Influencia de la dosis y la tasa de calentamiento sobre los parámetros cinéticos de la curva de brillo termoluminiscente de aguamarina (Be3Al2(SiO3)6:Fe)
En este trabajo se reportan los parámetros cinéticos de la curva de brillo TL del Berilo en su variedad como Aguamarina (Be3Al2(SiO3)6: Fe) para dos grupos de curva, con el objetivo de determinar la posible influencia de la dosis y la tasa de calentamiento sobre los parámetros cinéticos. El proceso...
- Autores:
-
Sena Castaño, Pedro Luis
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2023
- Institución:
- Universidad de Córdoba
- Repositorio:
- Repositorio Institucional Unicórdoba
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unicordoba.edu.co:ucordoba/7900
- Acceso en línea:
- https://repositorio.unicordoba.edu.co/handle/ucordoba/7900
https://repositorio.unicordoba.edu.co
- Palabra clave:
- Berilo
Termoluminiscencia
Parámetros cinéticos
Apagado térmico
Tasa de calentamiento
Dosis
Beryl
Thermoluminescence
Kinetic parameters
Thermal quenching
Heating rate
Dose
- Rights
- openAccess
- License
- https://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UCORDOBA2_8626b458793d160f7ca9555efff011f1 |
---|---|
oai_identifier_str |
oai:repositorio.unicordoba.edu.co:ucordoba/7900 |
network_acronym_str |
UCORDOBA2 |
network_name_str |
Repositorio Institucional Unicórdoba |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Influencia de la dosis y la tasa de calentamiento sobre los parámetros cinéticos de la curva de brillo termoluminiscente de aguamarina (Be3Al2(SiO3)6:Fe) |
title |
Influencia de la dosis y la tasa de calentamiento sobre los parámetros cinéticos de la curva de brillo termoluminiscente de aguamarina (Be3Al2(SiO3)6:Fe) |
spellingShingle |
Influencia de la dosis y la tasa de calentamiento sobre los parámetros cinéticos de la curva de brillo termoluminiscente de aguamarina (Be3Al2(SiO3)6:Fe) Berilo Termoluminiscencia Parámetros cinéticos Apagado térmico Tasa de calentamiento Dosis Beryl Thermoluminescence Kinetic parameters Thermal quenching Heating rate Dose |
title_short |
Influencia de la dosis y la tasa de calentamiento sobre los parámetros cinéticos de la curva de brillo termoluminiscente de aguamarina (Be3Al2(SiO3)6:Fe) |
title_full |
Influencia de la dosis y la tasa de calentamiento sobre los parámetros cinéticos de la curva de brillo termoluminiscente de aguamarina (Be3Al2(SiO3)6:Fe) |
title_fullStr |
Influencia de la dosis y la tasa de calentamiento sobre los parámetros cinéticos de la curva de brillo termoluminiscente de aguamarina (Be3Al2(SiO3)6:Fe) |
title_full_unstemmed |
Influencia de la dosis y la tasa de calentamiento sobre los parámetros cinéticos de la curva de brillo termoluminiscente de aguamarina (Be3Al2(SiO3)6:Fe) |
title_sort |
Influencia de la dosis y la tasa de calentamiento sobre los parámetros cinéticos de la curva de brillo termoluminiscente de aguamarina (Be3Al2(SiO3)6:Fe) |
dc.creator.fl_str_mv |
Sena Castaño, Pedro Luis |
dc.contributor.advisor.none.fl_str_mv |
Cogollo Pitalúa, Rafael Ricardo Maya Taboada, Héctor Roger Gutiérrez Flórez, Omar Darío |
dc.contributor.author.none.fl_str_mv |
Sena Castaño, Pedro Luis |
dc.subject.proposal.spa.fl_str_mv |
Berilo Termoluminiscencia Parámetros cinéticos Apagado térmico Tasa de calentamiento Dosis |
topic |
Berilo Termoluminiscencia Parámetros cinéticos Apagado térmico Tasa de calentamiento Dosis Beryl Thermoluminescence Kinetic parameters Thermal quenching Heating rate Dose |
dc.subject.keywords.none.fl_str_mv |
Beryl Thermoluminescence Kinetic parameters Thermal quenching Heating rate Dose |
description |
En este trabajo se reportan los parámetros cinéticos de la curva de brillo TL del Berilo en su variedad como Aguamarina (Be3Al2(SiO3)6: Fe) para dos grupos de curva, con el objetivo de determinar la posible influencia de la dosis y la tasa de calentamiento sobre los parámetros cinéticos. El proceso de irradiación y lectura se realizó mediante un lector RISO TL / OSL DA-20 a temperatura ambiente, y las muestras no tuvieron ningún tratamiento previo a la medición. Para el desarrollo de este trabajo, la muestra se irradió a diferentes dosis de radiación β entre 4 y 100 Gy. La curva de brillo se registró a una tasa de calentamiento de 1 °C/s. Los resultados muestran cuatro picos de brillo experimentales localizados alrededor de los 75, 115, 189 y 306 °C. El pico de mayor intensidad ubicado alrededor de los 75°C se denominará “pico principal”. Un segundo grupo de curvas de brillos se obtuvo para una dosis fija de 1 Gy de radiación β registradas a diferentes tasas de calentamiento entre 0.5 y 5 °C/s. Los picos de brillo evidenciaron un desplazamiento hacia mayores valores de temperatura a medida que aumenta la tasa de calentamiento, en concordancia con la teoría. Sin embargo, se evidencia una leve disminución del área del pico de brillo, en el caso del pico principal. Para llevar a cabo un análisis cinético detallado a las curvas de brillo, registradas a diferentes dosis de radiación y tasas de calentamiento, se utilizaron los métodos de ascenso inicial (Initial Rise, IR), pico de brillo completo (Whole glow peak, WGP), tasa de calentamiento variable (VHR), ajuste de curvas (Curve fitting, CF), ajuste adimensional (Dimensionless fitting method, DFM) y la deconvolución usando la función asimétrica logística (LA) de cuatro parámetros mediante un software comercial (PeakFit). Los resultados muestran que los parámetros de atrapamiento (energía de activación, factor de frecuencia y parámetro de orden) son independientes tanto de la dosis absorbida, en el rango medido, y de la tasa de calentamiento empleada durante su lectura. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-11-16T14:40:54Z |
dc.date.available.none.fl_str_mv |
2023-11-16T14:40:54Z |
dc.date.issued.none.fl_str_mv |
2023-11-15 |
dc.type.none.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.none.fl_str_mv |
Text |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unicordoba.edu.co/handle/ucordoba/7900 |
dc.identifier.instname.none.fl_str_mv |
Universidad de Córdoba |
dc.identifier.reponame.none.fl_str_mv |
Repositorio universidad de Córdoba |
dc.identifier.repourl.none.fl_str_mv |
https://repositorio.unicordoba.edu.co |
url |
https://repositorio.unicordoba.edu.co/handle/ucordoba/7900 https://repositorio.unicordoba.edu.co |
identifier_str_mv |
Universidad de Córdoba Repositorio universidad de Córdoba |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.relation.references.none.fl_str_mv |
Akselrod, M. S., Agersnap Larsen, N., Whitley, V., & McKeever, S. W. S. (1998). Thermal quenching of F -center luminescence in Al2O3:C. Journal of Applied Physics, 84(6), 3364–3373. https://doi.org/10.1063/1.368450 Anderson, S. L., & Feathers, J. K. (2019). Applying luminescence dating of ceramics to the problem of dating Arctic archaeological sites. Journal of Archaeological Science, 112, 105030. https://doi.org/10.1016/j.jas.2019.105030 Azorin, J. Termoluminiscencia del SiO2, del (Al2(F,OH)2)SiO4 y del Na2OAl2O36SiO2 para la dosimetría de la radiación ionizante. (Tesis de maestría). Universidad Nacional Autónoma de México-Facultad de ciencias, México. Balci-Yegen, S., Yüksel, M., Kucuk, N., Karabulut, Y., Ayvacikli, M., Can, N., & Topaksu, M. (2018). Thermoluminescence dose and heating rate dependence and kinetic analysis of ZnB 2 O 4 :0.05Dy 3+ phosphor. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 416, 50–54. https://doi.org/10.1016/j.nimb.2017.12.004 Balian, H. G., & Eddy, N. W. (1977). Figure-of-merit (FOM), an improved criterion over the normalized chi-squared test for assessing goodness-of-fit of gamma-ray spectral peaks. Nuclear Instruments and Methods, 145(2), 389–395. https://doi.org/10.1016/0029-554X(77)90437-2 Bos, A. J. J. (2001). High sensitivity thermoluminescence dosimetry. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 184(1–2), 3–28. https://doi.org/10.1016/S0168-583X(01)00717-0 Bos, A. J. J. (2006). Theory of thermoluminescence. Radiation Measurements, 41, S45–S56. https://doi.org/10.1016/j.radmeas.2007.01.003 Bos, A. J. J., Vijverberg, R. N. M., Piters, T. M., & McKeeve, S. W. S. (1992). Effects of cooling and heating rate on trapping parameters in LiF:Mg, Ti crystals. Journal of Physics D: Applied Physics, 25(8), 1249–1257. https://doi.org/10.1088/0022-3727/25/8/016 Bragg, W. L., & West, J. (1926). The structure of beryl, Be3Al2Si6O18. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 111(759), 691–714. https://doi.org/10.1098/rspa.1926.0088 Cameron, J. R., Zimmerman, D., Kenney, G., Buch, R., Bland, R., & Grant, R. (1964). Thermoluminescent Radiation Dosimetry Utilizing LiF. Health Physics, 10(1), 25–29. Chithambo, M. L., Raymond, S. G., Calderon, T., & Townsend, P. D. (1995). Low temperature luminescence of transition metal-doped beryls. Journal of African Earth Sciences, 20(1), 53–60. https://doi.org/10.1016/0899-5362(95)00044-T D. Daniel et al. (2014). Thermoluminescence characteristics and dosimetric aspects of fluoroperovskites (NaMgF3:Eu2+,Ce3+). Journal of rare earths, 496-500. Garlick, G. F. J., & Gibson, A. F. (1948). The Electron Trap Mechanism of Luminescence in Sulphide and Silicate Phosphors. Proceedings of the Physical Society, 60(6), 574–590. https://doi.org/10.1088/0959-5309/60/6/308 Herrera, J., Cogollo, R., Gutiérrez, O. D., & Chithambo, M. L. (2022). Thermoluminescence of aquamarine: A preliminary study. Radiation Measurements, 155, 106806. https://doi.org/10.1016/j.radmeas.2022.106806 Kalita, J. M., & Chithambo, M. L. (2017). Thermoluminescence of α-Al2O3:C,Mg: Kinetic analysis of the main glow peak. Journal of Luminescence, 182, 177–182. https://doi.org/10.1016/j.jlumin.2016.10.031 Karampiperi, M., Tsirliganis, N. C., & Kazakis, N. A. (2020). Use of commercial pharmaceutical drug (Daktarin®) for retrospective/accidental/forensic thermoluminescence dosimetry. Applied Radiation and Isotopes, 166, 109364. https://doi.org/10.1016/j.apradiso.2020.109364 Katı, M. I., Türemis, M., Keskin, I. C., Tastekin, B., Kibar, R., Çetin, A., & Can, N. (2012). Luminescence behaviour of beryl (aquamarine variety) from Turkey. Journal of Luminescence, 132(10), 2599–2602. https://doi.org/10.1016/j.jlumin.2012.03.058 Kitis, G. (2002). Confirmation of the Influence of Thermal Quenching on the Initial Rise Method in ?Al2O3:C. Physica Status Solidi (a), 191, 621–627. https://doi.org/10.1002/1521-396X(200206)191:23.0.CO;2-X Kitis, G., Gomez-Ros, J. M., & Tuyn, J. W. N. (1998). Thermoluminescence glow-curve deconvolution functions for first, second and general orders of kinetics. Journal of Physics D: Applied Physics, 31(19), 2636–2641. https://doi.org/10.1088/0022-3727/31/19/037 Kitis, G., Pagonis, V., & Drupieski, C. (2003). Cooling rate effects on the thermoluminescence glow curves of Arkansas quartz. Physica Status Solidi (a), 198(2), 312–321. https://doi.org/10.1002/pssa.200306601 Mahmoud, B., & Mohamed, O. (2020). Determination of Thermoluminescence Kinetic Parameters of La2O3 Doped with Dy3+ and Eu3+. Multidisciplinary Digital Publishing Institute, 2-23. Martini, M., & Galli, A. (2016). Materials science and cultural heritage. IL NUOVO SAGGIATORE, 32(3), 46–58. https://www.ilnuovosaggiatore.sif.it/article/33 May, C. E., & Partridge, J. A. (1964). Thermoluminescent Kinetics of Alpha‐Irradiated Alkali Halides. The Journal of Chemical Physics, 40(5), 1401–1409. https://doi.org/10.1063/1.1725324 McKeever, S. W. S. (1985). Thermoluminescence of Solids. Cambridge University Press. https://doi.org/10.1017/CBO9780511564994 McKeever, S. W. S., & Chen, R. (1997). Luminescence models. Radiation Measurements, 27(5–6), 625–661. https://doi.org/10.1016/S1350-4487(97)00203-5 Montoya, D. y Moreno, G. (2019). Esmeralda. En: Recursos minerales de Colombia, vol. 2. Bogotá: Servicio Geológico Colombiano. Pagonis, V., & Kitis, G. (2001). Fit of Second Order Thermoluminescence Glow Peaks Using the Logistic Distribution Function. Radiation Protection Dosimetry, 95(3), 225–229. https://doi.org/10.1093/oxfordjournals.rpd.a006545 Pagonis, V., & Kitis, G. (2002). On the Possibility of using Commercial Software Packages for Thermoluminescence Glow Curve Deconvolution Analysis. Radiation Protection Dosimetry, 101(1), 93–98. https://doi.org/10.1093/oxfordjournals.rpd.a006067 Pagonis., V., Kitis., G., & Furetta, C. (2006). Numerical and Practical Exercises in Thermoluminescence (1st ed). Springer New York. https://doi.org/10.1007/0-387-30090-2 Petitfils, A., Wrobel, F., Benabdesselam, M., Iacconi, P., & Butler, J. E. (2007). Role of TL thermal quenching in CVD diamond for medical applications. Diamond and Related Materials, 16(4), 1062–1065. https://doi.org/https://doi.org/10.1016/j.diamond.2006.11.092 Petrov, S. A., & Bailiff, I. K. (1995). Thermal quenching and the Initial Rise technique of trap depth evaluation. Journal of Luminescence, 65(6), 289–291. https://doi.org/10.1016/0022-2313(95)00090-9 Randall, J. T., & Wilkins, M. H. F. (1945a). Phosphorescence and electron traps - I. The study of trap distributions. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 184(999), 365–389. https://doi.org/10.1098/rspa.1945.0024 Randall, J. T., & Wilkins, M. H. F. (1945b). Phosphorescence and electron traps II. The interpretation of long-period phosphorescence. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 184(999), 390–407. https://doi.org/10.1098/rspa.1945.0025 Rasheedy, M. S., El-Sherif, M. A., & Hefni, M. A. (2006). Applications of the three points analysis method for obtaining the trap parameters and the separation of thermoluminescence glow curve into its components. Radiation Effects and Defects in Solids, 161(10), 579–590. https://doi.org/10.1080/10420150600879732 Rojas, J., Cogollo, R., Gil, M., Usma, J., Gutiérrez, O., & Soto, A. (2019). Cerium and manganese doped alumina matrices: Preparation, characterization and kinetic analysis of their glow curves. Journal of Luminescence, 214, 116572. https://doi.org/10.1016/j.jlumin.2019.116572 Şahiner, E., Meriç, N., & Polymeris, G. S. (2015). Impact of different mechanical pre-treatment to the EPR signals of human fingernails towards studying dose response and fading subjected to UV exposure or beta irradiation. Radiation Measurements, 82, 40–46. https://doi.org/10.1016/j.radmeas.2015.08.005 Subedi, B., Oniya, E., Polymeris, G. S., Afouxenidis, D., Tsirliganis, N. C., & Kitis, G. (2011). Thermal quenching of thermoluminescence in quartz samples of various origin. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 269(6), 572–581. https://doi.org/10.1016/j.nimb.2011.01.011 |
dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.license.none.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de Cordoba |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias Básicas |
dc.publisher.place.none.fl_str_mv |
Montería, Córdoba, Colombia |
dc.publisher.program.none.fl_str_mv |
Física |
publisher.none.fl_str_mv |
Universidad de Cordoba |
institution |
Universidad de Córdoba |
bitstream.url.fl_str_mv |
https://repositorio.unicordoba.edu.co/bitstreams/429b5e5b-fb18-4ec5-8146-c0af116ea1ca/download https://repositorio.unicordoba.edu.co/bitstreams/669da8a1-163e-4ec4-a9f0-cf804ed04caf/download https://repositorio.unicordoba.edu.co/bitstreams/b60dbfa9-9ee1-4413-8da4-3d239677bdd7/download https://repositorio.unicordoba.edu.co/bitstreams/6a0fb66c-a0d7-4b57-ad64-3550ff7e8b7b/download https://repositorio.unicordoba.edu.co/bitstreams/7ed93db4-cffe-47f1-b5fc-2df037595b1f/download https://repositorio.unicordoba.edu.co/bitstreams/7ef35313-aa2d-48b6-8244-ec3bcf36ad78/download https://repositorio.unicordoba.edu.co/bitstreams/afdb08a2-2b46-435c-ae27-d2005f4ada19/download |
bitstream.checksum.fl_str_mv |
700f1cd56bae88d2e7f55ec62c8d9b44 209c297801ce7648e864bb150aaafb78 73a5432e0b76442b22b026844140d683 5ed04a7c0123f92cffc59c1143bf5a3e 2c19c89575607294e78e13fe757107a8 66dcba1ad1274a8dae70d1112d6b2aa6 1aa7ae83fe78aa4092f5cba0faef914d |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Universidad de Córdoba |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1839636153882378240 |
spelling |
Cogollo Pitalúa, Rafael Ricardo169474ca-0c4c-4567-9c75-ef604cfe8c9d-1Maya Taboada, Héctor Rogerf73d07ac-06ce-4535-b78d-7f22c9fb43fb-1Gutiérrez Flórez, Omar Daríoc7797135-17b3-42d0-b23f-8b086498c6ec-1Sena Castaño, Pedro Luis47f1d730-48f9-4dba-a549-cd096183af64-12023-11-16T14:40:54Z2023-11-16T14:40:54Z2023-11-15https://repositorio.unicordoba.edu.co/handle/ucordoba/7900Universidad de CórdobaRepositorio universidad de Córdobahttps://repositorio.unicordoba.edu.coEn este trabajo se reportan los parámetros cinéticos de la curva de brillo TL del Berilo en su variedad como Aguamarina (Be3Al2(SiO3)6: Fe) para dos grupos de curva, con el objetivo de determinar la posible influencia de la dosis y la tasa de calentamiento sobre los parámetros cinéticos. El proceso de irradiación y lectura se realizó mediante un lector RISO TL / OSL DA-20 a temperatura ambiente, y las muestras no tuvieron ningún tratamiento previo a la medición. Para el desarrollo de este trabajo, la muestra se irradió a diferentes dosis de radiación β entre 4 y 100 Gy. La curva de brillo se registró a una tasa de calentamiento de 1 °C/s. Los resultados muestran cuatro picos de brillo experimentales localizados alrededor de los 75, 115, 189 y 306 °C. El pico de mayor intensidad ubicado alrededor de los 75°C se denominará “pico principal”. Un segundo grupo de curvas de brillos se obtuvo para una dosis fija de 1 Gy de radiación β registradas a diferentes tasas de calentamiento entre 0.5 y 5 °C/s. Los picos de brillo evidenciaron un desplazamiento hacia mayores valores de temperatura a medida que aumenta la tasa de calentamiento, en concordancia con la teoría. Sin embargo, se evidencia una leve disminución del área del pico de brillo, en el caso del pico principal. Para llevar a cabo un análisis cinético detallado a las curvas de brillo, registradas a diferentes dosis de radiación y tasas de calentamiento, se utilizaron los métodos de ascenso inicial (Initial Rise, IR), pico de brillo completo (Whole glow peak, WGP), tasa de calentamiento variable (VHR), ajuste de curvas (Curve fitting, CF), ajuste adimensional (Dimensionless fitting method, DFM) y la deconvolución usando la función asimétrica logística (LA) de cuatro parámetros mediante un software comercial (PeakFit). Los resultados muestran que los parámetros de atrapamiento (energía de activación, factor de frecuencia y parámetro de orden) son independientes tanto de la dosis absorbida, en el rango medido, y de la tasa de calentamiento empleada durante su lectura.Agradecimientos.....................................................................................................................4Resumen .................................................................................................................................5Introducción............................................................................................................................81. Planteamiento del problema ......................................................................................102. Justificación............................................................................................................... 113. Objetivos....................................................................................................................123.1. Objetivo general .................................................................................................123.2. Objetivos específicos..........................................................................................124. Estado del arte ...........................................................................................................135. Marco teórico.............................................................................................................155.1. Termoluminiscencia (TL)...................................................................................155.2. Luminiscencia ....................................................................................................155.3. Modelos de termoluminiscencia.........................................................................185.4. Métodos de análisis............................................................................................306. Aspectos experimentales ...........................................................................................456.1. Berilo..................................................................................................................456.2. Lector Riso TL/OSL DA-20...............................................................................467. Resultados y análisis..................................................................................................507.1. Curva de brillo TL de aguamarina......................................................................507.2. Análisis cinético .................................................................................................557.2.1 Método de ascenso inicial...........................................................................557.2.2 Método del pico de brillo completo............................................................597.2.3 Método de la tasa de calentamiento variable ..............................................627.2.4 Técnica de ajuste de curvas.........................................................................627.2.5 Método de ajuste adimensional...................................................................677.2.6 Deconvolución con la función asimétrica logística (LA) ...........................698. Conclusiones..............................................................................................................77Anexo A: Deducción de las ecuaciones cinéticas de primer, segundo y orden general. ......79Anexo B: Deducción de las funciones de deconvolución de curvas TL para cinéticas de primer-, segundo- y orden general........................................................................................82Anexo C: Deducción del método de ajuste adimensional (DFM)........................................88Anexo D: Tabla de los parámetros logísticos obtenidos para cada curva de brillo. .............94Referencias ...........................................................................................................................97PregradoFísico(a)Trabajos de Investigación y/o Extensiónapplication/pdfspaUniversidad de CordobaFacultad de Ciencias BásicasMontería, Córdoba, ColombiaFísicahttps://creativecommons.org/licenses/by-nc-nd/4.0/Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Influencia de la dosis y la tasa de calentamiento sobre los parámetros cinéticos de la curva de brillo termoluminiscente de aguamarina (Be3Al2(SiO3)6:Fe)Trabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/acceptedVersionTextAkselrod, M. S., Agersnap Larsen, N., Whitley, V., & McKeever, S. W. S. (1998). Thermal quenching of F -center luminescence in Al2O3:C. Journal of Applied Physics, 84(6), 3364–3373. https://doi.org/10.1063/1.368450Anderson, S. L., & Feathers, J. K. (2019). Applying luminescence dating of ceramics to the problem of dating Arctic archaeological sites. Journal of Archaeological Science, 112, 105030. https://doi.org/10.1016/j.jas.2019.105030Azorin, J. Termoluminiscencia del SiO2, del (Al2(F,OH)2)SiO4 y del Na2OAl2O36SiO2 para la dosimetría de la radiación ionizante. (Tesis de maestría). Universidad Nacional Autónoma de México-Facultad de ciencias, México.Balci-Yegen, S., Yüksel, M., Kucuk, N., Karabulut, Y., Ayvacikli, M., Can, N., & Topaksu, M. (2018). Thermoluminescence dose and heating rate dependence and kinetic analysis of ZnB 2 O 4 :0.05Dy 3+ phosphor. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 416, 50–54. https://doi.org/10.1016/j.nimb.2017.12.004Balian, H. G., & Eddy, N. W. (1977). Figure-of-merit (FOM), an improved criterion over the normalized chi-squared test for assessing goodness-of-fit of gamma-ray spectral peaks. Nuclear Instruments and Methods, 145(2), 389–395. https://doi.org/10.1016/0029-554X(77)90437-2Bos, A. J. J. (2001). High sensitivity thermoluminescence dosimetry. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 184(1–2), 3–28. https://doi.org/10.1016/S0168-583X(01)00717-0Bos, A. J. J. (2006). Theory of thermoluminescence. Radiation Measurements, 41, S45–S56. https://doi.org/10.1016/j.radmeas.2007.01.003Bos, A. J. J., Vijverberg, R. N. M., Piters, T. M., & McKeeve, S. W. S. (1992). Effects of cooling and heating rate on trapping parameters in LiF:Mg, Ti crystals. Journal of Physics D: Applied Physics, 25(8), 1249–1257. https://doi.org/10.1088/0022-3727/25/8/016Bragg, W. L., & West, J. (1926). The structure of beryl, Be3Al2Si6O18. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 111(759), 691–714. https://doi.org/10.1098/rspa.1926.0088Cameron, J. R., Zimmerman, D., Kenney, G., Buch, R., Bland, R., & Grant, R. (1964). Thermoluminescent Radiation Dosimetry Utilizing LiF. Health Physics, 10(1), 25–29.Chithambo, M. L., Raymond, S. G., Calderon, T., & Townsend, P. D. (1995). Low temperature luminescence of transition metal-doped beryls. Journal of African Earth Sciences, 20(1), 53–60. https://doi.org/10.1016/0899-5362(95)00044-TD. Daniel et al. (2014). Thermoluminescence characteristics and dosimetric aspects of fluoroperovskites (NaMgF3:Eu2+,Ce3+). Journal of rare earths, 496-500.Garlick, G. F. J., & Gibson, A. F. (1948). The Electron Trap Mechanism of Luminescence in Sulphide and Silicate Phosphors. Proceedings of the Physical Society, 60(6), 574–590. https://doi.org/10.1088/0959-5309/60/6/308Herrera, J., Cogollo, R., Gutiérrez, O. D., & Chithambo, M. L. (2022). Thermoluminescence of aquamarine: A preliminary study. Radiation Measurements, 155, 106806. https://doi.org/10.1016/j.radmeas.2022.106806Kalita, J. M., & Chithambo, M. L. (2017). Thermoluminescence of α-Al2O3:C,Mg: Kinetic analysis of the main glow peak. Journal of Luminescence, 182, 177–182. https://doi.org/10.1016/j.jlumin.2016.10.031Karampiperi, M., Tsirliganis, N. C., & Kazakis, N. A. (2020). Use of commercial pharmaceutical drug (Daktarin®) for retrospective/accidental/forensic thermoluminescence dosimetry. Applied Radiation and Isotopes, 166, 109364. https://doi.org/10.1016/j.apradiso.2020.109364Katı, M. I., Türemis, M., Keskin, I. C., Tastekin, B., Kibar, R., Çetin, A., & Can, N. (2012). Luminescence behaviour of beryl (aquamarine variety) from Turkey. Journal of Luminescence, 132(10), 2599–2602. https://doi.org/10.1016/j.jlumin.2012.03.058Kitis, G. (2002). Confirmation of the Influence of Thermal Quenching on the Initial Rise Method in ?Al2O3:C. Physica Status Solidi (a), 191, 621–627. https://doi.org/10.1002/1521-396X(200206)191:23.0.CO;2-XKitis, G., Gomez-Ros, J. M., & Tuyn, J. W. N. (1998). Thermoluminescence glow-curve deconvolution functions for first, second and general orders of kinetics. Journal of Physics D: Applied Physics, 31(19), 2636–2641. https://doi.org/10.1088/0022-3727/31/19/037Kitis, G., Pagonis, V., & Drupieski, C. (2003). Cooling rate effects on the thermoluminescence glow curves of Arkansas quartz. Physica Status Solidi (a), 198(2), 312–321. https://doi.org/10.1002/pssa.200306601Mahmoud, B., & Mohamed, O. (2020). Determination of Thermoluminescence Kinetic Parameters of La2O3 Doped with Dy3+ and Eu3+. Multidisciplinary Digital Publishing Institute, 2-23.Martini, M., & Galli, A. (2016). Materials science and cultural heritage. IL NUOVO SAGGIATORE, 32(3), 46–58. https://www.ilnuovosaggiatore.sif.it/article/33May, C. E., & Partridge, J. A. (1964). Thermoluminescent Kinetics of Alpha‐Irradiated Alkali Halides. The Journal of Chemical Physics, 40(5), 1401–1409. https://doi.org/10.1063/1.1725324McKeever, S. W. S. (1985). Thermoluminescence of Solids. Cambridge University Press. https://doi.org/10.1017/CBO9780511564994McKeever, S. W. S., & Chen, R. (1997). Luminescence models. Radiation Measurements, 27(5–6), 625–661. https://doi.org/10.1016/S1350-4487(97)00203-5Montoya, D. y Moreno, G. (2019). Esmeralda. En: Recursos minerales de Colombia, vol. 2. Bogotá: Servicio Geológico Colombiano.Pagonis, V., & Kitis, G. (2001). Fit of Second Order Thermoluminescence Glow Peaks Using the Logistic Distribution Function. Radiation Protection Dosimetry, 95(3), 225–229. https://doi.org/10.1093/oxfordjournals.rpd.a006545Pagonis, V., & Kitis, G. (2002). On the Possibility of using Commercial Software Packages for Thermoluminescence Glow Curve Deconvolution Analysis. Radiation Protection Dosimetry, 101(1), 93–98. https://doi.org/10.1093/oxfordjournals.rpd.a006067Pagonis., V., Kitis., G., & Furetta, C. (2006). Numerical and Practical Exercises in Thermoluminescence (1st ed). Springer New York. https://doi.org/10.1007/0-387-30090-2Petitfils, A., Wrobel, F., Benabdesselam, M., Iacconi, P., & Butler, J. E. (2007). Role of TL thermal quenching in CVD diamond for medical applications. Diamond and Related Materials, 16(4), 1062–1065. https://doi.org/https://doi.org/10.1016/j.diamond.2006.11.092Petrov, S. A., & Bailiff, I. K. (1995). Thermal quenching and the Initial Rise technique of trap depth evaluation. Journal of Luminescence, 65(6), 289–291. https://doi.org/10.1016/0022-2313(95)00090-9Randall, J. T., & Wilkins, M. H. F. (1945a). Phosphorescence and electron traps - I. The study of trap distributions. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 184(999), 365–389. https://doi.org/10.1098/rspa.1945.0024Randall, J. T., & Wilkins, M. H. F. (1945b). Phosphorescence and electron traps II. The interpretation of long-period phosphorescence. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 184(999), 390–407. https://doi.org/10.1098/rspa.1945.0025Rasheedy, M. S., El-Sherif, M. A., & Hefni, M. A. (2006). Applications of the three points analysis method for obtaining the trap parameters and the separation of thermoluminescence glow curve into its components. Radiation Effects and Defects in Solids, 161(10), 579–590. https://doi.org/10.1080/10420150600879732Rojas, J., Cogollo, R., Gil, M., Usma, J., Gutiérrez, O., & Soto, A. (2019). Cerium and manganese doped alumina matrices: Preparation, characterization and kinetic analysis of their glow curves. Journal of Luminescence, 214, 116572. https://doi.org/10.1016/j.jlumin.2019.116572Şahiner, E., Meriç, N., & Polymeris, G. S. (2015). Impact of different mechanical pre-treatment to the EPR signals of human fingernails towards studying dose response and fading subjected to UV exposure or beta irradiation. Radiation Measurements, 82, 40–46. https://doi.org/10.1016/j.radmeas.2015.08.005Subedi, B., Oniya, E., Polymeris, G. S., Afouxenidis, D., Tsirliganis, N. C., & Kitis, G. (2011). Thermal quenching of thermoluminescence in quartz samples of various origin. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 269(6), 572–581. https://doi.org/10.1016/j.nimb.2011.01.011BeriloTermoluminiscenciaParámetros cinéticosApagado térmicoTasa de calentamientoDosisBerylThermoluminescenceKinetic parametersThermal quenchingHeating rateDosePublicationORIGINALsenacastañopedroluis.pdfsenacastañopedroluis.pdfapplication/pdf3762205https://repositorio.unicordoba.edu.co/bitstreams/429b5e5b-fb18-4ec5-8146-c0af116ea1ca/download700f1cd56bae88d2e7f55ec62c8d9b44MD51Formato de autorización.pdfFormato de autorización.pdfapplication/pdf332445https://repositorio.unicordoba.edu.co/bitstreams/669da8a1-163e-4ec4-a9f0-cf804ed04caf/download209c297801ce7648e864bb150aaafb78MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://repositorio.unicordoba.edu.co/bitstreams/b60dbfa9-9ee1-4413-8da4-3d239677bdd7/download73a5432e0b76442b22b026844140d683MD53TEXTsenacastañopedroluis.pdf.txtsenacastañopedroluis.pdf.txtExtracted texttext/plain104200https://repositorio.unicordoba.edu.co/bitstreams/6a0fb66c-a0d7-4b57-ad64-3550ff7e8b7b/download5ed04a7c0123f92cffc59c1143bf5a3eMD54Formato de autorización.pdf.txtFormato de autorización.pdf.txtExtracted texttext/plain361https://repositorio.unicordoba.edu.co/bitstreams/7ed93db4-cffe-47f1-b5fc-2df037595b1f/download2c19c89575607294e78e13fe757107a8MD56THUMBNAILsenacastañopedroluis.pdf.jpgsenacastañopedroluis.pdf.jpgGenerated Thumbnailimage/jpeg7415https://repositorio.unicordoba.edu.co/bitstreams/7ef35313-aa2d-48b6-8244-ec3bcf36ad78/download66dcba1ad1274a8dae70d1112d6b2aa6MD55Formato de autorización.pdf.jpgFormato de autorización.pdf.jpgGenerated Thumbnailimage/jpeg13663https://repositorio.unicordoba.edu.co/bitstreams/afdb08a2-2b46-435c-ae27-d2005f4ada19/download1aa7ae83fe78aa4092f5cba0faef914dMD57ucordoba/7900oai:repositorio.unicordoba.edu.co:ucordoba/79002023-11-17 03:01:20.821https://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://repositorio.unicordoba.edu.coRepositorio Universidad de Córdobabdigital@metabiblioteca.comPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K |