Modelación del crecimiento de pollitas Lohmann LSL con redes neuronales y modelos de regresión no lineal

Autores:
Galeano-Vasco, Luis
Cerón-Muñoz, Mario
Tipo de recurso:
Article of journal
Fecha de publicación:
2013
Institución:
Universidad de Córdoba
Repositorio:
Repositorio Institucional Unicórdoba
Idioma:
spa
OAI Identifier:
oai:repositorio.unicordoba.edu.co:ucordoba/5379
Acceso en línea:
https://repositorio.unicordoba.edu.co/handle/ucordoba/5379
https://doi.org/10.21897/rmvz.158
Palabra clave:
Connectionist Models
growth
Non-linear Models
nonlinear mixed effect model
Rights
openAccess
License
https://creativecommons.org/licenses/by-nc-sa/4.0/
id UCORDOBA2_74ae871a8e093356781199b89ea33ca3
oai_identifier_str oai:repositorio.unicordoba.edu.co:ucordoba/5379
network_acronym_str UCORDOBA2
network_name_str Repositorio Institucional Unicórdoba
repository_id_str
dc.title.spa.fl_str_mv Modelación del crecimiento de pollitas Lohmann LSL con redes neuronales y modelos de regresión no lineal
dc.title.translated.eng.fl_str_mv Modelación del crecimiento de pollitas Lohmann LSL con redes neuronales y modelos de regresión no lineal
title Modelación del crecimiento de pollitas Lohmann LSL con redes neuronales y modelos de regresión no lineal
spellingShingle Modelación del crecimiento de pollitas Lohmann LSL con redes neuronales y modelos de regresión no lineal
Connectionist Models
growth
Non-linear Models
nonlinear mixed effect model
title_short Modelación del crecimiento de pollitas Lohmann LSL con redes neuronales y modelos de regresión no lineal
title_full Modelación del crecimiento de pollitas Lohmann LSL con redes neuronales y modelos de regresión no lineal
title_fullStr Modelación del crecimiento de pollitas Lohmann LSL con redes neuronales y modelos de regresión no lineal
title_full_unstemmed Modelación del crecimiento de pollitas Lohmann LSL con redes neuronales y modelos de regresión no lineal
title_sort Modelación del crecimiento de pollitas Lohmann LSL con redes neuronales y modelos de regresión no lineal
dc.creator.fl_str_mv Galeano-Vasco, Luis
Cerón-Muñoz, Mario
dc.contributor.author.spa.fl_str_mv Galeano-Vasco, Luis
Cerón-Muñoz, Mario
dc.subject.spa.fl_str_mv Connectionist Models
growth
Non-linear Models
nonlinear mixed effect model
topic Connectionist Models
growth
Non-linear Models
nonlinear mixed effect model
publishDate 2013
dc.date.accessioned.none.fl_str_mv 2013-09-05 00:00:00
2022-07-01T20:58:00Z
dc.date.available.none.fl_str_mv 2013-09-05 00:00:00
2022-07-01T20:58:00Z
dc.date.issued.none.fl_str_mv 2013-09-05
dc.type.spa.fl_str_mv Artículo de revista
dc.type.eng.fl_str_mv Journal article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_6501
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ARTREF
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 0122-0268
dc.identifier.uri.none.fl_str_mv https://repositorio.unicordoba.edu.co/handle/ucordoba/5379
dc.identifier.doi.none.fl_str_mv 10.21897/rmvz.158
dc.identifier.url.none.fl_str_mv https://doi.org/10.21897/rmvz.158
dc.identifier.eissn.none.fl_str_mv 1909-0544
identifier_str_mv 0122-0268
10.21897/rmvz.158
1909-0544
url https://repositorio.unicordoba.edu.co/handle/ucordoba/5379
https://doi.org/10.21897/rmvz.158
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Reddish JM, Nestor KE, Lilburn MS. Effect of selection for growth on onset of sexual maturity in randombred and growth-selected lines of japanese quail. Poult Sci 2003; 82:187–191. http://dx.doi.org/10.1093/ps/82.2.187
Amira E El-Dlebshany. The relationship between age at sexual maturity and some productive traits in local chickens strain. Egypt Poult Sci 2008; 28(4):1253-1263.
Dunnington EA, Siegel PB. Age and body weight at sexual maturity in female White Leghorn. Poult Sci 1984; 63:828-830. http://dx.doi.org/10.3382/ps.0630828
Vo KV, Boone MA, Hughes BL, Knechtges JF. Effects of ambient temperature on sexual maturity. Poult Sci 1980; 59(11):2532-2537. http://dx.doi.org/10.3382/ps.0592532
Aggrey SE. Comparison of three nonlinear and spline regression models for describing chicken growth curves. Poult Sci 2002; 81:1782–1788. http://dx.doi.org/10.1093/ps/81.12.1782
Aguilar C, Cortés H, Allende R. Los modelos de simulación. Una herramienta de apoyo a la gestión pecuaria. Arch Latinoam Prod Anim 2002; 10(3): 226-231.
Heywang BW. Effect of cooling houses for growing chickens during hot weather. Poult Sci 1947; 26(1):20-24. http://dx.doi.org/10.3382/ps.0260020
Brody S. Bioenergetics and growth. New York: Reinhold Publishing Corporation; 1945.
Laird AK, Tyler SA, Barton AD. Dynamics of normal growth. Growth 1965; 29:233-248.
Aggrey SE. Logistic nonlinear mixed effects model for estimating growth parameters. Poult Sci 2009; 88:276-280. http://dx.doi.org/10.3382/ps.2008-00317
Richards FJ. A flexible growth function for empirical use. J Exp Bot 1959; 10:290-300. http://dx.doi.org/10.1093/jxb/10.2.290
Von Bertalanffy L. A quantitative theory of organic growth. Hum Biol 1938; 10:181-213.
Roush WB, Branton SL. A Comparison of fitting growth models with a genetic algorithm and nonlinear regression. Poult Sci 2005; 84(3):494-502. http://dx.doi.org/10.1093/ps/84.3.494
Roush WB, Dozier III WA, y Branton SL. Comparison of gompertz and neural network models of broiler growth. Poult Sci 2006; 85:794–797. http://dx.doi.org/10.1093/ps/85.4.794
Wang Z, Zuidhof MJ. Estimation of growth parameters using a nonlinear mixed gompertz model. Poult Sci 2004; 83:847–852. http://dx.doi.org/10.1093/ps/83.6.847
Ahmadi H, Golian A. Neural network model for egg production curve. J Anim Vet Adv 2008; 7(9):1168-1170.
Yee D, Prior MG, Florence LZ. Development of predictive models of laboratory animal growth using artificial neural networks. Comput Appl Biosci 1993; 9(5):517-22. http://dx.doi.org/10.1093/bioinformatics/9.5.517
Pitarque A, Roy JF, Ruiz JC. Redes neurales vs modelos estadísticos: Simulaciones sobre tareas de predicción y clasificación. Psicothema 1998; 19:387-400.
Savegnago RP, Nunes BN, Caetano SL, Ferraudo AS, Schmidt GS, Ledur MS, Munari DP. Comparison of logistic and neural network models to fit to the egg production curve of White Leghorn hens. Poult Sci 2011; 2011 90:705-711. http://dx.doi.org/10.3382/ps.2010-00723
Pitarque A, Ruiz JC, Roy JF. 2000. Las redes neuronales como herramientas estadísticas no paramétricas de clasificación. Psicothema 2000; 12(Supl 2):459-463.
R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2008. ISBN 3-900051-07-0; (fecha de acceso 1 de enero de 2013). URL http://www.R-project.org.
Oberstone J. Management Science: Concepts, Insights, and Applications. New York: West Publ. Co; 1990.
dc.relation.bitstream.none.fl_str_mv https://revistamvz.unicordoba.edu.co/article/download/158/227
dc.relation.citationedition.spa.fl_str_mv Núm. 3 , Año 2013 : Revista MVZ Córdoba Volumen 18(3) Septiembre-Diciembre 2013
dc.relation.citationendpage.none.fl_str_mv 3867
dc.relation.citationissue.spa.fl_str_mv 3
dc.relation.citationstartpage.none.fl_str_mv 3861
dc.relation.citationvolume.spa.fl_str_mv 18
dc.relation.ispartofjournal.spa.fl_str_mv Revista MVZ Córdoba
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad de Córdoba
dc.source.spa.fl_str_mv https://revistamvz.unicordoba.edu.co/article/view/158
institution Universidad de Córdoba
bitstream.url.fl_str_mv https://repositorio.unicordoba.edu.co/bitstreams/57e35982-3f8d-40ec-9454-5e52be65334b/download
bitstream.checksum.fl_str_mv 502710679d5dae77e429287f199164d9
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Universidad de Córdoba
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1839636181699002368
spelling Galeano-Vasco, Luisd154cec4-3acc-4bb4-9b59-bbe682823840-1Cerón-Muñoz, Marioe9d8ade5-d7c7-4d0f-ab40-34dcbdbd03dd-12013-09-05 00:00:002022-07-01T20:58:00Z2013-09-05 00:00:002022-07-01T20:58:00Z2013-09-050122-0268https://repositorio.unicordoba.edu.co/handle/ucordoba/537910.21897/rmvz.158https://doi.org/10.21897/rmvz.1581909-0544application/pdfspaUniversidad de Córdobahttps://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2https://revistamvz.unicordoba.edu.co/article/view/158Connectionist ModelsgrowthNon-linear Modelsnonlinear mixed effect modelModelación del crecimiento de pollitas Lohmann LSL con redes neuronales y modelos de regresión no linealModelación del crecimiento de pollitas Lohmann LSL con redes neuronales y modelos de regresión no linealArtículo de revistaJournal articleinfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/publishedVersionTexthttp://purl.org/redcol/resource_type/ARTREFhttp://purl.org/coar/version/c_970fb48d4fbd8a85Reddish JM, Nestor KE, Lilburn MS. Effect of selection for growth on onset of sexual maturity in randombred and growth-selected lines of japanese quail. Poult Sci 2003; 82:187–191. http://dx.doi.org/10.1093/ps/82.2.187Amira E El-Dlebshany. The relationship between age at sexual maturity and some productive traits in local chickens strain. Egypt Poult Sci 2008; 28(4):1253-1263.Dunnington EA, Siegel PB. Age and body weight at sexual maturity in female White Leghorn. Poult Sci 1984; 63:828-830. http://dx.doi.org/10.3382/ps.0630828Vo KV, Boone MA, Hughes BL, Knechtges JF. Effects of ambient temperature on sexual maturity. Poult Sci 1980; 59(11):2532-2537. http://dx.doi.org/10.3382/ps.0592532Aggrey SE. Comparison of three nonlinear and spline regression models for describing chicken growth curves. Poult Sci 2002; 81:1782–1788. http://dx.doi.org/10.1093/ps/81.12.1782Aguilar C, Cortés H, Allende R. Los modelos de simulación. Una herramienta de apoyo a la gestión pecuaria. Arch Latinoam Prod Anim 2002; 10(3): 226-231.Heywang BW. Effect of cooling houses for growing chickens during hot weather. Poult Sci 1947; 26(1):20-24. http://dx.doi.org/10.3382/ps.0260020Brody S. Bioenergetics and growth. New York: Reinhold Publishing Corporation; 1945.Laird AK, Tyler SA, Barton AD. Dynamics of normal growth. Growth 1965; 29:233-248.Aggrey SE. Logistic nonlinear mixed effects model for estimating growth parameters. Poult Sci 2009; 88:276-280. http://dx.doi.org/10.3382/ps.2008-00317Richards FJ. A flexible growth function for empirical use. J Exp Bot 1959; 10:290-300. http://dx.doi.org/10.1093/jxb/10.2.290Von Bertalanffy L. A quantitative theory of organic growth. Hum Biol 1938; 10:181-213.Roush WB, Branton SL. A Comparison of fitting growth models with a genetic algorithm and nonlinear regression. Poult Sci 2005; 84(3):494-502. http://dx.doi.org/10.1093/ps/84.3.494Roush WB, Dozier III WA, y Branton SL. Comparison of gompertz and neural network models of broiler growth. Poult Sci 2006; 85:794–797. http://dx.doi.org/10.1093/ps/85.4.794Wang Z, Zuidhof MJ. Estimation of growth parameters using a nonlinear mixed gompertz model. Poult Sci 2004; 83:847–852. http://dx.doi.org/10.1093/ps/83.6.847Ahmadi H, Golian A. Neural network model for egg production curve. J Anim Vet Adv 2008; 7(9):1168-1170.Yee D, Prior MG, Florence LZ. Development of predictive models of laboratory animal growth using artificial neural networks. Comput Appl Biosci 1993; 9(5):517-22. http://dx.doi.org/10.1093/bioinformatics/9.5.517Pitarque A, Roy JF, Ruiz JC. Redes neurales vs modelos estadísticos: Simulaciones sobre tareas de predicción y clasificación. Psicothema 1998; 19:387-400.Savegnago RP, Nunes BN, Caetano SL, Ferraudo AS, Schmidt GS, Ledur MS, Munari DP. Comparison of logistic and neural network models to fit to the egg production curve of White Leghorn hens. Poult Sci 2011; 2011 90:705-711. http://dx.doi.org/10.3382/ps.2010-00723Pitarque A, Ruiz JC, Roy JF. 2000. Las redes neuronales como herramientas estadísticas no paramétricas de clasificación. Psicothema 2000; 12(Supl 2):459-463.R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2008. ISBN 3-900051-07-0; (fecha de acceso 1 de enero de 2013). URL http://www.R-project.org.Oberstone J. Management Science: Concepts, Insights, and Applications. New York: West Publ. Co; 1990.https://revistamvz.unicordoba.edu.co/article/download/158/227Núm. 3 , Año 2013 : Revista MVZ Córdoba Volumen 18(3) Septiembre-Diciembre 201338673386118Revista MVZ CórdobaPublicationOREORE.xmltext/xml2589https://repositorio.unicordoba.edu.co/bitstreams/57e35982-3f8d-40ec-9454-5e52be65334b/download502710679d5dae77e429287f199164d9MD51ucordoba/5379oai:repositorio.unicordoba.edu.co:ucordoba/53792023-10-06 00:47:00.854https://creativecommons.org/licenses/by-nc-sa/4.0/metadata.onlyhttps://repositorio.unicordoba.edu.coRepositorio Universidad de Córdobabdigital@metabiblioteca.com