Potencialidades del consorcio microbiano Curvularia kusanoi -Trichoderma pleuroticola como pretratamiento biológico para la degradación de fuentes fibrosas

Autores:
Alberto-Vazquez, Maryen
Valiño-Cabreras, Elaine C.
Torta, Livio
Laudicina, Vito Armando
Sardina, Maria Teresa
Mirabile, Giulia
Tipo de recurso:
Article of journal
Fecha de publicación:
2022
Institución:
Universidad de Córdoba
Repositorio:
Repositorio Institucional Unicórdoba
Idioma:
spa
OAI Identifier:
oai:repositorio.unicordoba.edu.co:ucordoba/6215
Acceso en línea:
https://repositorio.unicordoba.edu.co/handle/ucordoba/6215
https://doi.org/10.21897/rmvz.2559
Palabra clave:
Degradation
enzymes
fiber
cell wall
fungi
Degradación
enzimas
fibra
pared celular
hongos
Rights
openAccess
License
https://creativecommons.org/licenses/by-nc-sa/4.0
id UCORDOBA2_463a29205d9af0d1064a9da05a5b0bdd
oai_identifier_str oai:repositorio.unicordoba.edu.co:ucordoba/6215
network_acronym_str UCORDOBA2
network_name_str Repositorio Institucional Unicórdoba
repository_id_str
dc.title.spa.fl_str_mv Potencialidades del consorcio microbiano Curvularia kusanoi -Trichoderma pleuroticola como pretratamiento biológico para la degradación de fuentes fibrosas
dc.title.translated.eng.fl_str_mv Potentialities of the microbial consortium Curvularia kusanoi -Trichoderma pleuroticola as a biological pretreatment for the degradation of fibrous sources
title Potencialidades del consorcio microbiano Curvularia kusanoi -Trichoderma pleuroticola como pretratamiento biológico para la degradación de fuentes fibrosas
spellingShingle Potencialidades del consorcio microbiano Curvularia kusanoi -Trichoderma pleuroticola como pretratamiento biológico para la degradación de fuentes fibrosas
Degradation
enzymes
fiber
cell wall
fungi
Degradación
enzimas
fibra
pared celular
hongos
title_short Potencialidades del consorcio microbiano Curvularia kusanoi -Trichoderma pleuroticola como pretratamiento biológico para la degradación de fuentes fibrosas
title_full Potencialidades del consorcio microbiano Curvularia kusanoi -Trichoderma pleuroticola como pretratamiento biológico para la degradación de fuentes fibrosas
title_fullStr Potencialidades del consorcio microbiano Curvularia kusanoi -Trichoderma pleuroticola como pretratamiento biológico para la degradación de fuentes fibrosas
title_full_unstemmed Potencialidades del consorcio microbiano Curvularia kusanoi -Trichoderma pleuroticola como pretratamiento biológico para la degradación de fuentes fibrosas
title_sort Potencialidades del consorcio microbiano Curvularia kusanoi -Trichoderma pleuroticola como pretratamiento biológico para la degradación de fuentes fibrosas
dc.creator.fl_str_mv Alberto-Vazquez, Maryen
Valiño-Cabreras, Elaine C.
Torta, Livio
Laudicina, Vito Armando
Sardina, Maria Teresa
Mirabile, Giulia
dc.contributor.author.spa.fl_str_mv Alberto-Vazquez, Maryen
Valiño-Cabreras, Elaine C.
Torta, Livio
Laudicina, Vito Armando
Sardina, Maria Teresa
Mirabile, Giulia
dc.subject.eng.fl_str_mv Degradation
enzymes
fiber
cell wall
fungi
topic Degradation
enzymes
fiber
cell wall
fungi
Degradación
enzimas
fibra
pared celular
hongos
dc.subject.spa.fl_str_mv Degradación
enzimas
fibra
pared celular
hongos
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-07-31 22:38:42
2022-08-01T09:36:32Z
dc.date.available.none.fl_str_mv 2022-07-31 22:38:42
2022-08-01T09:36:32Z
dc.date.issued.none.fl_str_mv 2022-07-31
dc.type.spa.fl_str_mv Artículo de revista
dc.type.eng.fl_str_mv Journal article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_6501
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ARTREF
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 0122-0268
dc.identifier.uri.none.fl_str_mv https://repositorio.unicordoba.edu.co/handle/ucordoba/6215
dc.identifier.doi.none.fl_str_mv 10.21897/rmvz.2559
dc.identifier.url.none.fl_str_mv https://doi.org/10.21897/rmvz.2559
dc.identifier.eissn.none.fl_str_mv 1909-0544
identifier_str_mv 0122-0268
10.21897/rmvz.2559
1909-0544
url https://repositorio.unicordoba.edu.co/handle/ucordoba/6215
https://doi.org/10.21897/rmvz.2559
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Isikgor F, Remzi C. Lignocellulosic Biomass: A Sustainable Platform for Production of Bio-Based Chemicals and Polymers. Polym. Chem. 2015. 6:4497-4559. https://doi.org/10.1039/C5PY00263J.
Aguiar N, Chicaiza E, Santana K, Caicedo WO. Composición química de subproductos agroindustriales destinados para la alimentación de cerdos. RCCS. 2019. https://www.eumed.net/rev/caribe/2019/04/subproductosalimentacioncerdos.htmL/
Carlsson M, Lagerkvist A, Morgan F. The effects of substrate pre-treatment on anaerobic digestion systems: A review. J Waste Manag. 2012; 32(9):1634-1650. https://doi.org/10.1016/j.wasman.2012.04.016.
Van Dyk JS, Pletschke BI. A reviews of lignocelluloses bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes factor affecting enzymes, conversion and synergy. Biotechnol. Adv. 2012; 30:1458-1480. http://dx.doi.org/10.1016/j.biotechadv.2012.03.002
Singh GD, Singh HO, Kaur S, Bansal Sl, Kaur SB. Value-addition of agricultural wastes for augmented cellulase and xylanase production through solid-state tray fermentation employing mixed-culture of fungi. Ind Crops Prod. 2011; 34(1):1160-1167. https://doi.org/10.1016/j.indcrop.2011.04.001.
Nobles MK. Cultural characters as a guide to the taxonomy and phylogeny of the polyporaceae Detection of poliphenoloxidase in fungi. Can J Bot. 1958; 36(6):883-926. https://doi.org/10.1139/b58-071/.
Wang LY, Cheng GN, May AS. Fungal solid-state fermentation and various methods of enhancement in cellulases production. Biomass Bioenergy. 2014; 67:319-338. https://doi.org/10.1016/j.biombioe.2014.05.013
Adney W, Baker J. Measurement of cellulase activities. Laboratory Analytical Procedures National Renewable Energy Laboratory, Golden, Co; 1996. http://www.nrel.gov/biomass/pdfs/42628.pdf
Mandels M, Andreotti RE, Roche C. Measurement of sacarifying cellulase. Biotechnol Bioeng Symp. 1976; 6:1471-1493. https://doi.org/10.1186/1754-6834-2-21
Perna V, Agger JW, Holck J, Meye AS. Multiple Reaction Monitoring for quantitative laccase kinetics by LC-MS. Sci Rep. 2018; 8:8114. https://doi.org/10.1038/s41598-018-26523-0
Casciello C, Tonin F, Berini F, Fasoli E, Marinelli F, Pollegioni L, Rosini E. A valuable peroxidase activity from the novel species Nonomuraea gerenzanensis growing on alkali lignin. Biotechnol. Rep 2017. 13:49–57. https://doi.org/10.1016/j.btre.2016.12.005.
Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW. InfoStat versión. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina; 2012. http://www.infostat.com.ar
He Y, Zhu M, Huang J, Hsiang T, Zheng,L. Biocontrol potential of a Bacillus subtilis strain BJ-1 against the rice blast fungus Magnaporthe oryzae. Can J Plant Pathol 2019; 41(1):47-59. https://doi.org/10.1080/07060661.2018.1564792
Duncan DB. Multiple range and multiple F tests. Biometrics. 1955; 11 (1):1-42. https://doi.org/10.2307/3001478
Taravilla AO, Moreno AD, Demuez M, Ibarra D, Pejó E, González C, Ballesteros M. Unraveling the effects of laccase treatment on enzymatic hydrolysis of steam-exploded wheat straw. Bioresour Technol. 2015; 175:209–215. https://doi.org/10.1016/j.biortech.2014.10.086
Reid ID. Biodegradation of lignin. Can J Bot. 1995; 73(S1):1011-1018. https://doi.org/10.1139/b95-351
Valiño EC, Savón L, Elías A, Rodríguez M, Albelo N. Nutritive value improvement of seasonal legumes Vigna unguiculata, Canavalia ensiformis, Stizolobium niveum, Lablab purpureus, through processing their grains by Trichoderma viride M5-2 cellulases. Cuba. J Agric Sci. 2015; 49(1):81. http://www.cjascience.com/index.php/CJAS/article/view/552
Valiño EC, Elías A, Torres V, Carrasco T, y Albelo N. Improvement of sugarcane bagasse composition by the strain Trichoderma viride M5-2 in a solid-state fermentation bioreactor. Cuba. J Agric Sci. 2004; 38:145. https://eurekamag.com/research/004/196/004196634.php
García N, Bermúdez RC, Téllez I, Chávez M, Perraud I. Enzimas lacasa en inóculos de Pleurotus spp. Rev Quím Tecnol. 2017; 37(1):33-39. http://dx.doi.org/10.1099/00221287-148-7-2159
Bello A, Machido DA, Mohammed AI, Ado SA. Optimization of laccase production by Curvularia lunata using maize cob as substrate. FUDMA Journal of Sciences. 2020; 4(4):460-468. https://doi.org/10.33003/fjs-2020-0404-503
Janusz G, Czuryło FM, Rola B, Sulej J, Pawlik A, Siwulski M, Rogalski J. Laccase production and metabolic diversity among Flammulina velutipes strains. World J Microbiol. Biotechnol. 2015; 31:121–133. https://doi.org/10.1007/s11274-014-1769.
Lillington P, Leggieri P, Heom K, O’Malley M. Nature’s recyclers: anaerobic microbial communities drive crude biomass deconstruction. Curr Opin. 2020; 62:38-47. https://doi.org/10.1016/j.copbio.2019.08.015/
Ghorai S, Banik SP, Verma D, Chowdhury S, Khowala S. Fungal biotechnology in food and feed processing. Int Food Res J. 2009; 42 (5-6):577-587. https://doi.org/10.1016/j.foodres.2009.02.019.
Medina GE, Barragán H, Hernández CE, Martínez CA, Soto G. Uso de basidiomicetos nativos en la biotransformación del pasto buffel (Cenchrus ciliaris) para mejorar la calidad nutricional. Rev Mex Mic. 2016; 43:31-35. http://scientiafungorum.org.mx/index.php/micologia/article/view/1153/1332
Ribeiro L, Pinheiro V, Outor D, Mourão J, Bezzerra RMF, Días AA, Bennett RN, Marqués G, Rodrigues MAM. Effects of the dietary incorporation of untreated and white-rot fungi (Ganoderma resinaceum) pre-treated olive leaves on growing rabbits. Anim Feed Sci Technol. 2012; 173(3-4):244-251. https://doi.org/10.1016/j.anifeedsci.2012.01.014.
Saratale RG, Saratale GD, Kalyani DC, Chang JS, Govindwar SP. Enhanced decolorization and biodegradation of textile azo dye Scarlet R by using developed microbial consortium. Bioresour Technol. 2009; 100(9):2493-2500. https://doi.org/10.1016/j.biortech.2008.12.013.
Odelade KA, Babalola OO. Bacteria, Fungi and Archaea Domains in Rhizospheric Soil and Their Effects in Enhancing Agricultural Productivity. Int J Environ Res Public Health. 2019; 16(20):3873. https://doi.org/10.3390/ijerph16203873
Carabajal M, Levin L, Albertó E, Lechner B. Effect of co-cultivation of two Pleurotus species on lignocellulolytic enzyme production and mushroom fructification. Int Biodeterior. 2012; 66(1):71-76. https://doi.org/10.1016/j.ibiod.2011.11.002.
Rajendran R, Sundaram SK, Sridevi BV, Prabhavath P, Gopi V. Biodetoxification of azo dye containing textile effluent through adapted fungal strains. J Environ Sci Technol. 2012; 5(1):29-41. https://doi.org/10.3923/jest.2012.29.41
Yang X, Wang J, Zhao X, Wang Q, Xue R. Increasing manganese peroxidase production and biodecolorization of triphenylmethane dyes by novel fungal consortium. Bioresour Technol. 2013; 102(22):10535-10541. https://doi.org/10.1016/j.biortech.2011.06.034.
FEDNA. Paja de cereales y cebada. Fundación Española para el desarrollo de la nutrición Animal: España; 2019. http://www.fundacionfedna.org/ingredientes_para_piensos/paja-de-cereales-trigo-y-cebada.
Castillo DA, Viteri PA, Viteri SE. Desarrollo y evaluación de un inóculo de hongos celulolíticos. Rev UDCA Actual. Divulg. Cient. 2015; 18(1):217-226. https://doi.org/10.31910/rudca.v18.n1.2015.476.
Dwivedi UN, Singh P, Pandey VP, Kumar A. Structure-function relationship among bacterial, fungal and plant laccases. J Mol Catal B Enzym. 2011; 68(2):117-128. https://doi.org/10.1016/j.molcatb.2010.11.002.
dc.relation.bitstream.none.fl_str_mv https://revistamvz.unicordoba.edu.co/article/download/2559/4022
https://revistamvz.unicordoba.edu.co/article/download/2559/4023
https://revistamvz.unicordoba.edu.co/article/download/2559/4024
https://revistamvz.unicordoba.edu.co/article/download/2559/4025
https://revistamvz.unicordoba.edu.co/article/download/2559/4042
dc.relation.citationedition.spa.fl_str_mv Núm. 2 , Año 2022 : Revista MVZ Córdoba Volumen 27(2) Mayo-Agosto 2022
dc.relation.citationendpage.none.fl_str_mv e2559
dc.relation.citationissue.spa.fl_str_mv 2
dc.relation.citationstartpage.none.fl_str_mv e2559
dc.relation.citationvolume.spa.fl_str_mv 27
dc.relation.ispartofjournal.spa.fl_str_mv Revista MVZ Córdoba
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
application/pdf
audio/mpeg
audio/mpeg

dc.publisher.spa.fl_str_mv Universidad de Córdoba
dc.source.spa.fl_str_mv https://revistamvz.unicordoba.edu.co/article/view/2559
institution Universidad de Córdoba
bitstream.url.fl_str_mv https://repositorio.unicordoba.edu.co/bitstreams/ff3f39a6-9dc1-4e37-900f-bdff99b83759/download
bitstream.checksum.fl_str_mv a8c4949faf3a1fedf0b8b344eb6611b6
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Universidad de Córdoba
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1839636060575891456
spelling Alberto-Vazquez, Maryena66db9d4-d965-4eef-983c-6b6a2e42f955-1Valiño-Cabreras, Elaine C.8b5cb420-7225-4304-a6fa-c0c616c1ab11-1Torta, Livio5a0d5deb-b73d-4111-8e2a-b390ec2843f6-1Laudicina, Vito Armando0df5a7eb-c16d-4228-afb1-69f2a29ff2fa-1Sardina, Maria Teresa68738a92-f089-4073-851a-c34808b88b4d-1Mirabile, Giuliaeca6dd8e-ab3b-47ce-afcb-056fccd60c70-12022-07-31 22:38:422022-08-01T09:36:32Z2022-07-31 22:38:422022-08-01T09:36:32Z2022-07-310122-0268https://repositorio.unicordoba.edu.co/handle/ucordoba/621510.21897/rmvz.2559https://doi.org/10.21897/rmvz.25591909-0544application/pdfapplication/pdfaudio/mpegaudio/mpegspaUniversidad de CórdobaMaryen Alberto-Vazquez, Elaine C. Valiño-Cabreras, Livio Torta, Vito Armando Laudicina, Maria Teresa Sardina, Giulia Mirabile - 2022https://creativecommons.org/licenses/by-nc-sa/4.0info:eu-repo/semantics/openAccessEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.http://purl.org/coar/access_right/c_abf2https://revistamvz.unicordoba.edu.co/article/view/2559Degradationenzymesfibercell wallfungiDegradaciónenzimasfibrapared celularhongosPotencialidades del consorcio microbiano Curvularia kusanoi -Trichoderma pleuroticola como pretratamiento biológico para la degradación de fuentes fibrosasPotentialities of the microbial consortium Curvularia kusanoi -Trichoderma pleuroticola as a biological pretreatment for the degradation of fibrous sourcesArtículo de revistaJournal articleinfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/publishedVersionTexthttp://purl.org/redcol/resource_type/ARTREFhttp://purl.org/coar/version/c_970fb48d4fbd8a85Isikgor F, Remzi C. Lignocellulosic Biomass: A Sustainable Platform for Production of Bio-Based Chemicals and Polymers. Polym. Chem. 2015. 6:4497-4559. https://doi.org/10.1039/C5PY00263J.Aguiar N, Chicaiza E, Santana K, Caicedo WO. Composición química de subproductos agroindustriales destinados para la alimentación de cerdos. RCCS. 2019. https://www.eumed.net/rev/caribe/2019/04/subproductosalimentacioncerdos.htmL/Carlsson M, Lagerkvist A, Morgan F. The effects of substrate pre-treatment on anaerobic digestion systems: A review. J Waste Manag. 2012; 32(9):1634-1650. https://doi.org/10.1016/j.wasman.2012.04.016.Van Dyk JS, Pletschke BI. A reviews of lignocelluloses bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes factor affecting enzymes, conversion and synergy. Biotechnol. Adv. 2012; 30:1458-1480. http://dx.doi.org/10.1016/j.biotechadv.2012.03.002Singh GD, Singh HO, Kaur S, Bansal Sl, Kaur SB. Value-addition of agricultural wastes for augmented cellulase and xylanase production through solid-state tray fermentation employing mixed-culture of fungi. Ind Crops Prod. 2011; 34(1):1160-1167. https://doi.org/10.1016/j.indcrop.2011.04.001.Nobles MK. Cultural characters as a guide to the taxonomy and phylogeny of the polyporaceae Detection of poliphenoloxidase in fungi. Can J Bot. 1958; 36(6):883-926. https://doi.org/10.1139/b58-071/.Wang LY, Cheng GN, May AS. Fungal solid-state fermentation and various methods of enhancement in cellulases production. Biomass Bioenergy. 2014; 67:319-338. https://doi.org/10.1016/j.biombioe.2014.05.013Adney W, Baker J. Measurement of cellulase activities. Laboratory Analytical Procedures National Renewable Energy Laboratory, Golden, Co; 1996. http://www.nrel.gov/biomass/pdfs/42628.pdfMandels M, Andreotti RE, Roche C. Measurement of sacarifying cellulase. Biotechnol Bioeng Symp. 1976; 6:1471-1493. https://doi.org/10.1186/1754-6834-2-21Perna V, Agger JW, Holck J, Meye AS. Multiple Reaction Monitoring for quantitative laccase kinetics by LC-MS. Sci Rep. 2018; 8:8114. https://doi.org/10.1038/s41598-018-26523-0Casciello C, Tonin F, Berini F, Fasoli E, Marinelli F, Pollegioni L, Rosini E. A valuable peroxidase activity from the novel species Nonomuraea gerenzanensis growing on alkali lignin. Biotechnol. Rep 2017. 13:49–57. https://doi.org/10.1016/j.btre.2016.12.005.Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW. InfoStat versión. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina; 2012. http://www.infostat.com.arHe Y, Zhu M, Huang J, Hsiang T, Zheng,L. Biocontrol potential of a Bacillus subtilis strain BJ-1 against the rice blast fungus Magnaporthe oryzae. Can J Plant Pathol 2019; 41(1):47-59. https://doi.org/10.1080/07060661.2018.1564792Duncan DB. Multiple range and multiple F tests. Biometrics. 1955; 11 (1):1-42. https://doi.org/10.2307/3001478Taravilla AO, Moreno AD, Demuez M, Ibarra D, Pejó E, González C, Ballesteros M. Unraveling the effects of laccase treatment on enzymatic hydrolysis of steam-exploded wheat straw. Bioresour Technol. 2015; 175:209–215. https://doi.org/10.1016/j.biortech.2014.10.086Reid ID. Biodegradation of lignin. Can J Bot. 1995; 73(S1):1011-1018. https://doi.org/10.1139/b95-351Valiño EC, Savón L, Elías A, Rodríguez M, Albelo N. Nutritive value improvement of seasonal legumes Vigna unguiculata, Canavalia ensiformis, Stizolobium niveum, Lablab purpureus, through processing their grains by Trichoderma viride M5-2 cellulases. Cuba. J Agric Sci. 2015; 49(1):81. http://www.cjascience.com/index.php/CJAS/article/view/552Valiño EC, Elías A, Torres V, Carrasco T, y Albelo N. Improvement of sugarcane bagasse composition by the strain Trichoderma viride M5-2 in a solid-state fermentation bioreactor. Cuba. J Agric Sci. 2004; 38:145. https://eurekamag.com/research/004/196/004196634.phpGarcía N, Bermúdez RC, Téllez I, Chávez M, Perraud I. Enzimas lacasa en inóculos de Pleurotus spp. Rev Quím Tecnol. 2017; 37(1):33-39. http://dx.doi.org/10.1099/00221287-148-7-2159Bello A, Machido DA, Mohammed AI, Ado SA. Optimization of laccase production by Curvularia lunata using maize cob as substrate. FUDMA Journal of Sciences. 2020; 4(4):460-468. https://doi.org/10.33003/fjs-2020-0404-503Janusz G, Czuryło FM, Rola B, Sulej J, Pawlik A, Siwulski M, Rogalski J. Laccase production and metabolic diversity among Flammulina velutipes strains. World J Microbiol. Biotechnol. 2015; 31:121–133. https://doi.org/10.1007/s11274-014-1769.Lillington P, Leggieri P, Heom K, O’Malley M. Nature’s recyclers: anaerobic microbial communities drive crude biomass deconstruction. Curr Opin. 2020; 62:38-47. https://doi.org/10.1016/j.copbio.2019.08.015/Ghorai S, Banik SP, Verma D, Chowdhury S, Khowala S. Fungal biotechnology in food and feed processing. Int Food Res J. 2009; 42 (5-6):577-587. https://doi.org/10.1016/j.foodres.2009.02.019.Medina GE, Barragán H, Hernández CE, Martínez CA, Soto G. Uso de basidiomicetos nativos en la biotransformación del pasto buffel (Cenchrus ciliaris) para mejorar la calidad nutricional. Rev Mex Mic. 2016; 43:31-35. http://scientiafungorum.org.mx/index.php/micologia/article/view/1153/1332Ribeiro L, Pinheiro V, Outor D, Mourão J, Bezzerra RMF, Días AA, Bennett RN, Marqués G, Rodrigues MAM. Effects of the dietary incorporation of untreated and white-rot fungi (Ganoderma resinaceum) pre-treated olive leaves on growing rabbits. Anim Feed Sci Technol. 2012; 173(3-4):244-251. https://doi.org/10.1016/j.anifeedsci.2012.01.014.Saratale RG, Saratale GD, Kalyani DC, Chang JS, Govindwar SP. Enhanced decolorization and biodegradation of textile azo dye Scarlet R by using developed microbial consortium. Bioresour Technol. 2009; 100(9):2493-2500. https://doi.org/10.1016/j.biortech.2008.12.013.Odelade KA, Babalola OO. Bacteria, Fungi and Archaea Domains in Rhizospheric Soil and Their Effects in Enhancing Agricultural Productivity. Int J Environ Res Public Health. 2019; 16(20):3873. https://doi.org/10.3390/ijerph16203873Carabajal M, Levin L, Albertó E, Lechner B. Effect of co-cultivation of two Pleurotus species on lignocellulolytic enzyme production and mushroom fructification. Int Biodeterior. 2012; 66(1):71-76. https://doi.org/10.1016/j.ibiod.2011.11.002.Rajendran R, Sundaram SK, Sridevi BV, Prabhavath P, Gopi V. Biodetoxification of azo dye containing textile effluent through adapted fungal strains. J Environ Sci Technol. 2012; 5(1):29-41. https://doi.org/10.3923/jest.2012.29.41Yang X, Wang J, Zhao X, Wang Q, Xue R. Increasing manganese peroxidase production and biodecolorization of triphenylmethane dyes by novel fungal consortium. Bioresour Technol. 2013; 102(22):10535-10541. https://doi.org/10.1016/j.biortech.2011.06.034.FEDNA. Paja de cereales y cebada. Fundación Española para el desarrollo de la nutrición Animal: España; 2019. http://www.fundacionfedna.org/ingredientes_para_piensos/paja-de-cereales-trigo-y-cebada.Castillo DA, Viteri PA, Viteri SE. Desarrollo y evaluación de un inóculo de hongos celulolíticos. Rev UDCA Actual. Divulg. Cient. 2015; 18(1):217-226. https://doi.org/10.31910/rudca.v18.n1.2015.476.Dwivedi UN, Singh P, Pandey VP, Kumar A. Structure-function relationship among bacterial, fungal and plant laccases. J Mol Catal B Enzym. 2011; 68(2):117-128. https://doi.org/10.1016/j.molcatb.2010.11.002.https://revistamvz.unicordoba.edu.co/article/download/2559/4022https://revistamvz.unicordoba.edu.co/article/download/2559/4023https://revistamvz.unicordoba.edu.co/article/download/2559/4024https://revistamvz.unicordoba.edu.co/article/download/2559/4025https://revistamvz.unicordoba.edu.co/article/download/2559/4042Núm. 2 , Año 2022 : Revista MVZ Córdoba Volumen 27(2) Mayo-Agosto 2022e25592e255927Revista MVZ CórdobaPublicationOREORE.xmltext/xml3490https://repositorio.unicordoba.edu.co/bitstreams/ff3f39a6-9dc1-4e37-900f-bdff99b83759/downloada8c4949faf3a1fedf0b8b344eb6611b6MD51ucordoba/6215oai:repositorio.unicordoba.edu.co:ucordoba/62152023-10-06 00:45:48.657https://creativecommons.org/licenses/by-nc-sa/4.0Maryen Alberto-Vazquez, Elaine C. Valiño-Cabreras, Livio Torta, Vito Armando Laudicina, Maria Teresa Sardina, Giulia Mirabile - 2022metadata.onlyhttps://repositorio.unicordoba.edu.coRepositorio Universidad de Córdobabdigital@metabiblioteca.com