Sistemas lineales
En este trabajo se hace un estudio de los sistemas lineales, es decir, sistemas de la forma AX = B, donde A es una matriz m × n, B es una matriz m × p y X es una matriz desconocida n × p. Se estudian varios criterios y condiciones, suficientes y necesarias para que tales sistemas tengan solución. Ad...
- Autores:
-
Arrieta Arrieta, José Lucio
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2023
- Institución:
- Universidad de Córdoba
- Repositorio:
- Repositorio Institucional Unicórdoba
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unicordoba.edu.co:ucordoba/7157
- Acceso en línea:
- https://repositorio.unicordoba.edu.co/handle/ucordoba/7157
- Palabra clave:
- Matrices
Consistente
Compatible
Arrys
Consistent
Compatible
- Rights
- openAccess
- License
- Copyright Universidad de Córdoba, 2023
Summary: | En este trabajo se hace un estudio de los sistemas lineales, es decir, sistemas de la forma AX = B, donde A es una matriz m × n, B es una matriz m × p y X es una matriz desconocida n × p. Se estudian varios criterios y condiciones, suficientes y necesarias para que tales sistemas tengan solución. Además, se presentan varias fórmulas para las soluciones de sistemas lineales, en el caso de que existan, donde algunas también dependen de inversas generalizadas de A (matrices G que cumplen con AGA = A. Se analiza el subespacio de las soluciones de un sistema lineal homogéneo (AX = 0). Y finalmente se muestran condiciones suficientes y necesarias para que un sistema de la forma AXC = B tenga solución. |
---|