Propiedades estructurales, energéticas y electrónicas de nuevas monocapas hexagonales de TiO2: un estudio ab initio

En el presente trabajo se realizó el estudio de las propiedades estructurales, termodinámicas y electrónicas del dióxido de titanio en fase hexagonal y trigonal prístinas en volumen y monocapa, utilizando la Teoría del Funcional de la Densidad (DFT) en la aproximación de GGA-PBE junto a pseudopotenc...

Full description

Autores:
Arteaga Calderón, Mario Luis
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2024
Institución:
Universidad de Córdoba
Repositorio:
Repositorio Institucional Unicórdoba
Idioma:
spa
OAI Identifier:
oai:repositorio.unicordoba.edu.co:ucordoba/8176
Acceso en línea:
https://repositorio.unicordoba.edu.co/handle/ucordoba/8176
https://repositorio.unicordoba.edu.co
Palabra clave:
Monocapas
Dioxido de Titanio
TiO2
Hexagonal
DFT
Energéticos
Exfoliación
Bandgap
Monolayer
Energetics
Exfoliation
Hexagonal
DFT
Titanium dioxide
TiO2
Bandgap
Rights
openAccess
License
Copyright Universidad de Córdoba, 2024
id UCORDOBA2_69d42a568834db1eb83f8cad77e1d1f3
oai_identifier_str oai:repositorio.unicordoba.edu.co:ucordoba/8176
network_acronym_str UCORDOBA2
network_name_str Repositorio Institucional Unicórdoba
repository_id_str
dc.title.spa.fl_str_mv Propiedades estructurales, energéticas y electrónicas de nuevas monocapas hexagonales de TiO2: un estudio ab initio
title Propiedades estructurales, energéticas y electrónicas de nuevas monocapas hexagonales de TiO2: un estudio ab initio
spellingShingle Propiedades estructurales, energéticas y electrónicas de nuevas monocapas hexagonales de TiO2: un estudio ab initio
Monocapas
Dioxido de Titanio
TiO2
Hexagonal
DFT
Energéticos
Exfoliación
Bandgap
Monolayer
Energetics
Exfoliation
Hexagonal
DFT
Titanium dioxide
TiO2
Bandgap
title_short Propiedades estructurales, energéticas y electrónicas de nuevas monocapas hexagonales de TiO2: un estudio ab initio
title_full Propiedades estructurales, energéticas y electrónicas de nuevas monocapas hexagonales de TiO2: un estudio ab initio
title_fullStr Propiedades estructurales, energéticas y electrónicas de nuevas monocapas hexagonales de TiO2: un estudio ab initio
title_full_unstemmed Propiedades estructurales, energéticas y electrónicas de nuevas monocapas hexagonales de TiO2: un estudio ab initio
title_sort Propiedades estructurales, energéticas y electrónicas de nuevas monocapas hexagonales de TiO2: un estudio ab initio
dc.creator.fl_str_mv Arteaga Calderón, Mario Luis
dc.contributor.advisor.none.fl_str_mv Ortega López, Cesar
Casiano Jimenez, Gladys Rocio
dc.contributor.author.none.fl_str_mv Arteaga Calderón, Mario Luis
dc.contributor.jury.none.fl_str_mv Murillo García, Jean Fred
Espriella Vélez, Nicolas Antonio de la
dc.subject.proposal.spa.fl_str_mv Monocapas
Dioxido de Titanio
TiO2
Hexagonal
DFT
Energéticos
Exfoliación
Bandgap
topic Monocapas
Dioxido de Titanio
TiO2
Hexagonal
DFT
Energéticos
Exfoliación
Bandgap
Monolayer
Energetics
Exfoliation
Hexagonal
DFT
Titanium dioxide
TiO2
Bandgap
dc.subject.keywords.eng.fl_str_mv Monolayer
Energetics
Exfoliation
Hexagonal
DFT
Titanium dioxide
TiO2
Bandgap
description En el presente trabajo se realizó el estudio de las propiedades estructurales, termodinámicas y electrónicas del dióxido de titanio en fase hexagonal y trigonal prístinas en volumen y monocapa, utilizando la Teoría del Funcional de la Densidad (DFT) en la aproximación de GGA-PBE junto a pseudopotenciales atómicos, una base de ondas planas y correcciones de dispersión D2 y D3 para dar cuenta de las interacciones de Van der Waals. Las monocapas se modelan utilizando el esquema de slab periódico. Una vez se optimizan los parámetros estructurales en cada fase, se determinan las propiedades estructurales, termodinámicas, electrónicas y magnéticas en cada fase en el volumen y monocapa. Los sistemas en volumen y monocapa muestran estabilidad energética y termodinámica por lo que su formación en el laboratorio teóricamente resulta posible. Se encontraron valores de energía de enlace intercapas de 18.384 meV/Å^2 y 12.519 meV/Å^2 y exfoliación de 18.500 meV/Å^2 y 12.519 meV/Å^2 para la fase hexagonal y trigonal, respectivamente. Las características electrónicas indican que el dióxido de titanio en fase hexagonal (H-TiO2) y trigonal (T-TiO2) es semiconductor de bandgap indirecto. En volumen, la fase hexagonal presenta un bandgap indirecto de 0.523 eV y la fase trigonal un bandgap indirecto de 2.487 eV. Las monocapas presentan un bandgap indirecto de 1.220 eV para la fase hexagonal y un bandgap indirecto de 2.660 eV para la fase trigonal, se observó que el bandgap de los sistemas variaba al disminuir la dimensionalidad.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-02-01T14:00:21Z
dc.date.available.none.fl_str_mv 2024-02-01T14:00:21Z
dc.date.issued.none.fl_str_mv 2024-02-01
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.none.fl_str_mv Text
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unicordoba.edu.co/handle/ucordoba/8176
dc.identifier.instname.none.fl_str_mv Univeridad de Córdoba
dc.identifier.repourl.none.fl_str_mv https://repositorio.unicordoba.edu.co
url https://repositorio.unicordoba.edu.co/handle/ucordoba/8176
https://repositorio.unicordoba.edu.co
identifier_str_mv Univeridad de Córdoba
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv 1. Sang, L., Zhao, Y., & Burda, C. (2014). TiO2Nanoparticles as Functional Building Blocks. Chemical Reviews, 114(19), 9283–9318. https://doi.org/10.1021/cr400629p
2. O’Regan, B. C., & Grätzel, M. (1991). A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 353(6346), 737–740. https://doi.org/10.1038/353737a0
3. Allen, M. J., Tung, V., & Kaner, R. B. (2009). Honeycomb Carbon: A Review of Graphene. Chemical Reviews, 110(1), 132–145. https://doi.org/10.1021/cr900070d
4. Gan, X., Gao, X., Qiu, J., He, P., Li, X., & Xiao, X. (2011). TiO2 Nanorod-Derived Synthesis of Upstanding Hexagonal Kassite Nanosheet Arrays: An Intermediate Route to Novel Nanoporous TiO2 Nanosheet Arrays. Crystal Growth & Design, 12(1), 289–296. https://doi.org/10.1021/cg2010612
5. Zheng, Y., Hu, X., & Yang, P. (2018). Phase and morphology transformation from assembled hexagonal HTiOF3 prisms to {001} faceted TiO2 nanosheets. CrystEngComm, 20(31), 4485–4491. https://doi.org/10.1039/c8ce00870a
6. Zhang, B., Xu, K., Yao, Q., Jannat, A., Ren, G., Field, M. R., Wen, X., Zhou, C., Zavabeti, A., & Ou, J. Z. (2021). Hexagonal metal oxide monolayers derived from the metal–gas interface. Nature Materials, 20(8), 1073–1078. https://doi.org/10.1038/s41563-020-00899-9
7. Kim, I., Lee, G., & Choi, M. (2020). First-principles investigation of two-dimensional 1T−TiO2. Physical Review Materials, 4(9). https://doi.org/10.1103/physrevmaterials.4.094001
8. Patel, V., Sonvane, Y., & Thakor, P. B. (2021). Structural and electrical properties of TiO2 monolayers using first-principle calculations. Materials Today: Proceedings, 47, 563–566. https://doi.org/10.1016/j.matpr.2020.10.645
9. Lu, Y., Xu, B., Zhang, A. H., Yang, M., & Feng, Y. P. (2011). Hexagonal TIO2 for photoelectrochemical applications. Journal of Physical Chemistry C, 115(36), 18042–18045. https://doi.org/10.1021/jp205439x
10. Rasmussen, F., & Thygesen, K. S. (2015). Computational 2D Materials Database: Electronic structure of Transition-Metal dichalcogenides and Oxides. Journal of Physical Chemistry C, 119(23), 13169–13183. https://doi.org/10.1021/acs.jpcc.5b02950
11. mp-1426806: TiO2 (Trigonal, R-3m, 166). (n.d.). Materials Project. https://next-gen.materialsproject.org/materials/mp-1426806
12. Hohenberg, P. C., & Kohn, W. (1964). Inhomogeneous electron gas. Physical Review, 136(3B), B864–B871. https://doi.org/10.1103/physrev.136.b864
13. Kohn, W., & Sham, L. J. (1965). Self-Consistent equations including exchange and correlation effects. Physical Review, 140(4A), A1133–A1138. https://doi.org/10.1103/physrev.140.a1133
14. Perdew, J. P., & Zunger, A. (1981). Self-interaction correction to density-functional approximations for many-electron systems. Physical Review, 23(10), 5048–5079. https://doi.org/10.1103/physrevb.23.5048
15. Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77(18), 3865–3868. https://doi.org/10.1103/physrevlett.77.3865
16. Hamann, D. R., Schlüter, M., & Chiang, C. Y. (1979). Norm-Conserving pseudopotentials. Physical Review Letters, 43(20), 1494–1497. https://doi.org/10.1103/physrevlett.43.1494
17. Bachelet, G. B., Hamann, D. R., & Schlüter, M. (1982). Pseudopotentials that work: From H to Pu. Physical Review, 26(8), 4199–4228. https://doi.org/10.1103/physrevb.26.4199
18. Vanderbilt, D. (1990). Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Review, 41(11), 7892–7895. https://doi.org/10.1103/physrevb.41.7892
19. Shimizu, K. D. (2013). A solution to dispersion interactions. Nature Chemistry, 5(12), 989–990. https://doi.org/10.1038/nchem.1808
20. Grimme, S. (2006). Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction. Journal of Computational Chemistry, 27(15), 1787–1799. https://doi.org/10.1002/jcc.20495
21. Grimme, S., Antony, J., Ehrlich, S., & Krieg, H. (2010). A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. Journal of Chemical Physics, 132(15). https://doi.org/10.1063/1.3382344
22. Bader, R. F. W. (1985). Atoms in molecules. Accounts of Chemical Research, 18(1), 9–15. https://doi.org/10.1021/ar00109a003
23. Giannozzi, P., Andreussi, O., Brumme, T., Bunău, O., Nardelli, M. B., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Cococcioni, M., Colonna, N., Carnimeo, I., Corso, A. D., De Gironcoli, S., Delugas, P., DiStasio, R. A., Ferretti, A., Floris, A., Fratesi, G., . . . Baroni, S. (2017). Advanced capabilities for materials modelling with Quantum ESPRESSO. Journal of Physics: Condensed Matter, 29(46), 465901. https://doi.org/10.1088/1361-648x/aa8f79
24. Giannozzi, P., Baseggio, O., Bonfà, P., Brunato, D., Car, R., Carnimeo, I., Cavazzoni, C., De Gironcoli, S., Delugas, P., Ruffino, F. F., Ferretti, A., Marzari, N., Timrov, I., Urru, A., & Baroni, S. (2020). Quantum ESPRESSO toward the exascale. Journal of Chemical Physics, 152(15). https://doi.org/10.1063/5.0005082
25. Methfessel, M., & Paxton, A. (1989). High-precision sampling for Brillouin-zone integration in metals. Physical Review, 40(6), 3616–3621. https://doi.org/10.1103/physrevb.40.3616
26. Ribeiro-Soares, J., Almeida, R., Barros, E. B., Araújo, P. T., Dresselhaus, M. S., Cançado, L. G., & Jório, A. (2014). Group theory analysis of phonons in two-dimensional transition metal dichalcogenides. Physical Review B, 90(11). https://doi.org/10.1103/physrevb.90.115438
27. Häglund, J., Guillermet, F. F., Grimvall, G., & Körling, M. (1993). Theory of bonding in transition-metal carbides and nitrides. Physical Review, 48(16), 11685–11691. https://doi.org/10.1103/physrevb.48.11685
28. Björkman, T., Guļāns, A., Krasheninnikov, A. V., & Nieminen, R. M. (2012). van der Waals Bonding in Layered Compounds from Advanced Density-Functional First-Principles Calculations. Physical Review Letters, 108(23). https://doi.org/10.1103/physrevlett.108.235502
29. Grande, R., Menezes, M. G., & Capaz, R. B. (2019). Layer breathing and shear modes in multilayer graphene: a DFT-vdW study. Journal of Physics: Condensed Matter, 31(29), 295301. https://doi.org/10.1088/1361-648x/ab1995
30. An, Y., Hou, Y., Gong, S., Wu, R., Zhao, C., Wang, T., Jiao, Z., Wang, H., & Liu, W. (2020). Evaluating the exfoliation of two-dimensional materials with a Green’s function surface model. Physical Review, 101(7). https://doi.org/10.1103/physrevb.101.075416
31. Jung, J. H., Park, C., & Ihm, J. (2018). A Rigorous Method of Calculating Exfoliation Energies from First Principles. Nano Letters, 18(5), 2759–2765. https://doi.org/10.1021/acs.nanolett.7b04201
32. Zhuang, H., & Hennig, R. G. (2013). Computational search for Single-Layer Transition-Metal dichalcogenide photocatalysts. The Journal of Physical Chemistry C, 117(40), 20440–20445. https://doi.org/10.1021/jp405808a
33. Pauling, L. (1932). THE NATURE OF THE CHEMICAL BOND. IV. THE ENERGY OF SINGLE BONDS AND THE RELATIVE ELECTRONEGATIVITY OF ATOMS. Journal of the American Chemical Society, 54(9), 3570–3582. https://doi.org/10.1021/ja01348a011
dc.rights.none.fl_str_mv Copyright Universidad de Córdoba, 2024
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.license.none.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Copyright Universidad de Córdoba, 2024
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de Córdoba
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias Básicas
dc.publisher.place.none.fl_str_mv Montería, Córdoba, Colombia
dc.publisher.program.none.fl_str_mv Física
publisher.none.fl_str_mv Universidad de Córdoba
institution Universidad de Córdoba
bitstream.url.fl_str_mv https://repositorio.unicordoba.edu.co/bitstreams/bad4f126-cdd8-476a-8155-0ca82f255fe4/download
https://repositorio.unicordoba.edu.co/bitstreams/66c27188-7db5-4808-b382-46484cd895b2/download
https://repositorio.unicordoba.edu.co/bitstreams/cc0ae758-0a0d-4732-830f-ea97ed3458b9/download
https://repositorio.unicordoba.edu.co/bitstreams/0b75cd2d-b6ae-47df-ad0f-198efdaf2bd8/download
https://repositorio.unicordoba.edu.co/bitstreams/cd06c34c-4bf8-4919-bd3a-d27960122701/download
https://repositorio.unicordoba.edu.co/bitstreams/356761fd-5ce2-4a46-9e9d-fc6f33ccdf2b/download
https://repositorio.unicordoba.edu.co/bitstreams/6d57bbfb-e995-4fec-b9fa-d4d39f498d2d/download
bitstream.checksum.fl_str_mv 73a5432e0b76442b22b026844140d683
d8423734bf102d79fa2175e222cd4905
f12a0dfc9815f82ec8b93779f2d51deb
29e27a47d8c59e98940394b40085e488
6d93d3216dc4a7f5df47d4876fbec4d3
00c92abaef729e3ef2ec5f6d7103de39
7126709df5b469b0f5a35853ef11ea78
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de Córdoba
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1839636098909732864
spelling Ortega López, Cesar31f464ec-e77f-4e98-a7e6-00f948ccc3b2-1Casiano Jimenez, Gladys Rociode5bb731-7778-4f88-88da-76934ab30bad600Arteaga Calderón, Mario Luis692ed68c-4da1-4a63-aa7f-c11c5c7b0ab1-1Murillo García, Jean Fredbf362242-ed94-481b-be6f-3debc5e9bb7e-1Espriella Vélez, Nicolas Antonio de la421da0b3-24ed-44f7-b0ed-42afa0f7d569-12024-02-01T14:00:21Z2024-02-01T14:00:21Z2024-02-01https://repositorio.unicordoba.edu.co/handle/ucordoba/8176Univeridad de Córdobahttps://repositorio.unicordoba.edu.coEn el presente trabajo se realizó el estudio de las propiedades estructurales, termodinámicas y electrónicas del dióxido de titanio en fase hexagonal y trigonal prístinas en volumen y monocapa, utilizando la Teoría del Funcional de la Densidad (DFT) en la aproximación de GGA-PBE junto a pseudopotenciales atómicos, una base de ondas planas y correcciones de dispersión D2 y D3 para dar cuenta de las interacciones de Van der Waals. Las monocapas se modelan utilizando el esquema de slab periódico. Una vez se optimizan los parámetros estructurales en cada fase, se determinan las propiedades estructurales, termodinámicas, electrónicas y magnéticas en cada fase en el volumen y monocapa. Los sistemas en volumen y monocapa muestran estabilidad energética y termodinámica por lo que su formación en el laboratorio teóricamente resulta posible. Se encontraron valores de energía de enlace intercapas de 18.384 meV/Å^2 y 12.519 meV/Å^2 y exfoliación de 18.500 meV/Å^2 y 12.519 meV/Å^2 para la fase hexagonal y trigonal, respectivamente. Las características electrónicas indican que el dióxido de titanio en fase hexagonal (H-TiO2) y trigonal (T-TiO2) es semiconductor de bandgap indirecto. En volumen, la fase hexagonal presenta un bandgap indirecto de 0.523 eV y la fase trigonal un bandgap indirecto de 2.487 eV. Las monocapas presentan un bandgap indirecto de 1.220 eV para la fase hexagonal y un bandgap indirecto de 2.660 eV para la fase trigonal, se observó que el bandgap de los sistemas variaba al disminuir la dimensionalidad.Introducción .............................................................................. 4Marco Teórico ........................................................................... 6El problema de muchos cuerpos ........................................................................... 6Conjunto base de ondas planas........................................................................... 9Conclusiones........................................................................... 42Bibliografías........................................................................... 44Anexos........................................................................... 47Teoría Funcional de la Densidad (DFT)........................................................................... 7Pseudopotenciales........................................................................... 10Dispersión........................................................................... 11Esquema auto-consistente........................................................................... 13Método y detalles computacionales ................................................ 15Resultados y análisis........................................................................... 16H-TiO2 y T-TiO2 en volumen........................................................................... 16Parámetros estructurales y estabilidad del sistema H-TiO2 y T-TiO2 en volumen........................................................................... 20Propiedades electrónicas del sistema H-TiO2 y T-TiO2 en volumen............... 24Distribución de carga........................................................................... 29Monocapas de H-TiO2 y T-TiO2........................................................................... 30Parámetros estructurales y estabilidad de las monocapas H-TiO2 y T-TiO2.... 33Propiedades electrónicas de las monocapas H-TiO2 y T-TiO2................ 38Distribución de carga........................................................................... 41Optimización de parámetros de control y estructurales en volumen........... 47Optimización de parámetros estructurales y de control en las monocapas.............49Esquema de slab de superficie para la exfoliación............... 51Ecuaciones para energía de exfoliación........................ 52Descripción electrónica en el volumen y monocapas.................................. 52PregradoFísico(a)Trabajos de Investigación y/o Extensiónapplication/pdfspaUniversidad de CórdobaFacultad de Ciencias BásicasMontería, Córdoba, ColombiaFísicaCopyright Universidad de Córdoba, 2024https://creativecommons.org/licenses/by-nc-nd/4.0/Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Propiedades estructurales, energéticas y electrónicas de nuevas monocapas hexagonales de TiO2: un estudio ab initioTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/acceptedVersionText1. Sang, L., Zhao, Y., & Burda, C. (2014). TiO2Nanoparticles as Functional Building Blocks. Chemical Reviews, 114(19), 9283–9318. https://doi.org/10.1021/cr400629p2. O’Regan, B. C., & Grätzel, M. (1991). A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 353(6346), 737–740. https://doi.org/10.1038/353737a03. Allen, M. J., Tung, V., & Kaner, R. B. (2009). Honeycomb Carbon: A Review of Graphene. Chemical Reviews, 110(1), 132–145. https://doi.org/10.1021/cr900070d4. Gan, X., Gao, X., Qiu, J., He, P., Li, X., & Xiao, X. (2011). TiO2 Nanorod-Derived Synthesis of Upstanding Hexagonal Kassite Nanosheet Arrays: An Intermediate Route to Novel Nanoporous TiO2 Nanosheet Arrays. Crystal Growth & Design, 12(1), 289–296. https://doi.org/10.1021/cg20106125. Zheng, Y., Hu, X., & Yang, P. (2018). Phase and morphology transformation from assembled hexagonal HTiOF3 prisms to {001} faceted TiO2 nanosheets. CrystEngComm, 20(31), 4485–4491. https://doi.org/10.1039/c8ce00870a6. Zhang, B., Xu, K., Yao, Q., Jannat, A., Ren, G., Field, M. R., Wen, X., Zhou, C., Zavabeti, A., & Ou, J. Z. (2021). Hexagonal metal oxide monolayers derived from the metal–gas interface. Nature Materials, 20(8), 1073–1078. https://doi.org/10.1038/s41563-020-00899-97. Kim, I., Lee, G., & Choi, M. (2020). First-principles investigation of two-dimensional 1T−TiO2. Physical Review Materials, 4(9). https://doi.org/10.1103/physrevmaterials.4.0940018. Patel, V., Sonvane, Y., & Thakor, P. B. (2021). Structural and electrical properties of TiO2 monolayers using first-principle calculations. Materials Today: Proceedings, 47, 563–566. https://doi.org/10.1016/j.matpr.2020.10.6459. Lu, Y., Xu, B., Zhang, A. H., Yang, M., & Feng, Y. P. (2011). Hexagonal TIO2 for photoelectrochemical applications. Journal of Physical Chemistry C, 115(36), 18042–18045. https://doi.org/10.1021/jp205439x10. Rasmussen, F., & Thygesen, K. S. (2015). Computational 2D Materials Database: Electronic structure of Transition-Metal dichalcogenides and Oxides. Journal of Physical Chemistry C, 119(23), 13169–13183. https://doi.org/10.1021/acs.jpcc.5b0295011. mp-1426806: TiO2 (Trigonal, R-3m, 166). (n.d.). Materials Project. https://next-gen.materialsproject.org/materials/mp-142680612. Hohenberg, P. C., & Kohn, W. (1964). Inhomogeneous electron gas. Physical Review, 136(3B), B864–B871. https://doi.org/10.1103/physrev.136.b86413. Kohn, W., & Sham, L. J. (1965). Self-Consistent equations including exchange and correlation effects. Physical Review, 140(4A), A1133–A1138. https://doi.org/10.1103/physrev.140.a113314. Perdew, J. P., & Zunger, A. (1981). Self-interaction correction to density-functional approximations for many-electron systems. Physical Review, 23(10), 5048–5079. https://doi.org/10.1103/physrevb.23.504815. Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77(18), 3865–3868. https://doi.org/10.1103/physrevlett.77.386516. Hamann, D. R., Schlüter, M., & Chiang, C. Y. (1979). Norm-Conserving pseudopotentials. Physical Review Letters, 43(20), 1494–1497. https://doi.org/10.1103/physrevlett.43.149417. Bachelet, G. B., Hamann, D. R., & Schlüter, M. (1982). Pseudopotentials that work: From H to Pu. Physical Review, 26(8), 4199–4228. https://doi.org/10.1103/physrevb.26.419918. Vanderbilt, D. (1990). Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Review, 41(11), 7892–7895. https://doi.org/10.1103/physrevb.41.789219. Shimizu, K. D. (2013). A solution to dispersion interactions. Nature Chemistry, 5(12), 989–990. https://doi.org/10.1038/nchem.180820. Grimme, S. (2006). Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction. Journal of Computational Chemistry, 27(15), 1787–1799. https://doi.org/10.1002/jcc.2049521. Grimme, S., Antony, J., Ehrlich, S., & Krieg, H. (2010). A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. Journal of Chemical Physics, 132(15). https://doi.org/10.1063/1.338234422. Bader, R. F. W. (1985). Atoms in molecules. Accounts of Chemical Research, 18(1), 9–15. https://doi.org/10.1021/ar00109a00323. Giannozzi, P., Andreussi, O., Brumme, T., Bunău, O., Nardelli, M. B., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Cococcioni, M., Colonna, N., Carnimeo, I., Corso, A. D., De Gironcoli, S., Delugas, P., DiStasio, R. A., Ferretti, A., Floris, A., Fratesi, G., . . . Baroni, S. (2017). Advanced capabilities for materials modelling with Quantum ESPRESSO. Journal of Physics: Condensed Matter, 29(46), 465901. https://doi.org/10.1088/1361-648x/aa8f7924. Giannozzi, P., Baseggio, O., Bonfà, P., Brunato, D., Car, R., Carnimeo, I., Cavazzoni, C., De Gironcoli, S., Delugas, P., Ruffino, F. F., Ferretti, A., Marzari, N., Timrov, I., Urru, A., & Baroni, S. (2020). Quantum ESPRESSO toward the exascale. Journal of Chemical Physics, 152(15). https://doi.org/10.1063/5.000508225. Methfessel, M., & Paxton, A. (1989). High-precision sampling for Brillouin-zone integration in metals. Physical Review, 40(6), 3616–3621. https://doi.org/10.1103/physrevb.40.361626. Ribeiro-Soares, J., Almeida, R., Barros, E. B., Araújo, P. T., Dresselhaus, M. S., Cançado, L. G., & Jório, A. (2014). Group theory analysis of phonons in two-dimensional transition metal dichalcogenides. Physical Review B, 90(11). https://doi.org/10.1103/physrevb.90.11543827. Häglund, J., Guillermet, F. F., Grimvall, G., & Körling, M. (1993). Theory of bonding in transition-metal carbides and nitrides. Physical Review, 48(16), 11685–11691. https://doi.org/10.1103/physrevb.48.1168528. Björkman, T., Guļāns, A., Krasheninnikov, A. V., & Nieminen, R. M. (2012). van der Waals Bonding in Layered Compounds from Advanced Density-Functional First-Principles Calculations. Physical Review Letters, 108(23). https://doi.org/10.1103/physrevlett.108.23550229. Grande, R., Menezes, M. G., & Capaz, R. B. (2019). Layer breathing and shear modes in multilayer graphene: a DFT-vdW study. Journal of Physics: Condensed Matter, 31(29), 295301. https://doi.org/10.1088/1361-648x/ab199530. An, Y., Hou, Y., Gong, S., Wu, R., Zhao, C., Wang, T., Jiao, Z., Wang, H., & Liu, W. (2020). Evaluating the exfoliation of two-dimensional materials with a Green’s function surface model. Physical Review, 101(7). https://doi.org/10.1103/physrevb.101.07541631. Jung, J. H., Park, C., & Ihm, J. (2018). A Rigorous Method of Calculating Exfoliation Energies from First Principles. Nano Letters, 18(5), 2759–2765. https://doi.org/10.1021/acs.nanolett.7b0420132. Zhuang, H., & Hennig, R. G. (2013). Computational search for Single-Layer Transition-Metal dichalcogenide photocatalysts. The Journal of Physical Chemistry C, 117(40), 20440–20445. https://doi.org/10.1021/jp405808a33. Pauling, L. (1932). THE NATURE OF THE CHEMICAL BOND. IV. THE ENERGY OF SINGLE BONDS AND THE RELATIVE ELECTRONEGATIVITY OF ATOMS. Journal of the American Chemical Society, 54(9), 3570–3582. https://doi.org/10.1021/ja01348a011MonocapasDioxido de TitanioTiO2HexagonalDFTEnergéticosExfoliaciónBandgapMonolayerEnergeticsExfoliationHexagonalDFTTitanium dioxideTiO2BandgapPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://repositorio.unicordoba.edu.co/bitstreams/bad4f126-cdd8-476a-8155-0ca82f255fe4/download73a5432e0b76442b22b026844140d683MD51ORIGINALArteagaCalderonMario.pdfArteagaCalderonMario.pdfapplication/pdf3885860https://repositorio.unicordoba.edu.co/bitstreams/66c27188-7db5-4808-b382-46484cd895b2/downloadd8423734bf102d79fa2175e222cd4905MD52Autorizacion.pdfAutorizacion.pdfapplication/pdf6214295https://repositorio.unicordoba.edu.co/bitstreams/cc0ae758-0a0d-4732-830f-ea97ed3458b9/downloadf12a0dfc9815f82ec8b93779f2d51debMD53TEXTArteagaCalderonMario.pdf.txtArteagaCalderonMario.pdf.txtExtracted texttext/plain85523https://repositorio.unicordoba.edu.co/bitstreams/0b75cd2d-b6ae-47df-ad0f-198efdaf2bd8/download29e27a47d8c59e98940394b40085e488MD54Autorizacion.pdf.txtAutorizacion.pdf.txtExtracted texttext/plain6https://repositorio.unicordoba.edu.co/bitstreams/cd06c34c-4bf8-4919-bd3a-d27960122701/download6d93d3216dc4a7f5df47d4876fbec4d3MD56THUMBNAILArteagaCalderonMario.pdf.jpgArteagaCalderonMario.pdf.jpgGenerated Thumbnailimage/jpeg5822https://repositorio.unicordoba.edu.co/bitstreams/356761fd-5ce2-4a46-9e9d-fc6f33ccdf2b/download00c92abaef729e3ef2ec5f6d7103de39MD55Autorizacion.pdf.jpgAutorizacion.pdf.jpgGenerated Thumbnailimage/jpeg13369https://repositorio.unicordoba.edu.co/bitstreams/6d57bbfb-e995-4fec-b9fa-d4d39f498d2d/download7126709df5b469b0f5a35853ef11ea78MD57ucordoba/8176oai:repositorio.unicordoba.edu.co:ucordoba/81762024-05-28 12:42:23.824https://creativecommons.org/licenses/by-nc-nd/4.0/Copyright Universidad de Córdoba, 2024open.accesshttps://repositorio.unicordoba.edu.coRepositorio Universidad de Córdobabdigital@metabiblioteca.comPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K