.org/coar/access_right/c_abf2https://revistamvz.unicordoba.edu.co/article/view/2572Effect sizeminimum number of animalssample sizepower analysissimulationTamaño del efectoNúmero mínimo de animalesTamaño de la muestraAnálisis de potenciasimulaciónDeterminación del número mínimo de animales al comparar las medias de tratamiento mediante análisis de potenciaDetermination of minimum number of animals in comparing treatment means by power analysisArtículo de revistaJournal articleinfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/publishedVersionTexthttp://purl.org/redcol/resource_type/ARTREFhttp://purl.org/coar/version/c_970fb48d4fbd8a85Akobeng AK. Understanding type I and type II errors, statistical power and sample size. Acta Paediatrica. 2016; 105(6):605-609. https://doi.org/10.1111/apa.13384Greenland S, Senn SJ, Rothman KJ, Carlin JB, Poole, C, Goodman SN, Altman DG. Statistical tests, P values, confidence intervals, and power: a guide to misinterpretations. Eur J Epidemiol. 2016; 31(4):337-350. https://doi.org/10.1007/s10654-016-0149-3Cohen J. Statistical power analysis: Current Directions in Psychological Science 1992; 1(3):98-101. https://doi.org/10.1111/1467-8721.ep10768783Wilcox RR. ANOVA: A paradigm for low power and misleading measures of effect size?. Rev Educ Res. 1995; 65(1):51-77. https://doi.org/10.3102/00346543065001051Kelley K, Rausch, JR. Sample size planning for the standardized mean difference: Accuracy in parameter estimation via narrow confidence intervals. Psychol Methods. 2006; 11(4):363–385. https://doi.org/10.1037/1082-989X.11.4.363Houle TT, Penzien DB, Houle CK. Statistical power and sample size estimation for headache research: An overview and power calculation tools. Headache. 2005; 45(5):414-418. https://doi.org/10.1111/j.1526-4610.2005.05092.xMascha EJ, Vetter TR. Significance, errors, power, and sample size: the blocking and tackling of statistics. Anesth Analg. 2018; 126(2):691-698. https://doi.org/10.1213/ANE.0000000000002741Aslan E, Koşkan Ö, Altay Y. Determination of the Sample Size on Different Independent K Group Comparisons by Power Analysis. Turk Tarim Arast Derg. 2021; 8(1):34-41. https://doi.org/10.19159/tutad.792694Szucs D, Ioannidis JP. Sample size evolution in neuroimaging research: An evaluation of highly-cited studies (1990–2012) and of latest practices (2017–2018) in high-impact journals. NeuroImage. 2020; 221:117-164. https://doi.org/10.1016/j.neuroimage.2020.117164Murphy KR. Myors B. Statistical power analysis: A simple and general model for traditional and modern hypothesis tests. Second Edition (2rd ed.). Mahwah, New Jersey, USA: Lawrence Erlbaum Associates Publishers; 2004.Lane SP, Hennes EP. Power struggles: Estimating sample size for multilevel relationships research. J Soc Pers Relat. 2018; 35(1):7-31. https://doi.org/10.1177/0265407517710342Peterman RM. Statistical power analysis can improve fisheries research and management. Can J Fish Aquat Sci. 1990; 47(1):2–15. https://doi.org/10.1139/f90-001Fairweather PG. Statistical power and design requirements for environmental monitoring. Mar Freshw Res. 1991; 42(5):555–567. https://doi.org/10.1071/MF9910555Muller KE, Benignus VA. Increasing scientific power with statistical power. Neurotoxicol Teratol. 1992; 14(3):211–219. https://doi.org/10.1016/0892-0362(92)90019-7Taylor BL, Gerrodette T. The uses of statistical power in conservation biology: the vaquita and northern spotted owl. Conserv Biol Ser. 1993; 7(3):489–500. https://doi.org/10.1046/j.1523-1739.1993.07030489.xSearcy-Bernal R. Statistical power and aquacultural research. Aquaculture. 1994; 127(4):371–388. https://doi.org/10.1016/0044-8486(94)90239-9Thomas L, Juanes F. The importance of statistical power analysis: an example from animal behaviour. Anim. Behav. 1996; 52(4):856–859. https://doi.org/10.1006/anbe.1996.0232Thomas L, Retrospective power analysis. Conservation Biology. Conservation Biology. 1997; 11(1):276-280. https://www.jstor.org/stable/2387304Pinu FR, Beale DJ, Paten AM, Kouremenos K, Swarup S, Schirra HJ, Wishart D. Systems biology and multi-omics integration: viewpoints from the metabolomics research community. Metabolites. 2019; 9(4):76. https://doi.org/10.3390/metabo9040076Hoenig JM, Heisey DM. The abuse of power: the pervasive fallacy of power calculations for data analysis. Am Stat. 2001; 55(1):19-24. https://doi.org/10.1198/000313001300339897Faul F, Erdfelder E, Lang AG, Buchner AG. Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007; 39(2):175-191. https://doi.org/10.3758/BF03193146La Rosa PS, Brooks JP, Deych E, Boone EL, Edwards DJ, Wang Q, Sodergren E, Weinstock G, Shannon WD. Hypothesis testing and power calculations for taxonomic-based human microbiome data. PloS One. 2012; 7(12):e52078. https://doi.org/10.1371/journal.pone.0052078Fanelli D. Do pressures to publish increase scientists’ bias? An empirical support from US States Data. PloS One. 2010; 5(4):e10271. https://doi.org/10.1371/journal.pone.0010271Abt G, Boreham C, Davison G, Jackson R, Nevill A, Wallacea E, Williamsa M. Power, precision, and sample size estimation in sport and exercise science research. J Sports Sci. 2020; 38(17):1993-1935. https://10.1080/02640414.2020.1776002Lewis KP. Statistical power, sample sizes, and the software to calculate them easily. BioScience. 2006; 56(7):607-612. https://doi.org/10.1641/0006-3568(2006)56[607:SPSSAT]2.0.CO;2Zar JH. Biostatistical Analysis: Pearson New International Edition. New Jersey, NJ, USA: Pearson Higher Edition; 2013.Hartley HO. The maximum F-ratio as a short-cut test for heterogeneity of variance. Biometrika. 1950; 37(3/4):308-312. https://doi.org/10.2307/2332383Pearson ES, Hartley HO. Charts of the power function for analysis of variance tests, derived from the non-central F-distribution. Biometrika. 1951; 38(1/2):112-130. https://doi.org/10.2307/2332321Başpınar E. Gürbüz F, The power of the test in comparing samples of different sample sizes taken from binary combinations of Normal, Beta, Gamma (Chi-square) and Weibull distributions. J Agric Sci. 2000; 6(1):116-127. https://doi.org/10.1501/Tarimbil_0000000940Lenth RV. Statistical power calculations. J Anim Sci. 2007; 85(13):24-29. https://doi.org/10.2527/jas.2006-449Başpınar E, Type I error and power of the test obtained by applying Student’s t, Welch and sorted t-tests on two samples of different sample sizes taken from normal populations with different variance ratios. J Anim Sci. 2001; 7(1):151-157. https://doi.org/10.1501/Tarimbil_0000000271Koşkan Ö, Gürbüz F. Resampling approach and power of t-test and comparison of type I error. J Anim Prod. 2008; 49(1):29-37. https://dergipark.org.tr/en/pub/hayuretim/issue/7617/99817Kalaycioğlu O, Akhanli SE. The importance and main principles of power analysis in health research: Application examples on medical case studies. Turk J Public Health. 2020;. 18(1):103-112. https://doi.org/10.20518/tjph.602400Mewhort, DJ, A comparison of the randomization test with the F test when error is skewed. Behav Res Methods. 2005; 37(3):426-435. https://doi.org/10.3758/BF03192711https://revistamvz.unicordoba.edu.co/article/download/2572/4026https://revistamvz.unicordoba.edu.co/article/download/2572/4027https://revistamvz.unicordoba.edu.co/article/download/2572/4028https://revistamvz.unicordoba.edu.co/article/download/2572/4029Núm. 2 , Año 2022 : Revista MVZ Córdoba Volumen 27(2) Mayo-Agosto 2022e25722e257227Revista MVZ CórdobaPublicationOREORE.xmltext/xml3218https://repositorio.unicordoba.edu.co/bitstreams/dc1cc32b-a0e4-4d62-a0c8-4bbfffdc41c2/download8a50faeb77a827ac80373b98bf9df832MD51ucordoba/6216oai:repositorio.unicordoba.edu.co:ucordoba/62162023-10-06 00:46:24.881https://creativecommons.org/licenses/by-nc-sa/4.0Yasin Altay, Ozgur Koskan, Hayati Koknaroglu - 2022metadata.onlyhttps://repositorio.unicordoba.edu.coRepositorio Universidad de Córdobabdigital@metabiblioteca.com