Simulación numérica del proceso de pirólisis con efecto catalítico in situ del bagazo de caña de azúcar

La pirólisis catalítica de la biomasa lignocelulósica ha demostrado ser una propuesta viable para la producción de hidrocarburos líquidos y otros productos de gran utilidad. Este estudio presenta una simulación numérica del proceso de pirólisis catalítica in situ utilizando la biomasa de Bagazo de c...

Full description

Autores:
Espitia Páez, Isabela
Ortiz Pinto, Eidi María
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2025
Institución:
Universidad de Córdoba
Repositorio:
Repositorio Institucional Unicórdoba
Idioma:
spa
OAI Identifier:
oai:repositorio.unicordoba.edu.co:ucordoba/9042
Acceso en línea:
https://repositorio.unicordoba.edu.co/handle/ucordoba/9042
https://repositorio.unicordoba.edu.co
Palabra clave:
Biomasa lignocelulósica
Bagazo de caña de azúcar
Simulación numérica
Pirólisis catalítica
ZSM-5 catalizador
Lignocellulosic biomass
Sugarcane bagasse
Numerical simulation
Catalytic pyrolysis
ZSM-5 catalyst
Rights
openAccess
License
Copyright Universidad de Córdoba, 2025
id UCORDOBA2_93f585bb5c86db56b14399256973bc5e
oai_identifier_str oai:repositorio.unicordoba.edu.co:ucordoba/9042
network_acronym_str UCORDOBA2
network_name_str Repositorio Institucional Unicórdoba
repository_id_str
dc.title.spa.fl_str_mv Simulación numérica del proceso de pirólisis con efecto catalítico in situ del bagazo de caña de azúcar
title Simulación numérica del proceso de pirólisis con efecto catalítico in situ del bagazo de caña de azúcar
spellingShingle Simulación numérica del proceso de pirólisis con efecto catalítico in situ del bagazo de caña de azúcar
Biomasa lignocelulósica
Bagazo de caña de azúcar
Simulación numérica
Pirólisis catalítica
ZSM-5 catalizador
Lignocellulosic biomass
Sugarcane bagasse
Numerical simulation
Catalytic pyrolysis
ZSM-5 catalyst
title_short Simulación numérica del proceso de pirólisis con efecto catalítico in situ del bagazo de caña de azúcar
title_full Simulación numérica del proceso de pirólisis con efecto catalítico in situ del bagazo de caña de azúcar
title_fullStr Simulación numérica del proceso de pirólisis con efecto catalítico in situ del bagazo de caña de azúcar
title_full_unstemmed Simulación numérica del proceso de pirólisis con efecto catalítico in situ del bagazo de caña de azúcar
title_sort Simulación numérica del proceso de pirólisis con efecto catalítico in situ del bagazo de caña de azúcar
dc.creator.fl_str_mv Espitia Páez, Isabela
Ortiz Pinto, Eidi María
dc.contributor.advisor.none.fl_str_mv Rhenals Julio, Jesus David
Romero Luna, Carlos Manuel
dc.contributor.author.none.fl_str_mv Espitia Páez, Isabela
Ortiz Pinto, Eidi María
dc.contributor.jury.none.fl_str_mv Arango Meneses, Juan Fernando
Mendoza Fandiño, Jorge Mario
dc.subject.proposal.spa.fl_str_mv Biomasa lignocelulósica
Bagazo de caña de azúcar
Simulación numérica
Pirólisis catalítica
ZSM-5 catalizador
topic Biomasa lignocelulósica
Bagazo de caña de azúcar
Simulación numérica
Pirólisis catalítica
ZSM-5 catalizador
Lignocellulosic biomass
Sugarcane bagasse
Numerical simulation
Catalytic pyrolysis
ZSM-5 catalyst
dc.subject.keywords.eng.fl_str_mv Lignocellulosic biomass
Sugarcane bagasse
Numerical simulation
Catalytic pyrolysis
ZSM-5 catalyst
description La pirólisis catalítica de la biomasa lignocelulósica ha demostrado ser una propuesta viable para la producción de hidrocarburos líquidos y otros productos de gran utilidad. Este estudio presenta una simulación numérica del proceso de pirólisis catalítica in situ utilizando la biomasa de Bagazo de caña de azúcar y un tipo de zeolita mineral (ZSM-5) como catalizador. La simulación se llevó a cabo empleando el software DWSIM, por medio del cual fue posible analizar las propiedades del catalizador y modelar las respectivas reacciones químicas, la distribución de productos y la influencia del catalizador bajo condiciones controladas. El modelo implementado incorporó un conjunto de reacciones representativas para simular el efecto catalítico del ZSM-5. Para evaluar el rendimiento de la pirolisis se analiza la conversión de la biomasa lignocelulósica en los productos principales: gas, bio-carbón y bio-aceite. Los resultados de la simulación numérica muestran una mejora significativa en los rendimientos hacia gas y bio-aceite. Esto evidencia el potencial del ZSM-5 como catalizador en la pirólisis, dando como resultado un óptimo aprovechamiento del bagazo de caña de azúcar y mayores rendimientos en los productos finales. Esta investigación abre camino para futuros estudios de modelos numéricos avanzados con el fin de optimizar el proceso de pirolisis catalítica.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-02-07T16:31:52Z
dc.date.available.none.fl_str_mv 2025-02-07T16:31:52Z
dc.date.issued.none.fl_str_mv 2025-02-07
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.none.fl_str_mv Text
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unicordoba.edu.co/handle/ucordoba/9042
dc.identifier.instname.none.fl_str_mv Universidad de Córdoba
dc.identifier.reponame.none.fl_str_mv Repositorio Universidad de Córdoba
dc.identifier.repourl.none.fl_str_mv https://repositorio.unicordoba.edu.co
url https://repositorio.unicordoba.edu.co/handle/ucordoba/9042
https://repositorio.unicordoba.edu.co
identifier_str_mv Universidad de Córdoba
Repositorio Universidad de Córdoba
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv Afraz, M., Muhammad, F., Nisar, J., Shah, A., Munir, S., Ali, G., & Ahmad, A. (2024). Production of value added products from biomass waste by pyrolysis: An updated review. Waste Management Bulletin, 1(4), 30–40. https://doi.org/10.1016/j.wmb.2023.08.004
Agnihotri, N., & Mondal, M. K. (2023). Comparison of non-catalytic and in-situ catalytic pyrolysis of Melia azedarach sawdust. Journal of Analytical and Applied Pyrolysis, 172, 106006. https://doi.org/10.1016/J.JAAP.2023.106006
Bagri, R., & Williams, P. T. (2002). Catalytic pyrolysis of polyethylene. Journal of analytical and applied pyrolysis, 63(1), 29-41. https://www.sciencedirect.com/science/article/pii/S0165237001001395
Bakar, M. S. A., & Titiloye, J. O. (2013). Catalytic pyrolysis of rice husk for bio-oil production. Journal of analytical and applied pyrolysis, 103, 362-368. https://www.sciencedirect.com/science/article/pii/S0165237012001696
Balasundram, V., Ibrahim, N., Kasmani, R. M., Isha, R., Abd Hamid, M. K., & Hasbullah, H. (2017). Catalytic pyrolysis of sugarcane bagasse using molybdenum modified HZSM-5 zeolite. Energy Procedia, 142, 793–800. https://doi.org/10.1016/j.egypro.2017.12.128
Boxiong, S., Chunfei, W., Binbin, G., & Rui, W. (2007). Pyrolysis of waste tyres with zeolite USY and ZSM-5 catalysts. Applied Catalysis B: Environmental, 73(1-2), 150-157. https://www.sciencedirect.com/science/article/pii/S0926337306003298
Buyang, Y., Suprapto, S., Nugraha, R. E., Holilah, H., Bahruji, H., Hantoro, R., Jalil, A. A., Oetami, T. P., & Prasetyoko, D. (2023). Catalytic pyrolysis of Reutealis trisperma oil using raw dolomite for bio-oil production. Journal of Analytical and Applied Pyrolysis, 169, 105852. https://doi.org/10.1016/J.JAAP.2022.105852
Czajczyńska, D., Nannou, T., Anguilano, L., Krzyzyńska, R., Ghazal, H., Spencer, N., & Jouhara, H. (2017). Potentials of pyrolysis processes in the waste management sector. Energy Procedia, 123, 387–394. https://doi.org/10.1016/J.EGYPRO.2017.07.275
Dabros, T. M. H., Stummann, M. Z., Høj, M., Jensen, P. A., Grunwaldt, J. D., Gabrielsen, J., Mortensen, P. M., & Jensen, A. D. (2018). Transportation fuels from biomass fast pyrolysis, catalytic hydrodeoxygenation, and catalytic fast hydropyrolysis. Progress in Energy and Combustion Science, 68, 268–309. https://doi.org/10.1016/J.PECS.2018.05.002
Dahiya, S., Kumar, A. N., Shanthi Sravan, J., Chatterjee, S., Sarkar, O., & Mohan, S. V. (2018). Food waste biorefinery: Sustainable strategy for circular bioeconomy. Bioresource Technology, 248, 2–12. https://doi.org/10.1016/J.BIORTECH.2017.07.176
Du, S., Gamliel, D. P., Valla, J. A., & Bollas, G. M. (2016). The effect of ZSM-5 catalyst support in catalytic pyrolysis of biomass and compounds abundant in pyrolysis bio-oils. Journal of analytical and applied pyrolysis, 122, 7-12. https://www.sciencedirect.com/science/article/pii/S0165237016304181
Greish, A. A., Sokolovskiy, P. V., Finashina, E. D., Kustov, L. M., Vezentsev, A. I., Chien Nguyen, D., & Chau Nguyen, H. (2022). Efficient carbon adsorbent for hydrogen sulfide produced from sugar cane bagasse. Mendeleev Communications, 32(6), 828–830. https://doi.org/10.1016/J.MENCOM.2022.11.040
Han, D., Yang, X., Li, R., & Wu, Y. (2019). Environmental impact comparison of typical and resource-efficient biomass fast pyrolysis systems based on LCA and Aspen Plus simulation. Journal of Cleaner Production, 231, 254–267. https://doi.org/10.1016/J.JCLEPRO.2019.05.094
Hasan, M. M., Rasul, M. G., Jahirul, M. I., & Khan, M. M. K. (2022). Modeling and process simulation of waste macadamia nutshell pyrolysis using Aspen Plus software. Energy Reports, 8, 429–437. https://doi.org/10.1016/J.EGYR.2022.10.323
Hu, Z., Li, P., & Liu, Y. (2022, June 13). Enhancing the Performance of Evolutionary Algorithm by Differential Evolution for Optimizing Distillation Sequence. https://scite.ai/reports/10.3390/molecules27123802
Kim, E., Gil, H., Park, S., & Park, J. (2017). Bio-oil production from pyrolysis of waste sawdust with catalyst ZSM-5. Journal of Material Cycles and Waste Management, 19, 423-431. https://link.springer.com/article/10.1007/s10163-015-0438-z
Kopperi, H., & Venkata Mohan, S. (2023). Catalytic hydrothermal deoxygenation of sugarcane bagasse for energy dense bio-oil and aqueous fraction acidogenesis for biohydrogen production. Bioresource Technology, 379, 128954. https://doi.org/10.1016/J.BIORTECH.2023.128954
Kumar, J. A., Sathish, S., Prabu, D., Renita, A. A., Saravanan, A., Deivayanai, V. C., Anish, M., Jayaprabakar, J., Baigenzhenov, O., & Hosseini-Bandegharaei, A. (2023). Agricultural waste biomass for sustainable bioenergy production: Feedstock, characterization and pre-treatment methodologies. Chemosphere, 331, 138680. https://doi.org/10.1016/J.CHEMOSPHERE.2023.138680
Liu, R., Sarker, M., Rahman, M. M., Li, C., Chai, M., Nishu, Cotillon, R., & Scott, N. R. (2020). Multi-scale complexities of solid acid catalysts in the catalytic fast pyrolysis of biomass for bio-oil production – A review. Progress in Energy and Combustion Science, 80, 100852. https://doi.org/10.1016/J.PECS.2020.100852
Li, P., Wang, B., Hu, J., Zhang, Y., Chen, W., Chang, C., & Pang, S. (2023). Research on the kinetics of catalyst coke formation during biomass catalytic pyrolysis: A mini review. Journal of the Energy Institute, 110, 101315. https://doi.org/10.1016/J.JOEI.2023.101315
Liu, W., Song, M., Wang, X., Wang, C., & Zhang, C. (2023). Study on the synergistic effect between Ni and Me species over Ni-Me/HZSM-5 on the in-situ catalytic pyrolysis of alkali lignin. Applied Catalysis A: General, 663, 119270. https://doi.org/10.1016/J.APCATA.2023.119270
Liu, Y., Xue, L., Ma, J., Peng, C., Bai, F., Li, Y., & Zhao, J. (2023). Three-dimensional numerical simulation, energy efficiency and economic benefit estimation of oil shale in situ pyrolysis process. Geoenergy Science and Engineering, 227. https://doi.org/10.1016/j.geoen.2023.211804
Maleki, F., Changizian, M., Zolfaghari, N., Rajaei, S., Noghabi, K A., & Zahiri, H S. (2021, March 11). Consolidated Bioprocessing for Bioethanol Production by Metabolically Engineered Bacillus Subtilis Strains. https://scite.ai/reports/10.21203/rs.3.rs-297375/v1
Mendes, F. L., Ximenes, V. L., de Almeida, M. B., Azevedo, D. A., Tessarolo, N. S., & de Rezende Pinho, A. (2016). Catalytic pyrolysis of sugarcane bagasse and pinewood in a pilot scale unit. Journal of Analytical and Applied Pyrolysis, 122, 395-404. https://www.sciencedirect.com/science/article/pii/S0165237016301498
Nair, L. G., Agrawal, K., & Verma, P. (2022). An overview of sustainable approaches for bioenergy production from agro-industrial wastes. Energy Nexus, 6. https://doi.org/10.1016/j.nexus.2022.10008
Nations, U. (n.d.). Causes and Effects of Climate Change | United Nations. Retrieved September 25, 2023, from https://www.un.org/en/climatechange/science/causes-effects-climate-change
Ordonez-Loza, J., Chejne, F., Jameel, A. G. A., Telalovic, S., Arrieta, A. A., & Sarathy, S. M. (2021). An investigation into the pyrolysis and oxidation of bio-oil from sugarcane bagasse: Kinetics and evolved gases using TGA-FTIR. Journal of Environmental Chemical Engineering, 9(5). https://doi.org/10.1016/j.jece.2021.106144
Ramanathan, A., Begum, K. M. M. S., Pereira, A. O., & Cohen, C. (2022). Biomass pyrolysis system based on life cycle assessment and Aspen plus analysis and kinetic modeling. A Thermo-Economic Approach to Energy From Waste, 35–71. https://doi.org/10.1016/B978-0-12-824357-2.00006-1
Ranzi, E., Cuoci, A., Faravelli, T., Frassoldati, A., Migliavacca, G., Pierucci, S., & Sommariva, S. (2008). Chemical kinetics of biomass pyrolysis. Energy & Fuels, 22(6), 4292-4300. https://www.sciencedirect.com/science/article/pii/S0378382018300675
Shun, T. A. N., ZHANG, Z., Jianping, S. U. N., & Qingwen, W. A. N. G. (2013). Recent progress of catalytic pyrolysis of biomass by HZSM-5. Chinese Journal of Catalysis, 34(4), 641-650. https://www.sciencedirect.com/science/article/pii/S1872206712605312
Sultana, R., Banik, U., Nandy, P. K., Huda, M. N., & Ismail, M. (2023). Bio-oil production from rubber seed cake via pyrolysis: Process parameter optimization and physicochemical characterization. Energy Conversion and Management: X, 20, 100429. https://doi.org/10.1016/J.ECMX.2023.100429
Sun, C., Tan, H., & Zhang, Y. (2023). Simulating the pyrolysis interactions among hemicellulose, cellulose and lignin in wood waste under real conditions to find the proper way to prepare bio-oil. Renewable Energy, 205, 851–863. https://doi.org/10.1016/J.RENENE.2023.02.015
Toscano Miranda, N., Lopes Motta, I., Maciel Filho, R., & Wolf Maciel, M. R. (2021). Sugarcane bagasse pyrolysis: A review of operating conditions and products properties. In Renewable and Sustainable Energy Reviews (Vol. 149). Elsevier Ltd. https://doi.org/10.1016/j.rser.2021.111394
Vassilev, S. V., Vassileva, C. G., & Vassilev, V. S. (2015). Advantages and disadvantages of composition and properties of biomass in comparison with coal: An overview. Fuel, 158, 330-350. https://www.sciencedirect.com/science/article/pii/S0016236115005578
Venkata Mohan, S., Nikhil, G. N., Chiranjeevi, P., Nagendranatha Reddy, C., Rohit, M. V., Kumar, A. N., & Sarkar, O. (2016). Waste biorefinery models towards sustainable circular bioeconomy: Critical review and future perspectives. Bioresource Technology, 215, 2–12. https://doi.org/10.1016/J.BIORTECH.2016.03.130
Williams, P. T., & Brindle, A. J. (2002). Catalytic pyrolysis of tyres: influence of catalyst temperature. Fuel, 81(18), 2425-2434. https://www.sciencedirect.com/science/article/pii/S0016236102001965
Wu, Y., Gui, Q., Zhang, H., Li, H., Li, B., Liu, M., Chen, Y., Zhang, S., Yang, H., & Chen, H. (2023). Effect of biomass components’ interaction on the pyrolysis reaction kinetics and small-molecule product release characteristics. Journal of Analytical and Applied Pyrolysis, 173. https://doi.org/10.1016/j.jaap.2023.106039
Xu, J., Guo, Y., Gao, Y., Qian, K., Wang, Y., Li, N., Wang, Y., Ran, S., Hou, X., & Zhu, Y. (2023). Catalytic pyrolysis of cellulose and hemicellulose: Investigation on furans selectivity with different zeolite structures at microporous scale. Journal of Analytical and Applied Pyrolysis, 173, 106102. https://doi.org/10.1016/J.JAAP.2023.106102
Yilmaz, S., & Selim, H. (2013). A review on the methods for biomass to energy conversion systems design. Renewable and Sustainable Energy Reviews, 25, 420–430. https://doi.org/10.1016/J.RSER.2013.05.015
Zaidi, A. A., Khan, A., AlMohamadi, H., Anjum, M. W., Ali, I., Naqvi, S. R., Kokuryo, S., Miyake, K., & Nishiyama, N. (2023). Catalytic pyrolysis of rice husk over defect-rich beta zeolites for biofuel production. Fuel, 348. https://doi.org/10.1016/j.fuel.2023.128624
Zhang, S., Zhang, H., Liu, X., Zhu, S., Hu, L., & Zhang, Q. (2018). Upgrading of bio-oil from catalytic pyrolysis of pretreated rice husk over Fe-modified ZSM-5 zeolite catalyst. Fuel Processing Technology, 175, 17-25. https://www.sciencedirect.com/science/article/pii/S0378382018300675
Zhang, Y., Liang, Y., Li, S., Yuan, Y., Zhang, D., Wu, Y., Xie, H., Brindhadevi, K., Pugazhendhi, A., & Xia, C. (2023b). A review of biomass pyrolysis gas: Forming mechanisms, influencing parameters, and product application upgrades. Fuel, 347, 128461. https://doi.org/10.1016/J.FUEL.2023.128461
dc.rights.none.fl_str_mv Copyright Universidad de Córdoba, 2025
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.license.none.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Copyright Universidad de Córdoba, 2025
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de Córdoba
dc.publisher.faculty.none.fl_str_mv Facultad de Ingeniería
dc.publisher.place.none.fl_str_mv Montería, Córdoba, Colombia
dc.publisher.program.none.fl_str_mv Ingeniería Mecánica
publisher.none.fl_str_mv Universidad de Córdoba
institution Universidad de Córdoba
bitstream.url.fl_str_mv https://repositorio.unicordoba.edu.co/bitstreams/13e70e83-0be2-4eb5-9758-1543dc262323/download
https://repositorio.unicordoba.edu.co/bitstreams/54fb5aa7-a985-4539-ae32-f45cfd2e5ddc/download
https://repositorio.unicordoba.edu.co/bitstreams/124b9a01-9399-41ae-91cc-ee77197d0ad6/download
https://repositorio.unicordoba.edu.co/bitstreams/930b8ecc-9111-460f-8e5f-11c6099ecfb3/download
https://repositorio.unicordoba.edu.co/bitstreams/f5885cfb-0dc6-4967-8ac7-abb3df4f882d/download
https://repositorio.unicordoba.edu.co/bitstreams/b1647f97-2eac-4649-ba54-d3afab07e2e1/download
https://repositorio.unicordoba.edu.co/bitstreams/2a0ad33d-3c9a-4eb2-a93c-1a9599ce2371/download
bitstream.checksum.fl_str_mv 73a5432e0b76442b22b026844140d683
59f087f11bde0122025a2f5340dfb075
031ca2dc31b2bc5ef7f64ffed9a0464e
bad0f7c58cc2238887e4261262fcf82b
1345dc286e6441928f122ea0a776d6a6
a64488d42feb461ba69051a01968491b
6877bc5a76ebdeb86a3b137fc584fe8c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de Córdoba
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1839636035544285184
spelling Rhenals Julio, Jesus David79e6006e-034b-4078-8a43-a8703b43004b-1Romero Luna, Carlos Manuel810a0c53-77c4-492e-a296-f1b208727d35-1Espitia Páez, Isabelac32acb18-bc36-477b-9eb3-f99b7bd4e168-1Ortiz Pinto, Eidi María9618259c-9691-4c2c-a40a-abd03b293d7e-1Arango Meneses, Juan Fernando61225874-94fe-474b-b853-23bc266ef752-1Mendoza Fandiño, Jorge Mario4bd8539e-d1d9-4132-937f-71b8ffd05803-12025-02-07T16:31:52Z2025-02-07T16:31:52Z2025-02-07https://repositorio.unicordoba.edu.co/handle/ucordoba/9042Universidad de CórdobaRepositorio Universidad de Córdobahttps://repositorio.unicordoba.edu.coLa pirólisis catalítica de la biomasa lignocelulósica ha demostrado ser una propuesta viable para la producción de hidrocarburos líquidos y otros productos de gran utilidad. Este estudio presenta una simulación numérica del proceso de pirólisis catalítica in situ utilizando la biomasa de Bagazo de caña de azúcar y un tipo de zeolita mineral (ZSM-5) como catalizador. La simulación se llevó a cabo empleando el software DWSIM, por medio del cual fue posible analizar las propiedades del catalizador y modelar las respectivas reacciones químicas, la distribución de productos y la influencia del catalizador bajo condiciones controladas. El modelo implementado incorporó un conjunto de reacciones representativas para simular el efecto catalítico del ZSM-5. Para evaluar el rendimiento de la pirolisis se analiza la conversión de la biomasa lignocelulósica en los productos principales: gas, bio-carbón y bio-aceite. Los resultados de la simulación numérica muestran una mejora significativa en los rendimientos hacia gas y bio-aceite. Esto evidencia el potencial del ZSM-5 como catalizador en la pirólisis, dando como resultado un óptimo aprovechamiento del bagazo de caña de azúcar y mayores rendimientos en los productos finales. Esta investigación abre camino para futuros estudios de modelos numéricos avanzados con el fin de optimizar el proceso de pirolisis catalítica.PregradoIngeniero(a) Mecánico(a)Artículoapplication/pdfspaUniversidad de CórdobaFacultad de IngenieríaMontería, Córdoba, ColombiaIngeniería MecánicaCopyright Universidad de Córdoba, 2025https://creativecommons.org/licenses/by-nc-nd/4.0/Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Simulación numérica del proceso de pirólisis con efecto catalítico in situ del bagazo de caña de azúcarTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/acceptedVersionTextAfraz, M., Muhammad, F., Nisar, J., Shah, A., Munir, S., Ali, G., & Ahmad, A. (2024). Production of value added products from biomass waste by pyrolysis: An updated review. Waste Management Bulletin, 1(4), 30–40. https://doi.org/10.1016/j.wmb.2023.08.004Agnihotri, N., & Mondal, M. K. (2023). Comparison of non-catalytic and in-situ catalytic pyrolysis of Melia azedarach sawdust. Journal of Analytical and Applied Pyrolysis, 172, 106006. https://doi.org/10.1016/J.JAAP.2023.106006Bagri, R., & Williams, P. T. (2002). Catalytic pyrolysis of polyethylene. Journal of analytical and applied pyrolysis, 63(1), 29-41. https://www.sciencedirect.com/science/article/pii/S0165237001001395Bakar, M. S. A., & Titiloye, J. O. (2013). Catalytic pyrolysis of rice husk for bio-oil production. Journal of analytical and applied pyrolysis, 103, 362-368. https://www.sciencedirect.com/science/article/pii/S0165237012001696Balasundram, V., Ibrahim, N., Kasmani, R. M., Isha, R., Abd Hamid, M. K., & Hasbullah, H. (2017). Catalytic pyrolysis of sugarcane bagasse using molybdenum modified HZSM-5 zeolite. Energy Procedia, 142, 793–800. https://doi.org/10.1016/j.egypro.2017.12.128Boxiong, S., Chunfei, W., Binbin, G., & Rui, W. (2007). Pyrolysis of waste tyres with zeolite USY and ZSM-5 catalysts. Applied Catalysis B: Environmental, 73(1-2), 150-157. https://www.sciencedirect.com/science/article/pii/S0926337306003298Buyang, Y., Suprapto, S., Nugraha, R. E., Holilah, H., Bahruji, H., Hantoro, R., Jalil, A. A., Oetami, T. P., & Prasetyoko, D. (2023). Catalytic pyrolysis of Reutealis trisperma oil using raw dolomite for bio-oil production. Journal of Analytical and Applied Pyrolysis, 169, 105852. https://doi.org/10.1016/J.JAAP.2022.105852Czajczyńska, D., Nannou, T., Anguilano, L., Krzyzyńska, R., Ghazal, H., Spencer, N., & Jouhara, H. (2017). Potentials of pyrolysis processes in the waste management sector. Energy Procedia, 123, 387–394. https://doi.org/10.1016/J.EGYPRO.2017.07.275Dabros, T. M. H., Stummann, M. Z., Høj, M., Jensen, P. A., Grunwaldt, J. D., Gabrielsen, J., Mortensen, P. M., & Jensen, A. D. (2018). Transportation fuels from biomass fast pyrolysis, catalytic hydrodeoxygenation, and catalytic fast hydropyrolysis. Progress in Energy and Combustion Science, 68, 268–309. https://doi.org/10.1016/J.PECS.2018.05.002Dahiya, S., Kumar, A. N., Shanthi Sravan, J., Chatterjee, S., Sarkar, O., & Mohan, S. V. (2018). Food waste biorefinery: Sustainable strategy for circular bioeconomy. Bioresource Technology, 248, 2–12. https://doi.org/10.1016/J.BIORTECH.2017.07.176Du, S., Gamliel, D. P., Valla, J. A., & Bollas, G. M. (2016). The effect of ZSM-5 catalyst support in catalytic pyrolysis of biomass and compounds abundant in pyrolysis bio-oils. Journal of analytical and applied pyrolysis, 122, 7-12. https://www.sciencedirect.com/science/article/pii/S0165237016304181Greish, A. A., Sokolovskiy, P. V., Finashina, E. D., Kustov, L. M., Vezentsev, A. I., Chien Nguyen, D., & Chau Nguyen, H. (2022). Efficient carbon adsorbent for hydrogen sulfide produced from sugar cane bagasse. Mendeleev Communications, 32(6), 828–830. https://doi.org/10.1016/J.MENCOM.2022.11.040Han, D., Yang, X., Li, R., & Wu, Y. (2019). Environmental impact comparison of typical and resource-efficient biomass fast pyrolysis systems based on LCA and Aspen Plus simulation. Journal of Cleaner Production, 231, 254–267. https://doi.org/10.1016/J.JCLEPRO.2019.05.094Hasan, M. M., Rasul, M. G., Jahirul, M. I., & Khan, M. M. K. (2022). Modeling and process simulation of waste macadamia nutshell pyrolysis using Aspen Plus software. Energy Reports, 8, 429–437. https://doi.org/10.1016/J.EGYR.2022.10.323Hu, Z., Li, P., & Liu, Y. (2022, June 13). Enhancing the Performance of Evolutionary Algorithm by Differential Evolution for Optimizing Distillation Sequence. https://scite.ai/reports/10.3390/molecules27123802Kim, E., Gil, H., Park, S., & Park, J. (2017). Bio-oil production from pyrolysis of waste sawdust with catalyst ZSM-5. Journal of Material Cycles and Waste Management, 19, 423-431. https://link.springer.com/article/10.1007/s10163-015-0438-zKopperi, H., & Venkata Mohan, S. (2023). Catalytic hydrothermal deoxygenation of sugarcane bagasse for energy dense bio-oil and aqueous fraction acidogenesis for biohydrogen production. Bioresource Technology, 379, 128954. https://doi.org/10.1016/J.BIORTECH.2023.128954Kumar, J. A., Sathish, S., Prabu, D., Renita, A. A., Saravanan, A., Deivayanai, V. C., Anish, M., Jayaprabakar, J., Baigenzhenov, O., & Hosseini-Bandegharaei, A. (2023). Agricultural waste biomass for sustainable bioenergy production: Feedstock, characterization and pre-treatment methodologies. Chemosphere, 331, 138680. https://doi.org/10.1016/J.CHEMOSPHERE.2023.138680Liu, R., Sarker, M., Rahman, M. M., Li, C., Chai, M., Nishu, Cotillon, R., & Scott, N. R. (2020). Multi-scale complexities of solid acid catalysts in the catalytic fast pyrolysis of biomass for bio-oil production – A review. Progress in Energy and Combustion Science, 80, 100852. https://doi.org/10.1016/J.PECS.2020.100852Li, P., Wang, B., Hu, J., Zhang, Y., Chen, W., Chang, C., & Pang, S. (2023). Research on the kinetics of catalyst coke formation during biomass catalytic pyrolysis: A mini review. Journal of the Energy Institute, 110, 101315. https://doi.org/10.1016/J.JOEI.2023.101315Liu, W., Song, M., Wang, X., Wang, C., & Zhang, C. (2023). Study on the synergistic effect between Ni and Me species over Ni-Me/HZSM-5 on the in-situ catalytic pyrolysis of alkali lignin. Applied Catalysis A: General, 663, 119270. https://doi.org/10.1016/J.APCATA.2023.119270Liu, Y., Xue, L., Ma, J., Peng, C., Bai, F., Li, Y., & Zhao, J. (2023). Three-dimensional numerical simulation, energy efficiency and economic benefit estimation of oil shale in situ pyrolysis process. Geoenergy Science and Engineering, 227. https://doi.org/10.1016/j.geoen.2023.211804Maleki, F., Changizian, M., Zolfaghari, N., Rajaei, S., Noghabi, K A., & Zahiri, H S. (2021, March 11). Consolidated Bioprocessing for Bioethanol Production by Metabolically Engineered Bacillus Subtilis Strains. https://scite.ai/reports/10.21203/rs.3.rs-297375/v1Mendes, F. L., Ximenes, V. L., de Almeida, M. B., Azevedo, D. A., Tessarolo, N. S., & de Rezende Pinho, A. (2016). Catalytic pyrolysis of sugarcane bagasse and pinewood in a pilot scale unit. Journal of Analytical and Applied Pyrolysis, 122, 395-404. https://www.sciencedirect.com/science/article/pii/S0165237016301498Nair, L. G., Agrawal, K., & Verma, P. (2022). An overview of sustainable approaches for bioenergy production from agro-industrial wastes. Energy Nexus, 6. https://doi.org/10.1016/j.nexus.2022.10008Nations, U. (n.d.). Causes and Effects of Climate Change | United Nations. Retrieved September 25, 2023, from https://www.un.org/en/climatechange/science/causes-effects-climate-changeOrdonez-Loza, J., Chejne, F., Jameel, A. G. A., Telalovic, S., Arrieta, A. A., & Sarathy, S. M. (2021). An investigation into the pyrolysis and oxidation of bio-oil from sugarcane bagasse: Kinetics and evolved gases using TGA-FTIR. Journal of Environmental Chemical Engineering, 9(5). https://doi.org/10.1016/j.jece.2021.106144Ramanathan, A., Begum, K. M. M. S., Pereira, A. O., & Cohen, C. (2022). Biomass pyrolysis system based on life cycle assessment and Aspen plus analysis and kinetic modeling. A Thermo-Economic Approach to Energy From Waste, 35–71. https://doi.org/10.1016/B978-0-12-824357-2.00006-1Ranzi, E., Cuoci, A., Faravelli, T., Frassoldati, A., Migliavacca, G., Pierucci, S., & Sommariva, S. (2008). Chemical kinetics of biomass pyrolysis. Energy & Fuels, 22(6), 4292-4300. https://www.sciencedirect.com/science/article/pii/S0378382018300675Shun, T. A. N., ZHANG, Z., Jianping, S. U. N., & Qingwen, W. A. N. G. (2013). Recent progress of catalytic pyrolysis of biomass by HZSM-5. Chinese Journal of Catalysis, 34(4), 641-650. https://www.sciencedirect.com/science/article/pii/S1872206712605312Sultana, R., Banik, U., Nandy, P. K., Huda, M. N., & Ismail, M. (2023). Bio-oil production from rubber seed cake via pyrolysis: Process parameter optimization and physicochemical characterization. Energy Conversion and Management: X, 20, 100429. https://doi.org/10.1016/J.ECMX.2023.100429Sun, C., Tan, H., & Zhang, Y. (2023). Simulating the pyrolysis interactions among hemicellulose, cellulose and lignin in wood waste under real conditions to find the proper way to prepare bio-oil. Renewable Energy, 205, 851–863. https://doi.org/10.1016/J.RENENE.2023.02.015Toscano Miranda, N., Lopes Motta, I., Maciel Filho, R., & Wolf Maciel, M. R. (2021). Sugarcane bagasse pyrolysis: A review of operating conditions and products properties. In Renewable and Sustainable Energy Reviews (Vol. 149). Elsevier Ltd. https://doi.org/10.1016/j.rser.2021.111394Vassilev, S. V., Vassileva, C. G., & Vassilev, V. S. (2015). Advantages and disadvantages of composition and properties of biomass in comparison with coal: An overview. Fuel, 158, 330-350. https://www.sciencedirect.com/science/article/pii/S0016236115005578Venkata Mohan, S., Nikhil, G. N., Chiranjeevi, P., Nagendranatha Reddy, C., Rohit, M. V., Kumar, A. N., & Sarkar, O. (2016). Waste biorefinery models towards sustainable circular bioeconomy: Critical review and future perspectives. Bioresource Technology, 215, 2–12. https://doi.org/10.1016/J.BIORTECH.2016.03.130Williams, P. T., & Brindle, A. J. (2002). Catalytic pyrolysis of tyres: influence of catalyst temperature. Fuel, 81(18), 2425-2434. https://www.sciencedirect.com/science/article/pii/S0016236102001965Wu, Y., Gui, Q., Zhang, H., Li, H., Li, B., Liu, M., Chen, Y., Zhang, S., Yang, H., & Chen, H. (2023). Effect of biomass components’ interaction on the pyrolysis reaction kinetics and small-molecule product release characteristics. Journal of Analytical and Applied Pyrolysis, 173. https://doi.org/10.1016/j.jaap.2023.106039Xu, J., Guo, Y., Gao, Y., Qian, K., Wang, Y., Li, N., Wang, Y., Ran, S., Hou, X., & Zhu, Y. (2023). Catalytic pyrolysis of cellulose and hemicellulose: Investigation on furans selectivity with different zeolite structures at microporous scale. Journal of Analytical and Applied Pyrolysis, 173, 106102. https://doi.org/10.1016/J.JAAP.2023.106102Yilmaz, S., & Selim, H. (2013). A review on the methods for biomass to energy conversion systems design. Renewable and Sustainable Energy Reviews, 25, 420–430. https://doi.org/10.1016/J.RSER.2013.05.015Zaidi, A. A., Khan, A., AlMohamadi, H., Anjum, M. W., Ali, I., Naqvi, S. R., Kokuryo, S., Miyake, K., & Nishiyama, N. (2023). Catalytic pyrolysis of rice husk over defect-rich beta zeolites for biofuel production. Fuel, 348. https://doi.org/10.1016/j.fuel.2023.128624Zhang, S., Zhang, H., Liu, X., Zhu, S., Hu, L., & Zhang, Q. (2018). Upgrading of bio-oil from catalytic pyrolysis of pretreated rice husk over Fe-modified ZSM-5 zeolite catalyst. Fuel Processing Technology, 175, 17-25. https://www.sciencedirect.com/science/article/pii/S0378382018300675Zhang, Y., Liang, Y., Li, S., Yuan, Y., Zhang, D., Wu, Y., Xie, H., Brindhadevi, K., Pugazhendhi, A., & Xia, C. (2023b). A review of biomass pyrolysis gas: Forming mechanisms, influencing parameters, and product application upgrades. Fuel, 347, 128461. https://doi.org/10.1016/J.FUEL.2023.128461Biomasa lignocelulósicaBagazo de caña de azúcarSimulación numéricaPirólisis catalíticaZSM-5 catalizadorLignocellulosic biomassSugarcane bagasseNumerical simulationCatalytic pyrolysisZSM-5 catalystPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://repositorio.unicordoba.edu.co/bitstreams/13e70e83-0be2-4eb5-9758-1543dc262323/download73a5432e0b76442b22b026844140d683MD51ORIGINALEidiMaríaOrtizPinto-IsabelaEspitiaPáezEidiMaríaOrtizPinto-IsabelaEspitiaPáezapplication/pdf894488https://repositorio.unicordoba.edu.co/bitstreams/54fb5aa7-a985-4539-ae32-f45cfd2e5ddc/download59f087f11bde0122025a2f5340dfb075MD52Fortamo de autorización de publicación (2).pdfFortamo de autorización de publicación (2).pdfapplication/pdf639219https://repositorio.unicordoba.edu.co/bitstreams/124b9a01-9399-41ae-91cc-ee77197d0ad6/download031ca2dc31b2bc5ef7f64ffed9a0464eMD53TEXTEidiMaríaOrtizPinto-IsabelaEspitiaPáez.txtEidiMaríaOrtizPinto-IsabelaEspitiaPáez.txtExtracted texttext/plain57198https://repositorio.unicordoba.edu.co/bitstreams/930b8ecc-9111-460f-8e5f-11c6099ecfb3/downloadbad0f7c58cc2238887e4261262fcf82bMD54Fortamo de autorización de publicación (2).pdf.txtFortamo de autorización de publicación (2).pdf.txtExtracted texttext/plain4395https://repositorio.unicordoba.edu.co/bitstreams/f5885cfb-0dc6-4967-8ac7-abb3df4f882d/download1345dc286e6441928f122ea0a776d6a6MD56THUMBNAILEidiMaríaOrtizPinto-IsabelaEspitiaPáez.jpgEidiMaríaOrtizPinto-IsabelaEspitiaPáez.jpgGenerated Thumbnailimage/jpeg15513https://repositorio.unicordoba.edu.co/bitstreams/b1647f97-2eac-4649-ba54-d3afab07e2e1/downloada64488d42feb461ba69051a01968491bMD55Fortamo de autorización de publicación (2).pdf.jpgFortamo de autorización de publicación (2).pdf.jpgGenerated Thumbnailimage/jpeg14633https://repositorio.unicordoba.edu.co/bitstreams/2a0ad33d-3c9a-4eb2-a93c-1a9599ce2371/download6877bc5a76ebdeb86a3b137fc584fe8cMD57ucordoba/9042oai:repositorio.unicordoba.edu.co:ucordoba/90422025-02-08 03:00:29.451https://creativecommons.org/licenses/by-nc-nd/4.0/Copyright Universidad de Córdoba, 2025open.accesshttps://repositorio.unicordoba.edu.coRepositorio Universidad de Córdobabdigital@metabiblioteca.comPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K