Modelos alométricos para la medición no destructiva del área foliar del frijol caupí (Vigna unguiculata L. Walp.) sometido a condiciones de estrés
El frijol caupí es una especie de importancia económica para la seguridad alimentaria de muchos pueblos alrededor del mundo, puesto que es una planta que resiste condiciones de estrés abiótico en especial el hídrico, salino y manejo agronómico insuficiente, además de ser una importante fuente de pro...
- Autores:
-
Tello Coley, Alberto Jose
- Tipo de recurso:
- Fecha de publicación:
- 2024
- Institución:
- Universidad de Córdoba
- Repositorio:
- Repositorio Institucional Unicórdoba
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unicordoba.edu.co:ucordoba/8364
- Acceso en línea:
- https://repositorio.unicordoba.edu.co/handle/ucordoba/8364
https://repositorio.unicordoba.edu.co
- Palabra clave:
- Frijol caupí
Area foliar
Estrés salino
Estrés hídrico
Alometría
Cowpea bean
Leaf area
Saline stress
Water stress
Allometry
- Rights
- openAccess
- License
- Copyright Universidad de Córdoba, 2024
id |
UCORDOBA2_2eb29e25ed0329ff6d31327ba4a0c91c |
---|---|
oai_identifier_str |
oai:repositorio.unicordoba.edu.co:ucordoba/8364 |
network_acronym_str |
UCORDOBA2 |
network_name_str |
Repositorio Institucional Unicórdoba |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Modelos alométricos para la medición no destructiva del área foliar del frijol caupí (Vigna unguiculata L. Walp.) sometido a condiciones de estrés |
title |
Modelos alométricos para la medición no destructiva del área foliar del frijol caupí (Vigna unguiculata L. Walp.) sometido a condiciones de estrés |
spellingShingle |
Modelos alométricos para la medición no destructiva del área foliar del frijol caupí (Vigna unguiculata L. Walp.) sometido a condiciones de estrés Frijol caupí Area foliar Estrés salino Estrés hídrico Alometría Cowpea bean Leaf area Saline stress Water stress Allometry |
title_short |
Modelos alométricos para la medición no destructiva del área foliar del frijol caupí (Vigna unguiculata L. Walp.) sometido a condiciones de estrés |
title_full |
Modelos alométricos para la medición no destructiva del área foliar del frijol caupí (Vigna unguiculata L. Walp.) sometido a condiciones de estrés |
title_fullStr |
Modelos alométricos para la medición no destructiva del área foliar del frijol caupí (Vigna unguiculata L. Walp.) sometido a condiciones de estrés |
title_full_unstemmed |
Modelos alométricos para la medición no destructiva del área foliar del frijol caupí (Vigna unguiculata L. Walp.) sometido a condiciones de estrés |
title_sort |
Modelos alométricos para la medición no destructiva del área foliar del frijol caupí (Vigna unguiculata L. Walp.) sometido a condiciones de estrés |
dc.creator.fl_str_mv |
Tello Coley, Alberto Jose |
dc.contributor.advisor.none.fl_str_mv |
Jarma-Orozco, Alfredo De Jesús |
dc.contributor.author.none.fl_str_mv |
Tello Coley, Alberto Jose |
dc.contributor.jury.none.fl_str_mv |
Barrera, José Luis Pérez Polo, Dairo Javier |
dc.subject.proposal.none.fl_str_mv |
Frijol caupí Area foliar Estrés salino Estrés hídrico Alometría |
topic |
Frijol caupí Area foliar Estrés salino Estrés hídrico Alometría Cowpea bean Leaf area Saline stress Water stress Allometry |
dc.subject.keywords.none.fl_str_mv |
Cowpea bean Leaf area Saline stress Water stress Allometry |
description |
El frijol caupí es una especie de importancia económica para la seguridad alimentaria de muchos pueblos alrededor del mundo, puesto que es una planta que resiste condiciones de estrés abiótico en especial el hídrico, salino y manejo agronómico insuficiente, además de ser una importante fuente de proteínas, energía y de otros nutrientes. Las mediciones de área foliar emplean métodos costosos, lentos y poco aplicables no solo en cultivos de frijol caupí si no también en las demás especies importantes para el hombre. Hasta el momento en la especie de estudio no se han realizado mediciones de área foliar que impliquen los efectos del estrés ambiental y mucho menos el desarrollo de un modelo matemático que permita predecir de manera precisa esta variable física. Conocer el área foliar de la planta en ambientes adecuados y estresantes por medios no destructivos puede permitir tomar correctivos a nivel de manejo y puede ser de utilidad en programas de fitomejoramiento. Los datos obtenidos mostraron que el foliolo central de la hoja de frijol no modifica su morfología independientemente de la condición ambiental permitiendo utilizar un modelo predictivo de área foliar de la forma Y=0.63xLA1.01, en cambio el test de identidad sugirió diferencias entre los foliolos laterales entre todos los tratamientos, lo cuales absorbieron el efecto del estrés al cambiar su morfología dependiendo del ambiente lo que produjo tres modelos predictivos de área foliar de la forma Y=0.64xLA1.02, Y=0.67xLA1.02 y Y=0.68xLA1.01, para condiciones óptimas, salinidad y sequía respectivamente. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-07-10T12:57:31Z |
dc.date.available.none.fl_str_mv |
2024-07-10T12:57:31Z |
dc.date.issued.none.fl_str_mv |
2024-07-08 |
dc.type.none.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.none.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unicordoba.edu.co/handle/ucordoba/8364 |
dc.identifier.instname.none.fl_str_mv |
Universidad de Córdoba |
dc.identifier.reponame.none.fl_str_mv |
Repositorio Universidad de Córdoba |
dc.identifier.repourl.none.fl_str_mv |
https://repositorio.unicordoba.edu.co |
url |
https://repositorio.unicordoba.edu.co/handle/ucordoba/8364 https://repositorio.unicordoba.edu.co |
identifier_str_mv |
Universidad de Córdoba Repositorio Universidad de Córdoba |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.relation.references.none.fl_str_mv |
Abebe, B. & Alemayehu, M. (2022). A review of the nutritional use of cowpea (Vigna unguiculata L. Walp) for human and animal diets. Journal of Agriculture and Food Research, 10, 100383. https://doi.org/10.1016/j.jafr.2022.100383 Ahmad, S. Ahmad, R. Ashraf, M., Ashraf, M., & Waraich, E. (2009). Sunflower (Helianthus annuus L.) response to drought stress at germination and seedling growth stages. 41(2), 647-654. Ahmed, I., Nadira, U., Bibi, N., Cao, F., He, X., Zhang, G., & Wu, F. (2015). Secondary metabolism and antioxidants are involved in the tolerance to drought and salinity, separately and combined, in Tibetan wild barley. Environmental and Experimental Botany, 111, 1-12. https://doi.org/10.1016/j.envexpbot.2014.10.003 Alsamadany, H. (2022). Physiological, biochemical and molecular evaluation of mungbean genotypes for agronomical yield under drought and salinity stresses in the presence of humic acid. Saudi Journal of Biological Sciences, 29(9), 103385. https://doi.org/10.1016/j.sjbs.2022.103385 Andrade, K., Rivera, R., & Cuenca Cuenca, E. (2023). Efecto de distintos niveles de fertilización en el comportamiento agronómico del frejol caupí INIAP-463. La Técnica Revista de las Agrociencias ISSN 2477-8982, 13(2), 61-66. https://doi.org/10.33936/latecnica.v13i2.5375 Antunes, W., Pompelli, M., Carretero, D., & DaMatta, F. (2008). Allometric models for non-destructive leaf area estimation in coffee ( Coffea arabica and Coffea canephora ). Annals of Applied Biology, 153(1), 33-40. https://doi.org/10.1111/j.1744-7348.2008.00235.x Ayalew, T., Yoseph, T., Högy, P., & Cadisch, G. (2022). Leaf growth, gas exchange and assimilation performance of cowpea varieties in response to Bradyrhizobium inoculation. Heliyon, 8(1), e08746. https://doi.org/10.1016/j.heliyon.2022.e08746 Barrera, J., Suárez, D., & Melgarejo, L. (2010). Análisis de crecimiento en plantas. En L. M. Melgarejo, Experimientos en fisiología vegetal. Bogotá D.C: Universidad Nacional de Colombia. Boukhana, M., Ravaglia, J., Hétroy, F., & De Solan, B. (2022). Geometric models for plant leaf area estimation from 3D point clouds: A comparative study. Graphics and Visual Computing, 200057. https://doi.org/10.1016/j.gvc.2022.200057 Buttaro, D., Rouphael, Y., Rivera, C., Colla, G., & Gonnella, M. (2015). Simple and accurate allometric model for leaf area estimation in Vitis vinifera L. genotypes. Photosynthetica, 53(3), 342-348. https://doi.org/10.1007/s11099-015-0117-2 Burgos, A., Avanza, M., Balbo, C., Prause, J., & Argüello, J. (2010). Modelos para la estimación no destructiva del área foliara de dos cultivares de mandioca (Manihot esculenta Crantz) en la Argentina. Agriscientia(27), 55-61. Cabezas, M., Peña, F., Duarte, H., Colorado, J., & Lora, R. (2009). Un modelo para la estimación del área foliar en tres especies forestales de forma no destructiva. Revista U.D.C.A Actualidad & Divulgación Científica, 12(1). https://doi.org/10.31910/rudca.v12.n1.2009.648 Calderón, A., & Soto, F. (2009). ESTIMACIÓN DE ÁREA FOLIAR EN POSTURAS DE MANGO (Manguifera indica L.) Y AGUACATERO (Persea spp) EN FASE DE VIVERO A PARTIR DE LAS MEDIDAS LINEALES DE LAS HOJAS. Cultivos tropicales, 30(1), 7. Campos, G., García, M., & Pérez, D. (2011). RESPUESTA DE 20 VARIEDADES DE CARAOTA (Phaseolus vulgaris L.) ANTE EL ESTRÉS POR NaCl DURANTE LA GERMINACIÓN Y EN FASE PLANTULAR. 11. Cardona, C., Aramendiz, H., & Barrera, C. (2009). ESTIMACIÓN DEL ÁREA FOLIAR DE PAPAYA. Revista U.D.C.A Actualidad & Divulgación Científica, 12(1), 9. Cardona, C., Araméndiz, H., & Barrera, C. (2009). Modelo para Estimación de Área Foliar en Berenjena (Solanum melongena L) Basado en Muestreo no Destructivo. Temas Agrarios, 14(2), 14-22. https://doi.org/10.21897/rta.v14i2.675 Cardona, C., Jarma, A., Áramendiz, H., Peña, M., & Vergara, C. (2015). Respuestas fisiológicas y bioquímicas del fríjol caupí (Vigna unguiculata L. Walp.) bajo déficit hídrico. Revista Colombiana de Ciencias Hortícolas, 8(2), 250. https://doi.org/10.17584/rcch.2014v8i2.3218 Carneiro, A., da Costa, D., Lopes, D., Bento, P., Cavalcante, R., & Siviero, A. (2019). Cowpea: A Strategic Legume Species for Food Security and Health. En J. Jimenez & A. Clemente (Eds.), Legume Seed Nutraceutical Research. IntechOpen. https://doi.org/10.5772/intechopen.79006 Carvalho, M., Lino, T., Rosa, E., & Carnide, V. (2017). Cowpea: A legume crop for a challenging environment. Journal of the Science of Food and Agriculture, 97(13), 4273-4284. https://doi.org/10.1002/jsfa.8250 Cemek, B., Ünlükara, A., Kurunç, A., & Küçüktopcu, E. (2020). Leaf area modeling of bell pepper (Capsicum annuum L.) grown under different stress conditions by soft computing approaches. Computers and Electronics in Agriculture, 174, 105514. https://doi.org/10.1016/j.compag.2020.105514 Cristofori, V., Rouphael, Y., Gyves, E., & Bignami, C. (2007). A simple model for estimating leaf area of hazelnut from linear measurements. Scientia Horticulturae, 113(2), 221-225. https://doi.org/10.1016/j.scienta.2007.02.006 Cogliatti, D., Cataldi, M., & Iglesias, F. (2010). Estimación del área de las hojas en plantas de trigo bajo diferentes tipos de estrés abiótico. Agriscientia, 27, 43-53. Demirsoy, H., Demirsoy, L., Uzun, S., & Ersoy, B. (2004). Non-destructive Leaf Area Estimation in Peach. 3. Desoky, E., Elrys, A., Mansour, E., Eid, R., Selem, E., Rady, M., Ali, E., Mersal, G., & Semida, W. (2021). Application of biostimulants promotes growth and productivity by fortifying the antioxidant machinery and suppressing oxidative stress in faba bean under various abiotic stresses. Scientia Horticulturae, 288, 110340. https://doi.org/10.1016/j.scienta.2021.110340 Dolph, G. (1977). The effect of different calculational techniques on the estimation of leaf area and the construction of leaf size distributions. Bull. torrey Bot. Club, 264(9). Eckert, F., Kandel, H., Johnson, B., Rojas, G., Deplazes, C., Vander, A., & Osorno, J. (2011). Row Spacing and Nitrogen Effects on Upright Pinto Bean Cultivars under Direct Harvest Conditions. Agronomy Journal, 103(5), 1314-1320. https://doi.org/10.2134/agronj2010.0438 Estrada, V., Márquez, C., De La Cruz, E., Osorio, R., & Sánchez, E. (2018). Biofortificación de frijol caupí (Vigna unguiculata L. Walp) con zinc: Efecto en el rendimiento y contenido mineral. Revista Mexicana de Ciencias Agrícolas, 20. https://doi.org/10.29312/remexca.v0i20.986 Fascella, G., Darwich, S., & Rouphael, Y. (2013). Validation of a leaf area prediction model proposed for rose. Chilean Journal of Agricultural Research, 73(1), 73-76. https://doi.org/10.4067/S0718-58392013000100011 Flávio, F, & Folegatti, M. (2005). Estimation of leaf area for greenhouse cucumber by linear measurements under salinity and grafting. Scientia Agricola, 62(4), 305-309. https://doi.org/10.1590/S0103-90162005000400001 Freitas, R., Dombroski, J., Freitas, F., Nogueira, N., & Pinto, J. (2017). PHYSIOLOGICAL RESPONSES OF COWPEA UNDER WATER STRESS AND REWATERING IN NO-TILLAGE AND CONVENTIONAL TILLAGE SYSTEMS. Revista Caatinga, 30(3), 559-567. https://doi.org/10.1590/1983-21252017v30n303rc Gao, M., Van, G., Vos, J., Eveleens, B., & Marcelis, L. (2012). Estimation of leaf area for large scale phenotyping and modeling of rose genotypes. Scientia Horticulturae, 138, 227-234. https://doi.org/10.1016/j.scienta.2012.02.014 Gonçalves, C., Assis, F., Medeiros, J., Teixeira, M., & Filho, A. (2008). Modelos matemáticos para estimativa de área foliar de feijao caupi. Revista Caatinga, 21(1), 120-127. Gonçalves, M., Ribeiro, R.., & Amorim, L. (2022). Non-destructive models for estimating leaf area of guava cultivars. Bragantia, 81, e2822. https://doi.org/10.1590/1678-4499.20210342 Guerrero, M., Herrera, J., & Camacho, J. (2023). Modelo no destructivo para estimar el área foliar individual mediante parámetros alométricos en gulupa (Passiflora edulis fo. Edulis). Revista U.D.C.A Actualidad & Divulgación Científica, 26(2). https://doi.org/10.31910/rudca.v26.n2.2023.2356 Hall, A. (2012). Phenotyping Cowpeas for Adaptation to Drought. Frontiers in Physiology, 3. https://doi.org/10.3389/fphys.2012.00155 Hernández, I., Jarma, A., & Pompelli, M. (2021). Allometric models for non-destructive leaf area measurement of stevia: An in depth and complete analysis. Horticultura Brasileira, 39(2), 205-215. https://doi.org/10.1590/s0102-0536-20210212 Horn, L., & Shimelis, H. (2020). Production constraints and breeding approaches for cowpea improvement for drought prone agro-ecologies in Sub-Saharan Africa. Annals of Agricultural Sciences, 65(1), 83-91. https://doi.org/10.1016/j.aoas.2020.03.002 Jalal, A., Rauf, K., Iqbal, B., Khalil, R., Mustafa, H., Murad, M., Khalil, F., Khan, S., Oliveira, C., & Filho, M. (2023). Engineering legumes for drought stress tolerance: Constraints, accomplishments, and future prospects. South African Journal of Botany, 159, 482-491. https://doi.org/10.1016/j.sajb.2023.06.028 Keramatlou, I., Sharifani, M., Sabouri, H., Alizadeh, M., & Kamkar, B. (2015). A simple linear model for leaf area estimation in Persian walnut (Juglans regia L.). Scientia Horticulturae, 184, 36-39. https://doi.org/10.1016/j.scienta.2014.12.017 Lian, H., Qin, C., Zhao, Q., Begum, N., & Zhang, S. (2022). Exogenous calcium promotes growth of adzuki bean (Vigna angularis Willd.) seedlings under nitrogen limitation through the regulation of nitrogen metabolism. Plant Physiology and Biochemistry, 190, 90-100. https://doi.org/10.1016/j.plaphy.2022.08.028 Lima, R., Moreira, A., Vanderlane, A., Castro, L., Souza, L., & Lima, R. (2015). Modelos de Determinação Não Destrutiva de Área Foliar de Feijão Caupi Vigna unguiculata (L.). Global Science and Technology, 8(2), 17-27 Lopes, Á., Setubal, I., Costa, V., Zilli, J., Rodrigues, A., & Bonifacio, A. (2022). Synergism of Bradyrhizobium and Azospirillum baldaniorum improves growth and symbiotic performance in lima bean under salinity by positive modulations in leaf nitrogen compounds. Applied Soil Ecology, 180, 104603. https://doi.org/10.1016/j.apsoil.2022.104603 Lucero, C., Filippo, M., Vila, H., & Venier, M. (2017). Comparing water deficit and saline stress between 1103P and. Revista de la Facultad de Ciencias Agrarias, 12. Manoj, B., Gupta, M., Iqbal, M., & Gupta, S. (2022). Chitosan augments bioactive properties and drought resilience in drought-induced red kidney beans. Food Research International, 159, 111597. https://doi.org/10.1016/j.foodres.2022.111597 Martinez, A., Tordecilla, L., Grandett, L., Rodríguez, M., & Cordero, C. (2020). Fríjol Caupí (Vigna unguiculata L. Walp): Perspectiva socioeconómica y tecnológica en el Caribe colombiano. Ciencia y Agricultura, 17(2), 12-22. https://doi.org/10.19053/01228420.v17.n2.2020.10644 Mathobo, R., Marais, D., & Steyn, J. (2017). The effect of drought stress on yield, leaf gaseous exchange and chlorophyll fluorescence of dry beans (Phaseolus vulgaris L.). Agricultural Water Management, 180, 118-125. https://doi.org/10.1016/j.agwat.2016.11.005 Mbuma, N., Gerrano, A., Lebaka, N., & Labuschagne, M. (2022). Interrelationship between grain yield components and nutritional quality traits in cowpea genotypes. South African Journal of Botany, 150, 34-43. https://doi.org/10.1016/j.sajb.2022.07.006 Mendoza, E., Rouphael, Y., Cristofori, V., & Mira, F. (2007). A non-destructive, simple and accurate model for estimating the individual leaf area of kiwi ( Actinidia deliciosa). Fruits, 62(3), 171-176. https://doi.org/10.1051/fruits:2007012 Messier, J., McGill, B., & Lechowicz, M. (2010). How do traits vary across ecological scales? A case for trait-based ecology: How do traits vary across ecological scales? Ecology Letters, 13(7), 838-848. https://doi.org/10.1111/j.1461-0248.2010.01476.x Munns, R. (1993). Physiological processes limiting plant growth in saline soils: Some dogmas and hypotheses. Plant, Cell and Environment, 16(1), 15-24. https://doi.org/10.1111/j.1365-3040.1993.tb00840.x Peksen, E. (2007). Non-destructive leaf area estimation model for faba bean (Vicia faba L.). Scientia Horticulturae, 113(4), 322-328. https://doi.org/10.1016/j.scienta.2007.04.003 Pompelli, M., Antunes, W., Ferreira, D., Cavalcante, P., Wanderley, H., & Endres, L. (2012). Allometric models for non-destructive leaf area estimation of Jatropha curcas. Biomass and Bioenergy, 36, 77-85. https://doi.org/10.1016/j.biombioe.2011.10.010 Pompelli, M., Figueirôa, J., & Lozano, F. (2018). Allometric models for non-destructive leaf area estimation in Eugenia uniflora (L.). Peruvian Journal of Agronomy, 2(2), 1. https://doi.org/10.21704/pja.v2i2.1133 Pompelli, M., Santos, J., & Santos, M. (2019). Estimating leaf area of Jatropha nana through non-destructive allometric models. AIMS Environmental Science, 6(2), 59-76. https://doi.org/10.3934/environsci.2019.2.59 Queiroga, J., Romano, E., Souza, J., & Miglioranza, É. (2003). Estimativa da área foliar do feijão-vagem (Phaseolus vulgaris L.) por meio da largura máxima do folíolo central. Horticultura Brasileira, 21(1), 64-68. https://doi.org/10.1590/S0102-05362003000100013 Quintana, W., Pinzón, E., & Torres, D. (2016). Evaluación del crecimiento de fríjol (Phaseolus vulgaris L.) cv. Ica Cerinza, bajo estrés salino. Revista U.D.C.A Actualidad & Divulgación Científica, 19(1). https://doi.org/10.31910/rudca.v19.n1.2016.113 Rao, G., Khan, B., & Chadha, K. (1978). Comparison of methods of estimating leaf-surface area through leaf characteristics in some cultiv ars of Mangifera indica. Scientia Horticulturae, 8(4), 341-348. https://doi.org/10.1016/0304-4238(78)90056-0 Rouphael, Y., Colla, G., Fanasca, S., & Karam, F. (2007). Leaf area estimation of sunflower leaves from simple linear measurements. Photosynthetica, 45(2), 306-308. https://doi.org/10.1007/s11099-007-0051-z Santos, J., Jarma, A., Antunes, W., Mendes, K., Figueiroa, J., Pessoa, L., & Pompelli, M. (2021). New approaches to predict leaf area in woody tree species from the Atlantic Rainforest, Brazil. Austral Ecology, 46(4), 613-626. https://doi.org/10.1111/aec.13017 Santos, M., Jarma, A., Lozano, F., Santos, J., Rivera, J., Espitia, M., Castillejo, Á., Jarma, B., & Pompelli, M. (2018). Leaf area estimation in Jatropha curcas (L.): An update. AIMS Environmental Science, 5(5), 353-371. https://doi.org/10.3934/environsci.2018.5.353 Spann, T., & Heerema, R. (2010). A simple method for non-destructive estimation of total shoot leaf area in tree fruit crops. Scientia Horticulturae, 125(3), 528-533. https://doi.org/10.1016/j.scienta.2010.04.033 Steel, M., & Penny, D. (2000). Parsimony, Likelihood, and the Role of Models in Molecular Phylogenetics. Molecular Biology and Evolution, 17(6), 839-850. https://doi.org/10.1093/oxfordjournals.molbev.a026364 Suárez, J., Melgarejo, L., Durán, E., Di Rienzo, J., & Casanoves, F. (2018). Non-destructive estimation of the leaf weight and leaf area in cacao ( Theobroma cacao L.). Scientia Horticulturae, 229, 19-24. https://doi.org/10.1016/j.scienta.2017.10.034 Teobaldelli, M., Rouphael, Y., Gonnella, M., Buttaro, D., Rivera, C., Muganu, M., Colla, G., & Basile, B. (2020). Developing a fast and accurate model to estimate allometrically the total shoot leaf area in grapevines. Scientia Horticulturae, 259, 108794. https://doi.org/10.1016/j.scienta.2019.108794 Tsialtas, J., Koundouras, S., & Zioziou, E. (2008). Leaf area estimation by simple measurements and evaluation of leaf area prediction models in Cabernet-Sauvignon grapevine leaves. Photosynthetica, 46(3), 452-456. https://doi.org/10.1007/s11099-008-0077-x Turk, K., Hall, A., & Asbell, C. (1980). Drought Adaptation of Cowpea. I. Influence of Drought on Seed Yield 1. Agronomy Journal, 72(3), 413-420. https://doi.org/10.2134/agronj1980.00021962007200030004x Vadez, V., Kholová, J., Hummel, G., Zhokhavets, U., Gupta, S., & Hash, C. (2015). LeasyScan: A novel concept combining 3D imaging and lysimetry for high-throughput phenotyping of traits controlling plant water budget. Journal of Experimental Botany, 66(18), 5581-5593. https://doi.org/10.1093/jxb/erv251 Walther, B., & Moore, J. (2005). The concepts of bias, precision and accuracy, and their use in testing the performance of species richness estimators, with a literature review of estimator performance. Ecography, 28(6), 815-829. https://doi.org/10.1111/j.2005.0906-7590.04112.x Wang, W., Vinocur, B., & Altman, A. (2003). Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance. Planta, 218(1), 1-14. https://doi.org/10.1007/s00425-003-1105-5 Williams, L., & Martinson, T. (2003). Nondestructive leaf area estimation of ‘Niagara’ and ‘DeChaunac’ grapevines. Scientia Horticulturae, 98(4), 493-498. https://doi.org/10.1016/S0304-4238(03)00020-7 Yau, W., Ng, O., & Lee, S. (2021). Portable device for contactless, non-destructive and in situ outdoor individual leaf area measurement. Computers and Electronics in Agriculture, 187, 106278. https://doi.org/10.1016/j.compag.2021.106278 Zaman, M., Shahid, S., & Heng, L. (2018). Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques. Springer International Publishing. https://doi.org/10.1007/978-3-319-96190-3 |
dc.rights.none.fl_str_mv |
Copyright Universidad de Córdoba, 2024 |
dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.license.none.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Copyright Universidad de Córdoba, 2024 https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de Córdoba |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias Agrícolas |
dc.publisher.place.none.fl_str_mv |
Montería, Córdoba, Colombia |
dc.publisher.program.none.fl_str_mv |
Maestría en Ciencias Agronómicas |
publisher.none.fl_str_mv |
Universidad de Córdoba |
institution |
Universidad de Córdoba |
bitstream.url.fl_str_mv |
https://repositorio.unicordoba.edu.co/bitstreams/e93a6199-e78e-4d04-a73a-2985804820d3/download https://repositorio.unicordoba.edu.co/bitstreams/a6c32204-d4a3-4694-88c4-d0bf37f72152/download https://repositorio.unicordoba.edu.co/bitstreams/23fadb00-381e-4c22-ae02-648ce7d490dc/download https://repositorio.unicordoba.edu.co/bitstreams/460db2e2-c387-455d-89b5-196737afe893/download https://repositorio.unicordoba.edu.co/bitstreams/15cf404b-2975-4ec9-a99a-c09c85dfa6f1/download https://repositorio.unicordoba.edu.co/bitstreams/6ae54a2c-fd19-4e7c-a714-e042ef52fb17/download https://repositorio.unicordoba.edu.co/bitstreams/851fde08-70af-4a62-bb65-c6a12158a63e/download |
bitstream.checksum.fl_str_mv |
73a5432e0b76442b22b026844140d683 859dfc95fa0f3dd8548b17d658403ff5 67aa6ea5b28d88744ce72cf1d846c27d caccb0321496c277e686ac73157714be 05935ccf14bf8070e74f19ca6a35a212 1cde53359bccbcc1185868e23b9c8c75 be5924f2dd7733ff56ed5f5b5950e686 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Universidad de Córdoba |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1839636128737525760 |
spelling |
Jarma-Orozco, Alfredo De Jesúsed61ada0-fc0b-4f42-a137-89f070d01867-1Tello Coley, Alberto Jose959acd01-21f8-4945-9f37-d9e11b408c87-1Barrera, José Luis1563a8d5-56bd-48f5-a542-0f1f030cfd32600Pérez Polo, Dairo Javier738afc50-88ec-4d0b-97e6-b3a96f5963a16002024-07-10T12:57:31Z2024-07-10T12:57:31Z2024-07-08https://repositorio.unicordoba.edu.co/handle/ucordoba/8364Universidad de CórdobaRepositorio Universidad de Córdobahttps://repositorio.unicordoba.edu.coEl frijol caupí es una especie de importancia económica para la seguridad alimentaria de muchos pueblos alrededor del mundo, puesto que es una planta que resiste condiciones de estrés abiótico en especial el hídrico, salino y manejo agronómico insuficiente, además de ser una importante fuente de proteínas, energía y de otros nutrientes. Las mediciones de área foliar emplean métodos costosos, lentos y poco aplicables no solo en cultivos de frijol caupí si no también en las demás especies importantes para el hombre. Hasta el momento en la especie de estudio no se han realizado mediciones de área foliar que impliquen los efectos del estrés ambiental y mucho menos el desarrollo de un modelo matemático que permita predecir de manera precisa esta variable física. Conocer el área foliar de la planta en ambientes adecuados y estresantes por medios no destructivos puede permitir tomar correctivos a nivel de manejo y puede ser de utilidad en programas de fitomejoramiento. Los datos obtenidos mostraron que el foliolo central de la hoja de frijol no modifica su morfología independientemente de la condición ambiental permitiendo utilizar un modelo predictivo de área foliar de la forma Y=0.63xLA1.01, en cambio el test de identidad sugirió diferencias entre los foliolos laterales entre todos los tratamientos, lo cuales absorbieron el efecto del estrés al cambiar su morfología dependiendo del ambiente lo que produjo tres modelos predictivos de área foliar de la forma Y=0.64xLA1.02, Y=0.67xLA1.02 y Y=0.68xLA1.01, para condiciones óptimas, salinidad y sequía respectivamente.Cowpea bean is a species of economic importance for the food security of many communities around the world, as it is a plant that withstands abiotic stress conditions, particularly water and saline stress, as well as insufficient agronomic management. Additionally, it is an important source of proteins, energy, and other nutrients. Leaf area measurements employ costly, slow, and impractical methods not only for cowpea bean crops but also for other important species for humans. To date, no leaf area measurements have been conducted on the species under study that consider the effects of environmental stress, much less the development of a mathematical model that accurately predicts this physical variable. Understanding the leaf area of the plant in both suitable and stressful environments through non-destructive means can allow for corrective measures at the management level and can be useful in plant breeding programs. The data obtained showed that the central leaf of the cowpea bean does not alter its morphology regardless of the environmental condition, allowing the use of a predictive model for leaf area in the form Y=0.63xLA1.01. However, the identity test suggested differences among the lateral leafs across all treatments, which absorbed the stress effect by changing their morphology depending on the environment, resulting in three predictive models for leaf area in the form Y=0.64xLA1.02, Y=0.67xLA1.02 , and Y=0.68xLA1.01, for optimal conditions, salinity, and drought, respectively1 RESUMEN. .................. 12 ABSTRACT. ............. 23 INTRODUCCIÓN. ............... 34 OBJETIVOS. ................ 64.1 OBJETIVO GENERAL: ............... 64.2 OBJETIVOS ESPECÍFICOS: ............ 65 MARCO TEÓRICO. ............... 75.1 Importancia de la especie. .......... 75.1.1 Fríjol Caupí (Vigna unguiculata L. Walp). ........... 75.1.2 Área sembrada, producción y rendimiento mundial de frijol caupí. .................... 75.2 Importancia del área foliar. ............. 95.3 Condiciones de estrés en plantas. .................. 115.4 Antecedentes de investigación. ..................... 146 METODOLOGÍA. ................ 196.1 Ubicación del Experimento. .................... 196.2 Condiciones Meteorológicas. .................... 196.3 Material Vegetal. ...................... 196.4 Variable de respuesta. .................... 196.5 Diseño de muestreo. .................. 216.6 Manejo agronómico. ........................ 226.7 Procedimiento. ........................ 226.7.1 Medidas de intercambio gaseoso. ............... 226.7.2 Estímulo de estrés por sequía. ................. 226.7.3 Estimulo de estrés por salinidad. ...................... 236.7.4 Área foliar por medio de procesador de imágenes. ................... 236.7.5 Pruebas de identidad del modelo...................... 246.7.6 Modelos teóricos. ................ 246.7.7 Análisis estadístico. .............. 256.7.8 Modelo de validación. ............ 257 RESULTADOS. ........................ 267.1 Análisis de los foliolos central y laterales de frijol caupí (Vigna unguiculata) bajo condiciones normales y de estrés. ............. 287.1.1 Análisis de los foliolos centrales en función de todos los tratamientos. .............. 287.1.2 Análisis de los foliolos laterales en función del tratamiento control. .................. 327.1.3 Análisis de los foliolos laterales en función del tratamiento bajo condiciones de salinidad................. 357.1.4 Análisis de los foliolos laterales en función del tratamiento bajo condiciones de sequía............ 387.2 DISCUSIÓN. ................... 418 CONCLUSIONES. ........... 439 RECOMENDACIONES. .......... 4410 BIBLIOGRAFÍA ................... 45MaestríaMagíster en Ciencias AgronómicasTrabajos de Investigación y/o Extensiónapplication/pdfspaUniversidad de CórdobaFacultad de Ciencias AgrícolasMontería, Córdoba, ColombiaMaestría en Ciencias AgronómicasCopyright Universidad de Córdoba, 2024https://creativecommons.org/licenses/by-nc-nd/4.0/Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Modelos alométricos para la medición no destructiva del área foliar del frijol caupí (Vigna unguiculata L. Walp.) sometido a condiciones de estrésTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAbebe, B. & Alemayehu, M. (2022). A review of the nutritional use of cowpea (Vigna unguiculata L. Walp) for human and animal diets. Journal of Agriculture and Food Research, 10, 100383. https://doi.org/10.1016/j.jafr.2022.100383Ahmad, S. Ahmad, R. Ashraf, M., Ashraf, M., & Waraich, E. (2009). Sunflower (Helianthus annuus L.) response to drought stress at germination and seedling growth stages. 41(2), 647-654.Ahmed, I., Nadira, U., Bibi, N., Cao, F., He, X., Zhang, G., & Wu, F. (2015). Secondary metabolism and antioxidants are involved in the tolerance to drought and salinity, separately and combined, in Tibetan wild barley. Environmental and Experimental Botany, 111, 1-12. https://doi.org/10.1016/j.envexpbot.2014.10.003Alsamadany, H. (2022). Physiological, biochemical and molecular evaluation of mungbean genotypes for agronomical yield under drought and salinity stresses in the presence of humic acid. Saudi Journal of Biological Sciences, 29(9), 103385. https://doi.org/10.1016/j.sjbs.2022.103385Andrade, K., Rivera, R., & Cuenca Cuenca, E. (2023). Efecto de distintos niveles de fertilización en el comportamiento agronómico del frejol caupí INIAP-463. La Técnica Revista de las Agrociencias ISSN 2477-8982, 13(2), 61-66. https://doi.org/10.33936/latecnica.v13i2.5375Antunes, W., Pompelli, M., Carretero, D., & DaMatta, F. (2008). Allometric models for non-destructive leaf area estimation in coffee ( Coffea arabica and Coffea canephora ). Annals of Applied Biology, 153(1), 33-40. https://doi.org/10.1111/j.1744-7348.2008.00235.xAyalew, T., Yoseph, T., Högy, P., & Cadisch, G. (2022). Leaf growth, gas exchange and assimilation performance of cowpea varieties in response to Bradyrhizobium inoculation. Heliyon, 8(1), e08746. https://doi.org/10.1016/j.heliyon.2022.e08746Barrera, J., Suárez, D., & Melgarejo, L. (2010). Análisis de crecimiento en plantas. En L. M. Melgarejo, Experimientos en fisiología vegetal. Bogotá D.C: Universidad Nacional de Colombia.Boukhana, M., Ravaglia, J., Hétroy, F., & De Solan, B. (2022). Geometric models for plant leaf area estimation from 3D point clouds: A comparative study. Graphics and Visual Computing, 200057. https://doi.org/10.1016/j.gvc.2022.200057Buttaro, D., Rouphael, Y., Rivera, C., Colla, G., & Gonnella, M. (2015). Simple and accurate allometric model for leaf area estimation in Vitis vinifera L. genotypes. Photosynthetica, 53(3), 342-348. https://doi.org/10.1007/s11099-015-0117-2Burgos, A., Avanza, M., Balbo, C., Prause, J., & Argüello, J. (2010). Modelos para la estimación no destructiva del área foliara de dos cultivares de mandioca (Manihot esculenta Crantz) en la Argentina. Agriscientia(27), 55-61.Cabezas, M., Peña, F., Duarte, H., Colorado, J., & Lora, R. (2009). Un modelo para la estimación del área foliar en tres especies forestales de forma no destructiva. Revista U.D.C.A Actualidad & Divulgación Científica, 12(1). https://doi.org/10.31910/rudca.v12.n1.2009.648Calderón, A., & Soto, F. (2009). ESTIMACIÓN DE ÁREA FOLIAR EN POSTURAS DE MANGO (Manguifera indica L.) Y AGUACATERO (Persea spp) EN FASE DE VIVERO A PARTIR DE LAS MEDIDAS LINEALES DE LAS HOJAS. Cultivos tropicales, 30(1), 7.Campos, G., García, M., & Pérez, D. (2011). RESPUESTA DE 20 VARIEDADES DE CARAOTA (Phaseolus vulgaris L.) ANTE EL ESTRÉS POR NaCl DURANTE LA GERMINACIÓN Y EN FASE PLANTULAR. 11.Cardona, C., Aramendiz, H., & Barrera, C. (2009). ESTIMACIÓN DEL ÁREA FOLIAR DE PAPAYA. Revista U.D.C.A Actualidad & Divulgación Científica, 12(1), 9.Cardona, C., Araméndiz, H., & Barrera, C. (2009). Modelo para Estimación de Área Foliar en Berenjena (Solanum melongena L) Basado en Muestreo no Destructivo. Temas Agrarios, 14(2), 14-22. https://doi.org/10.21897/rta.v14i2.675Cardona, C., Jarma, A., Áramendiz, H., Peña, M., & Vergara, C. (2015). Respuestas fisiológicas y bioquímicas del fríjol caupí (Vigna unguiculata L. Walp.) bajo déficit hídrico. Revista Colombiana de Ciencias Hortícolas, 8(2), 250. https://doi.org/10.17584/rcch.2014v8i2.3218Carneiro, A., da Costa, D., Lopes, D., Bento, P., Cavalcante, R., & Siviero, A. (2019). Cowpea: A Strategic Legume Species for Food Security and Health. En J. Jimenez & A. Clemente (Eds.), Legume Seed Nutraceutical Research. IntechOpen. https://doi.org/10.5772/intechopen.79006Carvalho, M., Lino, T., Rosa, E., & Carnide, V. (2017). Cowpea: A legume crop for a challenging environment. Journal of the Science of Food and Agriculture, 97(13), 4273-4284. https://doi.org/10.1002/jsfa.8250Cemek, B., Ünlükara, A., Kurunç, A., & Küçüktopcu, E. (2020). Leaf area modeling of bell pepper (Capsicum annuum L.) grown under different stress conditions by soft computing approaches. Computers and Electronics in Agriculture, 174, 105514. https://doi.org/10.1016/j.compag.2020.105514Cristofori, V., Rouphael, Y., Gyves, E., & Bignami, C. (2007). A simple model for estimating leaf area of hazelnut from linear measurements. Scientia Horticulturae, 113(2), 221-225. https://doi.org/10.1016/j.scienta.2007.02.006Cogliatti, D., Cataldi, M., & Iglesias, F. (2010). Estimación del área de las hojas en plantas de trigo bajo diferentes tipos de estrés abiótico. Agriscientia, 27, 43-53.Demirsoy, H., Demirsoy, L., Uzun, S., & Ersoy, B. (2004). Non-destructive Leaf Area Estimation in Peach. 3.Desoky, E., Elrys, A., Mansour, E., Eid, R., Selem, E., Rady, M., Ali, E., Mersal, G., & Semida, W. (2021). Application of biostimulants promotes growth and productivity by fortifying the antioxidant machinery and suppressing oxidative stress in faba bean under various abiotic stresses. Scientia Horticulturae, 288, 110340. https://doi.org/10.1016/j.scienta.2021.110340Dolph, G. (1977). The effect of different calculational techniques on the estimation of leaf area and the construction of leaf size distributions. Bull. torrey Bot. Club, 264(9).Eckert, F., Kandel, H., Johnson, B., Rojas, G., Deplazes, C., Vander, A., & Osorno, J. (2011). Row Spacing and Nitrogen Effects on Upright Pinto Bean Cultivars under Direct Harvest Conditions. Agronomy Journal, 103(5), 1314-1320. https://doi.org/10.2134/agronj2010.0438Estrada, V., Márquez, C., De La Cruz, E., Osorio, R., & Sánchez, E. (2018). Biofortificación de frijol caupí (Vigna unguiculata L. Walp) con zinc: Efecto en el rendimiento y contenido mineral. Revista Mexicana de Ciencias Agrícolas, 20. https://doi.org/10.29312/remexca.v0i20.986Fascella, G., Darwich, S., & Rouphael, Y. (2013). Validation of a leaf area prediction model proposed for rose. Chilean Journal of Agricultural Research, 73(1), 73-76. https://doi.org/10.4067/S0718-58392013000100011Flávio, F, & Folegatti, M. (2005). Estimation of leaf area for greenhouse cucumber by linear measurements under salinity and grafting. Scientia Agricola, 62(4), 305-309. https://doi.org/10.1590/S0103-90162005000400001Freitas, R., Dombroski, J., Freitas, F., Nogueira, N., & Pinto, J. (2017). PHYSIOLOGICAL RESPONSES OF COWPEA UNDER WATER STRESS AND REWATERING IN NO-TILLAGE AND CONVENTIONAL TILLAGE SYSTEMS. Revista Caatinga, 30(3), 559-567. https://doi.org/10.1590/1983-21252017v30n303rcGao, M., Van, G., Vos, J., Eveleens, B., & Marcelis, L. (2012). Estimation of leaf area for large scale phenotyping and modeling of rose genotypes. Scientia Horticulturae, 138, 227-234. https://doi.org/10.1016/j.scienta.2012.02.014Gonçalves, C., Assis, F., Medeiros, J., Teixeira, M., & Filho, A. (2008). Modelos matemáticos para estimativa de área foliar de feijao caupi. Revista Caatinga, 21(1), 120-127.Gonçalves, M., Ribeiro, R.., & Amorim, L. (2022). Non-destructive models for estimating leaf area of guava cultivars. Bragantia, 81, e2822. https://doi.org/10.1590/1678-4499.20210342Guerrero, M., Herrera, J., & Camacho, J. (2023). Modelo no destructivo para estimar el área foliar individual mediante parámetros alométricos en gulupa (Passiflora edulis fo. Edulis). Revista U.D.C.A Actualidad & Divulgación Científica, 26(2). https://doi.org/10.31910/rudca.v26.n2.2023.2356Hall, A. (2012). Phenotyping Cowpeas for Adaptation to Drought. Frontiers in Physiology, 3. https://doi.org/10.3389/fphys.2012.00155Hernández, I., Jarma, A., & Pompelli, M. (2021). Allometric models for non-destructive leaf area measurement of stevia: An in depth and complete analysis. Horticultura Brasileira, 39(2), 205-215. https://doi.org/10.1590/s0102-0536-20210212Horn, L., & Shimelis, H. (2020). Production constraints and breeding approaches for cowpea improvement for drought prone agro-ecologies in Sub-Saharan Africa. Annals of Agricultural Sciences, 65(1), 83-91. https://doi.org/10.1016/j.aoas.2020.03.002Jalal, A., Rauf, K., Iqbal, B., Khalil, R., Mustafa, H., Murad, M., Khalil, F., Khan, S., Oliveira, C., & Filho, M. (2023). Engineering legumes for drought stress tolerance: Constraints, accomplishments, and future prospects. South African Journal of Botany, 159, 482-491. https://doi.org/10.1016/j.sajb.2023.06.028Keramatlou, I., Sharifani, M., Sabouri, H., Alizadeh, M., & Kamkar, B. (2015). A simple linear model for leaf area estimation in Persian walnut (Juglans regia L.). Scientia Horticulturae, 184, 36-39. https://doi.org/10.1016/j.scienta.2014.12.017Lian, H., Qin, C., Zhao, Q., Begum, N., & Zhang, S. (2022). Exogenous calcium promotes growth of adzuki bean (Vigna angularis Willd.) seedlings under nitrogen limitation through the regulation of nitrogen metabolism. Plant Physiology and Biochemistry, 190, 90-100. https://doi.org/10.1016/j.plaphy.2022.08.028Lima, R., Moreira, A., Vanderlane, A., Castro, L., Souza, L., & Lima, R. (2015). Modelos de Determinação Não Destrutiva de Área Foliar de Feijão Caupi Vigna unguiculata (L.). Global Science and Technology, 8(2), 17-27Lopes, Á., Setubal, I., Costa, V., Zilli, J., Rodrigues, A., & Bonifacio, A. (2022). Synergism of Bradyrhizobium and Azospirillum baldaniorum improves growth and symbiotic performance in lima bean under salinity by positive modulations in leaf nitrogen compounds. Applied Soil Ecology, 180, 104603. https://doi.org/10.1016/j.apsoil.2022.104603Lucero, C., Filippo, M., Vila, H., & Venier, M. (2017). Comparing water deficit and saline stress between 1103P and. Revista de la Facultad de Ciencias Agrarias, 12.Manoj, B., Gupta, M., Iqbal, M., & Gupta, S. (2022). Chitosan augments bioactive properties and drought resilience in drought-induced red kidney beans. Food Research International, 159, 111597. https://doi.org/10.1016/j.foodres.2022.111597Martinez, A., Tordecilla, L., Grandett, L., Rodríguez, M., & Cordero, C. (2020). Fríjol Caupí (Vigna unguiculata L. Walp): Perspectiva socioeconómica y tecnológica en el Caribe colombiano. Ciencia y Agricultura, 17(2), 12-22. https://doi.org/10.19053/01228420.v17.n2.2020.10644Mathobo, R., Marais, D., & Steyn, J. (2017). The effect of drought stress on yield, leaf gaseous exchange and chlorophyll fluorescence of dry beans (Phaseolus vulgaris L.). Agricultural Water Management, 180, 118-125. https://doi.org/10.1016/j.agwat.2016.11.005Mbuma, N., Gerrano, A., Lebaka, N., & Labuschagne, M. (2022). Interrelationship between grain yield components and nutritional quality traits in cowpea genotypes. South African Journal of Botany, 150, 34-43. https://doi.org/10.1016/j.sajb.2022.07.006Mendoza, E., Rouphael, Y., Cristofori, V., & Mira, F. (2007). A non-destructive, simple and accurate model for estimating the individual leaf area of kiwi ( Actinidia deliciosa). Fruits, 62(3), 171-176. https://doi.org/10.1051/fruits:2007012Messier, J., McGill, B., & Lechowicz, M. (2010). How do traits vary across ecological scales? A case for trait-based ecology: How do traits vary across ecological scales? Ecology Letters, 13(7), 838-848. https://doi.org/10.1111/j.1461-0248.2010.01476.xMunns, R. (1993). Physiological processes limiting plant growth in saline soils: Some dogmas and hypotheses. Plant, Cell and Environment, 16(1), 15-24. https://doi.org/10.1111/j.1365-3040.1993.tb00840.xPeksen, E. (2007). Non-destructive leaf area estimation model for faba bean (Vicia faba L.). Scientia Horticulturae, 113(4), 322-328. https://doi.org/10.1016/j.scienta.2007.04.003Pompelli, M., Antunes, W., Ferreira, D., Cavalcante, P., Wanderley, H., & Endres, L. (2012). Allometric models for non-destructive leaf area estimation of Jatropha curcas. Biomass and Bioenergy, 36, 77-85. https://doi.org/10.1016/j.biombioe.2011.10.010Pompelli, M., Figueirôa, J., & Lozano, F. (2018). Allometric models for non-destructive leaf area estimation in Eugenia uniflora (L.). Peruvian Journal of Agronomy, 2(2), 1. https://doi.org/10.21704/pja.v2i2.1133Pompelli, M., Santos, J., & Santos, M. (2019). Estimating leaf area of Jatropha nana through non-destructive allometric models. AIMS Environmental Science, 6(2), 59-76. https://doi.org/10.3934/environsci.2019.2.59Queiroga, J., Romano, E., Souza, J., & Miglioranza, É. (2003). Estimativa da área foliar do feijão-vagem (Phaseolus vulgaris L.) por meio da largura máxima do folíolo central. Horticultura Brasileira, 21(1), 64-68. https://doi.org/10.1590/S0102-05362003000100013Quintana, W., Pinzón, E., & Torres, D. (2016). Evaluación del crecimiento de fríjol (Phaseolus vulgaris L.) cv. Ica Cerinza, bajo estrés salino. Revista U.D.C.A Actualidad & Divulgación Científica, 19(1). https://doi.org/10.31910/rudca.v19.n1.2016.113Rao, G., Khan, B., & Chadha, K. (1978). Comparison of methods of estimating leaf-surface area through leaf characteristics in some cultiv ars of Mangifera indica. Scientia Horticulturae, 8(4), 341-348. https://doi.org/10.1016/0304-4238(78)90056-0Rouphael, Y., Colla, G., Fanasca, S., & Karam, F. (2007). Leaf area estimation of sunflower leaves from simple linear measurements. Photosynthetica, 45(2), 306-308. https://doi.org/10.1007/s11099-007-0051-zSantos, J., Jarma, A., Antunes, W., Mendes, K., Figueiroa, J., Pessoa, L., & Pompelli, M. (2021). New approaches to predict leaf area in woody tree species from the Atlantic Rainforest, Brazil. Austral Ecology, 46(4), 613-626. https://doi.org/10.1111/aec.13017Santos, M., Jarma, A., Lozano, F., Santos, J., Rivera, J., Espitia, M., Castillejo, Á., Jarma, B., & Pompelli, M. (2018). Leaf area estimation in Jatropha curcas (L.): An update. AIMS Environmental Science, 5(5), 353-371. https://doi.org/10.3934/environsci.2018.5.353Spann, T., & Heerema, R. (2010). A simple method for non-destructive estimation of total shoot leaf area in tree fruit crops. Scientia Horticulturae, 125(3), 528-533. https://doi.org/10.1016/j.scienta.2010.04.033Steel, M., & Penny, D. (2000). Parsimony, Likelihood, and the Role of Models in Molecular Phylogenetics. Molecular Biology and Evolution, 17(6), 839-850. https://doi.org/10.1093/oxfordjournals.molbev.a026364Suárez, J., Melgarejo, L., Durán, E., Di Rienzo, J., & Casanoves, F. (2018). Non-destructive estimation of the leaf weight and leaf area in cacao ( Theobroma cacao L.). Scientia Horticulturae, 229, 19-24. https://doi.org/10.1016/j.scienta.2017.10.034Teobaldelli, M., Rouphael, Y., Gonnella, M., Buttaro, D., Rivera, C., Muganu, M., Colla, G., & Basile, B. (2020). Developing a fast and accurate model to estimate allometrically the total shoot leaf area in grapevines. Scientia Horticulturae, 259, 108794. https://doi.org/10.1016/j.scienta.2019.108794Tsialtas, J., Koundouras, S., & Zioziou, E. (2008). Leaf area estimation by simple measurements and evaluation of leaf area prediction models in Cabernet-Sauvignon grapevine leaves. Photosynthetica, 46(3), 452-456. https://doi.org/10.1007/s11099-008-0077-xTurk, K., Hall, A., & Asbell, C. (1980). Drought Adaptation of Cowpea. I. Influence of Drought on Seed Yield 1. Agronomy Journal, 72(3), 413-420. https://doi.org/10.2134/agronj1980.00021962007200030004xVadez, V., Kholová, J., Hummel, G., Zhokhavets, U., Gupta, S., & Hash, C. (2015). LeasyScan: A novel concept combining 3D imaging and lysimetry for high-throughput phenotyping of traits controlling plant water budget. Journal of Experimental Botany, 66(18), 5581-5593. https://doi.org/10.1093/jxb/erv251Walther, B., & Moore, J. (2005). The concepts of bias, precision and accuracy, and their use in testing the performance of species richness estimators, with a literature review of estimator performance. Ecography, 28(6), 815-829. https://doi.org/10.1111/j.2005.0906-7590.04112.xWang, W., Vinocur, B., & Altman, A. (2003). Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance. Planta, 218(1), 1-14. https://doi.org/10.1007/s00425-003-1105-5Williams, L., & Martinson, T. (2003). Nondestructive leaf area estimation of ‘Niagara’ and ‘DeChaunac’ grapevines. Scientia Horticulturae, 98(4), 493-498. https://doi.org/10.1016/S0304-4238(03)00020-7Yau, W., Ng, O., & Lee, S. (2021). Portable device for contactless, non-destructive and in situ outdoor individual leaf area measurement. Computers and Electronics in Agriculture, 187, 106278. https://doi.org/10.1016/j.compag.2021.106278Zaman, M., Shahid, S., & Heng, L. (2018). Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques. Springer International Publishing. https://doi.org/10.1007/978-3-319-96190-3Frijol caupíArea foliarEstrés salinoEstrés hídricoAlometríaCowpea beanLeaf areaSaline stressWater stressAllometryPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://repositorio.unicordoba.edu.co/bitstreams/e93a6199-e78e-4d04-a73a-2985804820d3/download73a5432e0b76442b22b026844140d683MD51ORIGINALtellocoleyalbertojose.pdftellocoleyalbertojose.pdfapplication/pdf6194062https://repositorio.unicordoba.edu.co/bitstreams/a6c32204-d4a3-4694-88c4-d0bf37f72152/download859dfc95fa0f3dd8548b17d658403ff5MD54Formato de autorización.pdfFormato de autorización.pdfapplication/pdf200369https://repositorio.unicordoba.edu.co/bitstreams/23fadb00-381e-4c22-ae02-648ce7d490dc/download67aa6ea5b28d88744ce72cf1d846c27dMD53TEXTtellocoleyalbertojose.pdf.txttellocoleyalbertojose.pdf.txtExtracted texttext/plain102722https://repositorio.unicordoba.edu.co/bitstreams/460db2e2-c387-455d-89b5-196737afe893/downloadcaccb0321496c277e686ac73157714beMD55Formato de autorización.pdf.txtFormato de autorización.pdf.txtExtracted texttext/plain4398https://repositorio.unicordoba.edu.co/bitstreams/15cf404b-2975-4ec9-a99a-c09c85dfa6f1/download05935ccf14bf8070e74f19ca6a35a212MD57THUMBNAILtellocoleyalbertojose.pdf.jpgtellocoleyalbertojose.pdf.jpgGenerated Thumbnailimage/jpeg5663https://repositorio.unicordoba.edu.co/bitstreams/6ae54a2c-fd19-4e7c-a714-e042ef52fb17/download1cde53359bccbcc1185868e23b9c8c75MD56Formato de autorización.pdf.jpgFormato de autorización.pdf.jpgGenerated Thumbnailimage/jpeg14919https://repositorio.unicordoba.edu.co/bitstreams/851fde08-70af-4a62-bb65-c6a12158a63e/downloadbe5924f2dd7733ff56ed5f5b5950e686MD58ucordoba/8364oai:repositorio.unicordoba.edu.co:ucordoba/83642024-07-11 03:01:03.552https://creativecommons.org/licenses/by-nc-nd/4.0/Copyright Universidad de Córdoba, 2024open.accesshttps://repositorio.unicordoba.edu.coRepositorio Universidad de Córdobabdigital@metabiblioteca.comPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K |