Digestibilidad in vitro del dsRNA específico por enzimas del tracto digestivo del camarón Litopenaeus vannamei

Autores:
Álvarez-Sánchez, Ana R
Nolasco-Soria, Héctor
Mejía-Ruíz, Humberto
Tipo de recurso:
Article of journal
Fecha de publicación:
2017
Institución:
Universidad de Córdoba
Repositorio:
Repositorio Institucional Unicórdoba
Idioma:
spa
OAI Identifier:
oai:repositorio.unicordoba.edu.co:ucordoba/5839
Acceso en línea:
https://repositorio.unicordoba.edu.co/handle/ucordoba/5839
https://doi.org/10.21897/rmvz.1024
Palabra clave:
Aquaculture
balanced feed
digestive gland
nucleic acids
WSSV
Ácidos nucleicos
acuacultura
alimento balanceado
glándula digestiva
WSSV
Rights
openAccess
License
https://creativecommons.org/licenses/by-nc-sa/4.0/
id UCORDOBA2_6967d712af54b2cf2ce123478c7c0add
oai_identifier_str oai:repositorio.unicordoba.edu.co:ucordoba/5839
network_acronym_str UCORDOBA2
network_name_str Repositorio Institucional Unicórdoba
repository_id_str
dc.title.spa.fl_str_mv Digestibilidad in vitro del dsRNA específico por enzimas del tracto digestivo del camarón Litopenaeus vannamei
dc.title.translated.eng.fl_str_mv In vitro digestibility of specific dsRNA by enzymes of digestive tract of shrimp Litopenaeus vannamei
title Digestibilidad in vitro del dsRNA específico por enzimas del tracto digestivo del camarón Litopenaeus vannamei
spellingShingle Digestibilidad in vitro del dsRNA específico por enzimas del tracto digestivo del camarón Litopenaeus vannamei
Aquaculture
balanced feed
digestive gland
nucleic acids
WSSV
Ácidos nucleicos
acuacultura
alimento balanceado
glándula digestiva
WSSV
title_short Digestibilidad in vitro del dsRNA específico por enzimas del tracto digestivo del camarón Litopenaeus vannamei
title_full Digestibilidad in vitro del dsRNA específico por enzimas del tracto digestivo del camarón Litopenaeus vannamei
title_fullStr Digestibilidad in vitro del dsRNA específico por enzimas del tracto digestivo del camarón Litopenaeus vannamei
title_full_unstemmed Digestibilidad in vitro del dsRNA específico por enzimas del tracto digestivo del camarón Litopenaeus vannamei
title_sort Digestibilidad in vitro del dsRNA específico por enzimas del tracto digestivo del camarón Litopenaeus vannamei
dc.creator.fl_str_mv Álvarez-Sánchez, Ana R
Nolasco-Soria, Héctor
Mejía-Ruíz, Humberto
dc.contributor.author.spa.fl_str_mv Álvarez-Sánchez, Ana R
Nolasco-Soria, Héctor
Mejía-Ruíz, Humberto
dc.subject.eng.fl_str_mv Aquaculture
balanced feed
digestive gland
nucleic acids
WSSV
topic Aquaculture
balanced feed
digestive gland
nucleic acids
WSSV
Ácidos nucleicos
acuacultura
alimento balanceado
glándula digestiva
WSSV
dc.subject.spa.fl_str_mv Ácidos nucleicos
acuacultura
alimento balanceado
glándula digestiva
WSSV
publishDate 2017
dc.date.accessioned.none.fl_str_mv 2017-05-02 00:00:00
2022-07-01T21:00:23Z
dc.date.available.none.fl_str_mv 2017-05-02 00:00:00
2022-07-01T21:00:23Z
dc.date.issued.none.fl_str_mv 2017-05-02
dc.type.spa.fl_str_mv Artículo de revista
dc.type.eng.fl_str_mv Journal article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_6501
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ARTREF
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 0122-0268
dc.identifier.uri.none.fl_str_mv https://repositorio.unicordoba.edu.co/handle/ucordoba/5839
dc.identifier.doi.none.fl_str_mv 10.21897/rmvz.1024
dc.identifier.url.none.fl_str_mv https://doi.org/10.21897/rmvz.1024
dc.identifier.eissn.none.fl_str_mv 1909-0544
identifier_str_mv 0122-0268
10.21897/rmvz.1024
1909-0544
url https://repositorio.unicordoba.edu.co/handle/ucordoba/5839
https://doi.org/10.21897/rmvz.1024
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Taju G, Madan N, Abdul-Majeed S, Raj-Kumar T, Thamizhvanan S, Otta S, Sahul-Hameed AS. Immune responses of whiteleg shrimp, Litopenaeus vannamei (Boone, 1931), to bacterially expressed dsRNA specific to VP28 gene of white spot syndrome virus. J Fish Dis 2015; 38(5):451-465. https://doi.org/10.1111/jfd.12256
Sudhakaran RT, Mekata T, Kono M, Inada S, Okugawa M, Yoshimine T et al. Double-stranded RNA-mediated silencing of the White Spot Syndrome Virus VP28 gene in Kuruma shrimp, Marsupenaeus japonicus. Aquac Res 2011; 42(8):1153–1162. https://doi.org/10.1111/j.1365-2109.2010.02703.x
Robalino J, Bartlett T, Shepard EF, Prior S, Jaramillo G, Scura E, et al. Double-stranded RNA induces sequence-specific antiviral silencing in addition to non-specific immunity in marine shrimp: convergence of RNA interference and innate immunity in the invertebrate antiviral response? J Virology 2005; 79(21):13561–13571. https://doi.org/10.1128/JVI.79.21.13561-13571.2005
Kim CS, Kosuke Z, Nam YK, Kim SK, Kim KH. Protection of shrimp (Penaeus chinensis) against white spot syndrome virus (WSSV) challenge by double-stranded RNA. Fish Shellfish Immunol 2007; 23(1):242–246. https://doi.org/10.1016/j.fsi.2006.10.012
Xu J, Han F, Zhang X. Silencing shrimp white spot syndrome virus (WSSV) genes by siRNA. Antiviral Res 2007; 73(2):126–131. https://doi.org/10.1016/j.antiviral.2006.08.007
Escobedo-Bonilla CM, Vega S, Mejia H. Efficacy of double-stranded RNA against whites pot syndrome virus (WSSV) non-structural (orf89, wsv191) and structural (vp28, vp26) genes in the Pacific white shrimp. J ksus 2015; 27(2):182–188.
Sarathi M, Simon MC, Venkatesan C, Thomas J, Ravi M, Madan N, et al. Efficacy of bacterially expressed dsRNA specific to different structural genes of White Spot Syndrome Virus (WSSV) in protection of shrimp from WSSV infection. J Fish Dis 2010; 33(7):603–607. https://doi.org/10.1111/j.1365-2761.2010.01157.x
LaFauce K, Owens L. RNA interference with special reference to combating viruses of crustacean. Indian J Virol 2012; 23(2):226-243. https://doi.org/10.1007/s13337-012-0084-1
Papić L, García K, Romero J. Avances y limitaciones en el uso de los dsRNA como estrategias de control y prevención de enfermedades virales en sistemas acuícolas. Lat Am J Aquat Res2015; 43(3):388-401.
Agrawal N, Dasaradhi PV, Mohmmed A, Malhotra P, Bhatnagar RK, Mukherjee SK. RNA interference: biology, mechanism, and applications. Microbiol. Mol Biol Rev 2003; 67(4):657–685. https://doi.org/10.1128/MMBR.67.4.657-685.2003
Posiri P, Ongvarrasopone C, Panyim S. A simple one-step method for producing dsRNA from E. coli to inhibit shrimp virus replication. J Virol Meth 2013; 188(2):64-69. https://doi.org/10.1016/j.jviromet.2012.11.033
Plant KP, LaPatra SE. Advances in fish vaccine delivery. Dev Comp Immunol 2011; 35(12):1256-1262. https://doi.org/10.1016/j.dci.2011.03.007
Linggatong GR, Hernandez EP, Talactac MR, Maeda H, Kusakisako K, Umemiya R, Fujisaki K, Tanaka T. Induction of gene silencing in Haemaphysalis longicornis ticks through immersion in double-stranded RNA. Ticks Tick Borne Dis 2016; 7(5):813–816. https://doi.org/10.1016/j.ttbdis.2016.03.018
Sarathi M, Simon MC, Ahmed I, Kumar SR, Sahul-Hameed AS. Silencing vp28 gene of white spot syndrome virus of shrimp by bacterially expressed dsRNA. Mar Biotechnol 2008a; 10(2):198–206. https://doi.org/10.1007/s10126-007-9052-y
Sarathi M, Simon MC, Venkatesan C, Sahul-Hameed AS. Oral administration of bacterially expressed vp28 dsRNA to protect Penaeus monodon from white spot syndrome virus. Mar Biotechnol 2008b; 10(3):242–249. https://doi.org/10.1007/s10126-007-9057-6
Somchai P, Jitrakorn S, Thitamadee S, Meetam M, Saksmerprome V. Use of microalgae Chlamydomonas reinhardtii for production of double-stranded RNA against shrimp virus. Aquacult Rep 2016; 3(3):178-183. https://doi.org/10.1016/j.aqrep.2016.03.003
Alexandre D, Ozório R, Derner R, Fracalossi D, Oliveira G, Richard I, Walter R, Silva CP. Spatial distribution of digestive proteinases in the midgut of the Pacific white shrimp (Litopenaeus vannamei) indicates the existence of endo-ectoperitrophic circulation in Crustacea. Comp Biochem Physiol B 2014; 173(10):90–95. https://doi.org/10.1016/j.cbpb.2014.04.010
Magalhães T, Mossolin CE, Mantelatto FL. Gonadosomatic and Hepatosomatic indexes of the freshwater shrimp Macrobrachium olfersii (Decapoda, Palaemonidae) from São Sebastião Island, Southeastern Brazil. Pan-Am J Aquat Sci 2012; 7(1):1-9.
Vega-Villasante F, Nolasco H, Civera R. The digestive enzymes of the Pacific brown shrimp Penaeus californiensis. I- Properties of amylase activity in the digestive tract. Comp Biochem Physiol B 1993; 106(6):547-550. https://doi.org/10.1016/0305-0491(93)90130-W
Versaw WK, Cuppert SL, Winter DD, Williams LE. An improved colorimetric assay for bacterial lipase in non-fat dry milk. J Food Sci 1989; 54(6):1557-1558. https://doi.org/10.1111/j.1365-2621.1989.tb05159.x
Michal G, Schomburg D, editores. Biochemical pathways: an atlas of biochemistry and molecular biology. 2nd ed. New Jersey: John Wiley & Sons; 2012.
Hoffman CS, Winston F. A ten- minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 1987; 57(3):267-272. https://doi.org/10.1016/0378-1119(87)90131-4
Rodríguez-Jaramillo C, Hurtado MA, Romero-Vivas E, Ramírez JL, Manzano M, Palacios E. Gonadal development and histochemistry of the tropical oyster, Crassostrea corteziensis (Hertlein, 1951) during an annual reproductive cycle. J Shellfish Res 2008; 27(5):1129–1141. https://doi.org/10.2983/0730-8000-27.5.1129
Castex M, Chim L, Pham D, Lemaire P, Wabete N, Nicolas JL, Schmidely P, Mariojouls C. Probiotic P. acidilactici application in shrimp Litopenaeus stylirostris culture subject to vibriosis in New Caledonia. Aquaculture 2008; 275(4):182–193. https://doi.org/10.1016/j.aquaculture.2008.01.011
Hernández JC, Murueta JH. Activity of trypsin from Litopenaeus vannamei. Aquaculture 2009; 290(4):190–195. https://doi.org/10.1016/j.aquaculture.2009.02.034
Becerra MJ, Martínez PM, Martínez LR, Rivas ME, López JA, Porchas MA. Production response and digestive enzymatic activity of the Pacific white shrimp Litopenaeus vannamei (Boone 1931) intensively pregrown in microbial heterotrophic and autotrophic-based systems. ScientificWorldJournal 2012; 2012(3):1-6. https://doi.org/10.1100/2012/723654
Cruz–Suárez LE, Ricque-Marie D, Tapia-Salazar M, Olvera-Novoa MA, Civera-Cerecedo R. (Eds.). Avances en Nutrición Acuícola V. Mérida, Yucatán, México; 2000.
Sheng LC, We IZ, De SL, Cong HY. Profile of progesterone and estradiol in hepatopancreas, ovary, and hemolymph of shrimp Penaeus chinensis during reproduction cycle. J Fish China 2012; 25(4):304-310.
Molthathong S, Senapin S, Klinbunga S, Puanglarp N, Rojtinnakorn J, Flegel TW. Down-regulation of defender against apoptotic death (DAD1) after yellow head virus (YHV) challenge in black tiger shrimp Penaeus monodon. Fish Shellfish Immunol 2008; 24(2):173-179. https://doi.org/10.1016/j.fsi.2007.10.013
Shim MS, Kwon YJ. Efficient and targeted delivery of siRNA in vivo. FEBS J 2010; 277(23):48144827. https://doi.org/10.1111/j.1742-4658.2010.07904.x
Lamontagne B, Larose S, Boulanger J, Elela S. The RNase III family: A conserved structure and expanding functions in eukaryotic dsRNA metabolism. Curr Issues Mol Biol 2001; 3(4):71-78.
Lemos D, Ezquerra JM, Garcia FL. Protein digestion in penaeid shrimp: digestive proteinases, proteinase inhibitors and feed digestibility. Aquaculture 2000; 186(2):89-105. https://doi.org/10.1016/S0044-8486(99)00371-3
Ongvarrasopone C,Chomchai E, Panyim S. Antiviral effect of PmRab7 knock-down on inhibition of Laem-Singh virus replication in black tiger shrimp. Antiviral Res 2010; 88(1):116-8. https://doi.org/10.1016/j.antiviral.2010.06.013
Varela A, Pe-a N. El Virus del Síndrome de las Manchas Blancas (WSSV): una revisión y su impacto en la camaronicultura costarricense. Rev Costa Rica Cienc Vet 2010; 28(2):51-69.
Sellars MJ, Rao M, Arnold SJ, Wade N, Cowley J. Penaeus monodon is protected against gill-associated virus by muscle injection but not oral delivery of bacterially expressed dsRNAs. Dis. Aquat 2011; 95(1):19-30. https://doi.org/10.3354/dao02343
Treerattrakool S, Chartthai C, Phromma-in N, Panyim S, Udomkit A. Silencing of gonad-inhibiting hormone gene expression in Penaeus monodon by feeding with GIH dsRNA enriched Artemia. Aquaculture 2013; 404(1):116–121. https://doi.org/10.1016/j.aquaculture.2013.04.024
dc.relation.bitstream.none.fl_str_mv https://revistamvz.unicordoba.edu.co/article/download/1024/pdf
dc.relation.citationedition.spa.fl_str_mv Núm. 2 , Año 2017 : Revista MVZ Córdoba Volumen 22(2) Mayo-Agosto 2017
dc.relation.citationendpage.none.fl_str_mv 5880
dc.relation.citationissue.spa.fl_str_mv 2
dc.relation.citationstartpage.none.fl_str_mv 5867
dc.relation.citationvolume.spa.fl_str_mv 22
dc.relation.ispartofjournal.spa.fl_str_mv Revista MVZ Córdoba
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad de Córdoba
dc.source.spa.fl_str_mv https://revistamvz.unicordoba.edu.co/article/view/1024
institution Universidad de Córdoba
bitstream.url.fl_str_mv https://repositorio.unicordoba.edu.co/bitstreams/29e5babb-146a-4b4e-a94f-25cf7ffcdfc6/download
bitstream.checksum.fl_str_mv 1f40fe8678804f5267c3a0cbe510c2a5
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Universidad de Córdoba
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1839636165279350784
spelling Álvarez-Sánchez, Ana Redd6959f-6b38-4149-8b4c-939ac355aa9e-1Nolasco-Soria, Héctorfc9ab529-6593-4a76-b5ad-a6f92b51fbc3-1Mejía-Ruíz, Humberto3147bd97-d70f-42b1-979e-59d2fa3e752c-12017-05-02 00:00:002022-07-01T21:00:23Z2017-05-02 00:00:002022-07-01T21:00:23Z2017-05-020122-0268https://repositorio.unicordoba.edu.co/handle/ucordoba/583910.21897/rmvz.1024https://doi.org/10.21897/rmvz.10241909-0544application/pdfspaUniversidad de Córdobahttps://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2https://revistamvz.unicordoba.edu.co/article/view/1024Aquaculturebalanced feeddigestive glandnucleic acidsWSSVÁcidos nucleicosacuaculturaalimento balanceadoglándula digestivaWSSVDigestibilidad in vitro del dsRNA específico por enzimas del tracto digestivo del camarón Litopenaeus vannameiIn vitro digestibility of specific dsRNA by enzymes of digestive tract of shrimp Litopenaeus vannameiArtículo de revistaJournal articleinfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/publishedVersionTexthttp://purl.org/redcol/resource_type/ARTREFhttp://purl.org/coar/version/c_970fb48d4fbd8a85Taju G, Madan N, Abdul-Majeed S, Raj-Kumar T, Thamizhvanan S, Otta S, Sahul-Hameed AS. Immune responses of whiteleg shrimp, Litopenaeus vannamei (Boone, 1931), to bacterially expressed dsRNA specific to VP28 gene of white spot syndrome virus. J Fish Dis 2015; 38(5):451-465. https://doi.org/10.1111/jfd.12256Sudhakaran RT, Mekata T, Kono M, Inada S, Okugawa M, Yoshimine T et al. Double-stranded RNA-mediated silencing of the White Spot Syndrome Virus VP28 gene in Kuruma shrimp, Marsupenaeus japonicus. Aquac Res 2011; 42(8):1153–1162. https://doi.org/10.1111/j.1365-2109.2010.02703.xRobalino J, Bartlett T, Shepard EF, Prior S, Jaramillo G, Scura E, et al. Double-stranded RNA induces sequence-specific antiviral silencing in addition to non-specific immunity in marine shrimp: convergence of RNA interference and innate immunity in the invertebrate antiviral response? J Virology 2005; 79(21):13561–13571. https://doi.org/10.1128/JVI.79.21.13561-13571.2005Kim CS, Kosuke Z, Nam YK, Kim SK, Kim KH. Protection of shrimp (Penaeus chinensis) against white spot syndrome virus (WSSV) challenge by double-stranded RNA. Fish Shellfish Immunol 2007; 23(1):242–246. https://doi.org/10.1016/j.fsi.2006.10.012Xu J, Han F, Zhang X. Silencing shrimp white spot syndrome virus (WSSV) genes by siRNA. Antiviral Res 2007; 73(2):126–131. https://doi.org/10.1016/j.antiviral.2006.08.007Escobedo-Bonilla CM, Vega S, Mejia H. Efficacy of double-stranded RNA against whites pot syndrome virus (WSSV) non-structural (orf89, wsv191) and structural (vp28, vp26) genes in the Pacific white shrimp. J ksus 2015; 27(2):182–188.Sarathi M, Simon MC, Venkatesan C, Thomas J, Ravi M, Madan N, et al. Efficacy of bacterially expressed dsRNA specific to different structural genes of White Spot Syndrome Virus (WSSV) in protection of shrimp from WSSV infection. J Fish Dis 2010; 33(7):603–607. https://doi.org/10.1111/j.1365-2761.2010.01157.xLaFauce K, Owens L. RNA interference with special reference to combating viruses of crustacean. Indian J Virol 2012; 23(2):226-243. https://doi.org/10.1007/s13337-012-0084-1Papić L, García K, Romero J. Avances y limitaciones en el uso de los dsRNA como estrategias de control y prevención de enfermedades virales en sistemas acuícolas. Lat Am J Aquat Res2015; 43(3):388-401.Agrawal N, Dasaradhi PV, Mohmmed A, Malhotra P, Bhatnagar RK, Mukherjee SK. RNA interference: biology, mechanism, and applications. Microbiol. Mol Biol Rev 2003; 67(4):657–685. https://doi.org/10.1128/MMBR.67.4.657-685.2003Posiri P, Ongvarrasopone C, Panyim S. A simple one-step method for producing dsRNA from E. coli to inhibit shrimp virus replication. J Virol Meth 2013; 188(2):64-69. https://doi.org/10.1016/j.jviromet.2012.11.033Plant KP, LaPatra SE. Advances in fish vaccine delivery. Dev Comp Immunol 2011; 35(12):1256-1262. https://doi.org/10.1016/j.dci.2011.03.007Linggatong GR, Hernandez EP, Talactac MR, Maeda H, Kusakisako K, Umemiya R, Fujisaki K, Tanaka T. Induction of gene silencing in Haemaphysalis longicornis ticks through immersion in double-stranded RNA. Ticks Tick Borne Dis 2016; 7(5):813–816. https://doi.org/10.1016/j.ttbdis.2016.03.018Sarathi M, Simon MC, Ahmed I, Kumar SR, Sahul-Hameed AS. Silencing vp28 gene of white spot syndrome virus of shrimp by bacterially expressed dsRNA. Mar Biotechnol 2008a; 10(2):198–206. https://doi.org/10.1007/s10126-007-9052-ySarathi M, Simon MC, Venkatesan C, Sahul-Hameed AS. Oral administration of bacterially expressed vp28 dsRNA to protect Penaeus monodon from white spot syndrome virus. Mar Biotechnol 2008b; 10(3):242–249. https://doi.org/10.1007/s10126-007-9057-6Somchai P, Jitrakorn S, Thitamadee S, Meetam M, Saksmerprome V. Use of microalgae Chlamydomonas reinhardtii for production of double-stranded RNA against shrimp virus. Aquacult Rep 2016; 3(3):178-183. https://doi.org/10.1016/j.aqrep.2016.03.003Alexandre D, Ozório R, Derner R, Fracalossi D, Oliveira G, Richard I, Walter R, Silva CP. Spatial distribution of digestive proteinases in the midgut of the Pacific white shrimp (Litopenaeus vannamei) indicates the existence of endo-ectoperitrophic circulation in Crustacea. Comp Biochem Physiol B 2014; 173(10):90–95. https://doi.org/10.1016/j.cbpb.2014.04.010Magalhães T, Mossolin CE, Mantelatto FL. Gonadosomatic and Hepatosomatic indexes of the freshwater shrimp Macrobrachium olfersii (Decapoda, Palaemonidae) from São Sebastião Island, Southeastern Brazil. Pan-Am J Aquat Sci 2012; 7(1):1-9.Vega-Villasante F, Nolasco H, Civera R. The digestive enzymes of the Pacific brown shrimp Penaeus californiensis. I- Properties of amylase activity in the digestive tract. Comp Biochem Physiol B 1993; 106(6):547-550. https://doi.org/10.1016/0305-0491(93)90130-WVersaw WK, Cuppert SL, Winter DD, Williams LE. An improved colorimetric assay for bacterial lipase in non-fat dry milk. J Food Sci 1989; 54(6):1557-1558. https://doi.org/10.1111/j.1365-2621.1989.tb05159.xMichal G, Schomburg D, editores. Biochemical pathways: an atlas of biochemistry and molecular biology. 2nd ed. New Jersey: John Wiley & Sons; 2012.Hoffman CS, Winston F. A ten- minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 1987; 57(3):267-272. https://doi.org/10.1016/0378-1119(87)90131-4Rodríguez-Jaramillo C, Hurtado MA, Romero-Vivas E, Ramírez JL, Manzano M, Palacios E. Gonadal development and histochemistry of the tropical oyster, Crassostrea corteziensis (Hertlein, 1951) during an annual reproductive cycle. J Shellfish Res 2008; 27(5):1129–1141. https://doi.org/10.2983/0730-8000-27.5.1129Castex M, Chim L, Pham D, Lemaire P, Wabete N, Nicolas JL, Schmidely P, Mariojouls C. Probiotic P. acidilactici application in shrimp Litopenaeus stylirostris culture subject to vibriosis in New Caledonia. Aquaculture 2008; 275(4):182–193. https://doi.org/10.1016/j.aquaculture.2008.01.011Hernández JC, Murueta JH. Activity of trypsin from Litopenaeus vannamei. Aquaculture 2009; 290(4):190–195. https://doi.org/10.1016/j.aquaculture.2009.02.034Becerra MJ, Martínez PM, Martínez LR, Rivas ME, López JA, Porchas MA. Production response and digestive enzymatic activity of the Pacific white shrimp Litopenaeus vannamei (Boone 1931) intensively pregrown in microbial heterotrophic and autotrophic-based systems. ScientificWorldJournal 2012; 2012(3):1-6. https://doi.org/10.1100/2012/723654Cruz–Suárez LE, Ricque-Marie D, Tapia-Salazar M, Olvera-Novoa MA, Civera-Cerecedo R. (Eds.). Avances en Nutrición Acuícola V. Mérida, Yucatán, México; 2000.Sheng LC, We IZ, De SL, Cong HY. Profile of progesterone and estradiol in hepatopancreas, ovary, and hemolymph of shrimp Penaeus chinensis during reproduction cycle. J Fish China 2012; 25(4):304-310.Molthathong S, Senapin S, Klinbunga S, Puanglarp N, Rojtinnakorn J, Flegel TW. Down-regulation of defender against apoptotic death (DAD1) after yellow head virus (YHV) challenge in black tiger shrimp Penaeus monodon. Fish Shellfish Immunol 2008; 24(2):173-179. https://doi.org/10.1016/j.fsi.2007.10.013Shim MS, Kwon YJ. Efficient and targeted delivery of siRNA in vivo. FEBS J 2010; 277(23):48144827. https://doi.org/10.1111/j.1742-4658.2010.07904.xLamontagne B, Larose S, Boulanger J, Elela S. The RNase III family: A conserved structure and expanding functions in eukaryotic dsRNA metabolism. Curr Issues Mol Biol 2001; 3(4):71-78.Lemos D, Ezquerra JM, Garcia FL. Protein digestion in penaeid shrimp: digestive proteinases, proteinase inhibitors and feed digestibility. Aquaculture 2000; 186(2):89-105. https://doi.org/10.1016/S0044-8486(99)00371-3Ongvarrasopone C,Chomchai E, Panyim S. Antiviral effect of PmRab7 knock-down on inhibition of Laem-Singh virus replication in black tiger shrimp. Antiviral Res 2010; 88(1):116-8. https://doi.org/10.1016/j.antiviral.2010.06.013Varela A, Pe-a N. El Virus del Síndrome de las Manchas Blancas (WSSV): una revisión y su impacto en la camaronicultura costarricense. Rev Costa Rica Cienc Vet 2010; 28(2):51-69.Sellars MJ, Rao M, Arnold SJ, Wade N, Cowley J. Penaeus monodon is protected against gill-associated virus by muscle injection but not oral delivery of bacterially expressed dsRNAs. Dis. Aquat 2011; 95(1):19-30. https://doi.org/10.3354/dao02343Treerattrakool S, Chartthai C, Phromma-in N, Panyim S, Udomkit A. Silencing of gonad-inhibiting hormone gene expression in Penaeus monodon by feeding with GIH dsRNA enriched Artemia. Aquaculture 2013; 404(1):116–121. https://doi.org/10.1016/j.aquaculture.2013.04.024https://revistamvz.unicordoba.edu.co/article/download/1024/pdfNúm. 2 , Año 2017 : Revista MVZ Córdoba Volumen 22(2) Mayo-Agosto 201758802586722Revista MVZ CórdobaPublicationOREORE.xmltext/xml2665https://repositorio.unicordoba.edu.co/bitstreams/29e5babb-146a-4b4e-a94f-25cf7ffcdfc6/download1f40fe8678804f5267c3a0cbe510c2a5MD51ucordoba/5839oai:repositorio.unicordoba.edu.co:ucordoba/58392023-10-06 00:46:50.092https://creativecommons.org/licenses/by-nc-sa/4.0/metadata.onlyhttps://repositorio.unicordoba.edu.coRepositorio Universidad de Córdobabdigital@metabiblioteca.com