Caracterización de bacterias nativas solubilizadoras de fósforo y productoras de ácido indol acético aisladas de suelo franco arenosos, como alternativa de biofertilización

Los microorganismos del suelo son fundamentales para el equilibrio ecológico, debido a que participan activamente en los ciclos de elementos esenciales como el carbono, nitrógeno, azufre y fósforo. Entre estos, las bacterias solubilizadoras de fósforo y productoras de ácido indol acético desempeñan...

Full description

Autores:
Mercado Rosso, Sara Yomar
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2024
Institución:
Universidad de Córdoba
Repositorio:
Repositorio Institucional Unicórdoba
Idioma:
spa
OAI Identifier:
oai:repositorio.unicordoba.edu.co:ucordoba/8746
Acceso en línea:
https://repositorio.unicordoba.edu.co/handle/ucordoba/8746
https://repositorio.unicordoba.edu.co
Palabra clave:
Biofertilizantes
Bacterias promotoras del crecimiento vegetal
Departamento de Córdoba
Biofertilizers
plant growth promoting bacteria
Department of Córdoba
Rights
embargoedAccess
License
Copyright Universidad de Córdoba, 2024
id UCORDOBA2_1eed1da0af3b22c67d5827c886d6845b
oai_identifier_str oai:repositorio.unicordoba.edu.co:ucordoba/8746
network_acronym_str UCORDOBA2
network_name_str Repositorio Institucional Unicórdoba
repository_id_str
dc.title.spa.fl_str_mv Caracterización de bacterias nativas solubilizadoras de fósforo y productoras de ácido indol acético aisladas de suelo franco arenosos, como alternativa de biofertilización
title Caracterización de bacterias nativas solubilizadoras de fósforo y productoras de ácido indol acético aisladas de suelo franco arenosos, como alternativa de biofertilización
spellingShingle Caracterización de bacterias nativas solubilizadoras de fósforo y productoras de ácido indol acético aisladas de suelo franco arenosos, como alternativa de biofertilización
Biofertilizantes
Bacterias promotoras del crecimiento vegetal
Departamento de Córdoba
Biofertilizers
plant growth promoting bacteria
Department of Córdoba
title_short Caracterización de bacterias nativas solubilizadoras de fósforo y productoras de ácido indol acético aisladas de suelo franco arenosos, como alternativa de biofertilización
title_full Caracterización de bacterias nativas solubilizadoras de fósforo y productoras de ácido indol acético aisladas de suelo franco arenosos, como alternativa de biofertilización
title_fullStr Caracterización de bacterias nativas solubilizadoras de fósforo y productoras de ácido indol acético aisladas de suelo franco arenosos, como alternativa de biofertilización
title_full_unstemmed Caracterización de bacterias nativas solubilizadoras de fósforo y productoras de ácido indol acético aisladas de suelo franco arenosos, como alternativa de biofertilización
title_sort Caracterización de bacterias nativas solubilizadoras de fósforo y productoras de ácido indol acético aisladas de suelo franco arenosos, como alternativa de biofertilización
dc.creator.fl_str_mv Mercado Rosso, Sara Yomar
dc.contributor.advisor.none.fl_str_mv Cantero Guevara, Miriam Elena
Betin Ruiz , Andrés José
dc.contributor.author.none.fl_str_mv Mercado Rosso, Sara Yomar
dc.contributor.jury.none.fl_str_mv Oviedo Zumaqué, Luis Eliécer
Villalba Anaya, Mara de la Concepción
dc.subject.proposal.none.fl_str_mv Biofertilizantes
Bacterias promotoras del crecimiento vegetal
Departamento de Córdoba
topic Biofertilizantes
Bacterias promotoras del crecimiento vegetal
Departamento de Córdoba
Biofertilizers
plant growth promoting bacteria
Department of Córdoba
dc.subject.keywords.none.fl_str_mv Biofertilizers
plant growth promoting bacteria
Department of Córdoba
description Los microorganismos del suelo son fundamentales para el equilibrio ecológico, debido a que participan activamente en los ciclos de elementos esenciales como el carbono, nitrógeno, azufre y fósforo. Entre estos, las bacterias solubilizadoras de fósforo y productoras de ácido indol acético desempeñan un papel crucial en la rizosfera. Estas bacterias han atraído un gran interés en el campo de la agricultura por su potencial uso como biofertilizantes para mejorar la nutrición de los cultivos. El objetivo de esta investigación fue caracterizar bacterias nativas solubilizadoras de fósforo y productoras de ácido indol acético aisladas de suelo franco-arenoso como alternativa de biofertilización. A las cepas aisladas se les realizó la prueba de solubilización de fósforo empleando el Método de Molibdovanadato y la producción de ácido indol acético se evaluó a través del reactivo de Salkowski. Las cepas fueron identificadas molecularmente utilizando los cebadores universales 27F, 5′-AGAGTTTGATCMTGGCTCAG-3′ y 1492R, 5′-TACGGYTACCTTGTTACGACTT-3′, que amplifican el gen 16S rRNA. Se realizó un análisis de varianza unidireccional (ANOVA) siguiendo la prueba post hoc de Tukey (p <0.05), con un nivel de significancia del 5%. La secuenciación del gen 16S rRNA revela la confirmación de aislamientos de Enterobacter cloacae (cepa S105E PP405613.1 y S106F PP2688674632) y Enterobacter hormaechei (cepa S104B PP 2688674632. En condiciones in vitro, se encontró que la cepa S105E solubilizó una concentración de fósforo de 2224.73 ± 26.16 mg L-1, seguida por S104B con 2169.11 ± 49.31 mg L-1 y S106F con 2028.62 ± 44.03 mg L-1, por otro lado, las cepas 11 y 19 produjeron una concentración de ácido indol acético de 27.60 ± 0.25 mg L-1. Las cepas nativas S105E, S106F, S104B, 11 y 19 demostraron gran capacidad de solubilización de fósforo y producción de ácido indol acético en condiciones in vitro.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-11-16T16:34:05Z
dc.date.available.none.fl_str_mv 2024-11-16T16:34:05Z
2025-11-14
dc.date.issued.none.fl_str_mv 2024-11-15
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.none.fl_str_mv Text
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unicordoba.edu.co/handle/ucordoba/8746
dc.identifier.instname.none.fl_str_mv Universidad de Córdoba
dc.identifier.reponame.none.fl_str_mv Repositorio Institucional Unicórdoba
dc.identifier.repourl.none.fl_str_mv https://repositorio.unicordoba.edu.co
url https://repositorio.unicordoba.edu.co/handle/ucordoba/8746
https://repositorio.unicordoba.edu.co
identifier_str_mv Universidad de Córdoba
Repositorio Institucional Unicórdoba
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv Alori, E. T., Glick, B. R., & Babalola, O. O. (2017). Microbial Phosphorus Solubilization and Its Potential for Use in Sustainable Agriculture. Frontiers in Microbiology, 8, 971. 42 https://doi.org/10.3389/fmicb.2017.00971
Asea, P. E. A., Kucey, R. M. N., & Stewart, J. W. B. (1988). Inorganic phosphate solubilization by two Penicillium species in solution culture and soil. Soil Biology and Biochemistry, 20(4), 459-464. https://doi.org/10.1016/0038-0717(88)90058-2
Babu-Khan, S., Yeo, T., Martin, W., Duron, M., Rogers, R., & Goldstein, A. (1995). Cloning of a mineral phosphate-solubilizing gene from Pseudomonas cepacia. Applied and Environmental Microbiology, 61(3), 972-978. https://doi.org/10.1128/aem.61.3.972- 978.1995
Baggam, S., Padal, S., Department of Botany, Andhra University, Visakhapatnam, India. Pin- 530 003., Ummidi, Vr., TRIMS Lab Visakhapatnam India., Paltati, A., TRIMS Lab Visakhapatnam India., Thanagala, N., & Department of Botany, Andhra University, Visakhapatnam, India. Pin- 530 003. (2017). ISOLATION OF IAA PRODUCING BACTERIA FROM SOIL AND OPTIMISATION OF CULTURE CONDITIONS FOR MAXIMUM IAA PRODUCTION. International Journal of Advanced Research, 5(10), 1003-1010. https://doi.org/10.21474/IJAR01/5617
Banik, S., & Dey, B. K. (1983). Phosphate-Solubilizing Potentiality of the Microorganisms Capable of Utilizing Aluminium Phosphate as a Sole Phosphate Source. Zentralblatt Für Mikrobiologie, 138(1), 17-23. https://doi.org/10.1016/S0232-4393(83)80060-2
Bar-Yosef, B., Rogers, R. D., Wolfram, J. H., & Richman, E. (1999). Pseudomonas cepacia – Mediated Rock Phosphate Solubilization in Kaolinite and Montmorillonite Suspensions. Soil Science Society of America Journal, 63(6), 1703-1708. https://doi.org/10.2136/sssaj1999.6361703x
Bidondo, L. F., Silvani, V., Colombo, R., Pérgola, M., Bompadre, J., & Godeas, A. (2011). Presymbiotic and symbiotic interactions between Glomus intraradices and two Paenibacillus 43 species isolated from AM propagules. In vitro and in vivo assays with soybean (AG043RG) as plant host. Soil Biology and Biochemistry, 43(9), 1866-1872. https://doi.org/10.1016/j.soilbio.2011.05.004
Bononi, L., Chiaramonte, J. B., Pansa, C. C., Moitinho, M. A., & Melo, I. S. (2020). Phosphorussolubilizing Trichoderma spp. From Amazon soils improve soybean plant growth. Scientific Reports, 10(1), 2858. https://doi.org/10.1038/s41598-020-59793-8
Brito, L. F., López, M. G., Straube, L., Passaglia, L. M. P., & Wendisch, V. F. (2020). Inorganic Phosphate Solubilization by Rhizosphere Bacterium Paenibacillus sonchi: Gene Expression and Physiological Functions. Frontiers in Microbiology, 11, 588605. https://doi.org/10.3389/fmicb.2020.588605
Buch, A., Archana, G., & Naresh Kumar, G. (2010). Heterologous expression of phosphoenolpyruvate carboxylase enhances the phosphate solubilizing ability of fluorescent pseudomonads by altering the glucose catabolism to improve biomass yield. Bioresource Technology, 101(2), 679-687. https://doi.org/10.1016/j.biortech.2009.08.075
Cai, G., Li, J., Zhou, M., Zhu, G., Li, Y., Lv, N., Wang, R., Li, C., & Pan, X. (2022). Compostderived indole-3-acetic-acid-producing bacteria and their effects on enhancing the secondary fermentation of a swine manure-corn stalk composting. Chemosphere, 291, 132750. https://doi.org/10.1016/j.chemosphere.2021.132750
Campos, P., Borie, F., Cornejo, P., López-Ráez, J. A., López-García, Á., & Seguel, A. (2018). Phosphorus acquisition efficiency related to root traits: Is mycorrhizal symbiosis a key factor to wheat and barley cropping? Frontiers in Plant Science, 9, 752. https://doi.org/10.3389/FPLS.2018.00752/BIBTEX
Castagno, L. N., Sannazzaro, A. I., Gonzalez, M. E., Pieckenstain, F. L., & Estrella, M. J. (2021). Phosphobacteria as key actors to overcome phosphorus deficiency in plants. Annals of 44 Applied Biology, 178(2), 256-267. https://doi.org/10.1111/aab.12673
Chakraborty, U., Chakraborty, B. N., Basnet, M., & Chakraborty, A. P. (2009). Evaluation of Ochrobactrum anthropi TRS-2 and its talc based formulation for enhancement of growth of tea plants and management of brown root rot disease. Journal of Applied Microbiology, 107(2), 625-634. https://doi.org/10.1111/j.1365-2672.2009.04242.x
Chandra, S., Askari, K., & Kumari, M. (2018). Optimization of indole acetic acid production by isolated bacteria from Stevia rebaudiana rhizosphere and its effects on plant growth. Journal of Genetic Engineering and Biotechnology, 16(2), 581-586. https://doi.org/10.1016/j.jgeb.2018.09.001
Chen, W., Yang, F., Zhang, L., & Wang, J. (2016). Organic Acid Secretion and Phosphate Solubilizing Efficiency of Pseudomonas sp . PSB12: Effects of Phosphorus Forms and Carbon Sources. Geomicrobiology Journal, 33(10), 870-877. https://doi.org/10.1080/01490451.2015.1123329
Chen, Y. P., Rekha, P. D., Arun, A. B., Shen, F. T., Lai, W.-A., & Young, C. C. (2006). Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Applied Soil Ecology, 34(1), 33-41. https://doi.org/10.1016/j.apsoil.2005.12.002
Choi, O., Kim, J., Kim, J.-G., Jeong, Y., Moon, J. S., Park, C. S., & Hwang, I. (2008). Pyrroloquinoline Quinone Is a Plant Growth Promotion Factor Produced by Pseudomonas fluorescens B16. Plant Physiology, 146(2), 657-668. https://doi.org/10.1104/pp.107.112748
Chung, H., Park, M., Madhaiyan, M., Seshadri, S., Song, J., Cho, H., & Sa, T. (2005). Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of crop plants of Korea. Soil Biology and Biochemistry, 37(10), 1970-1974. https://doi.org/10.1016/j.soilbio.2005.02.025
Datta, C., & Basu, P. S. (2000). Producción de ácido indol acético por una especie de Rhizobium a partir de nódulos de la raíz de un arbusto leguminoso, Cajanus cajan. Microbiological Research, 155(2), 123-127. https://doi.org/10.1016/S0944-5013(00)80047-6
De Freitas, J. R., Banerjee, M. R., & Germida, J. J. (1997). Phosphate-solubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola (Brassica napus L.). Biology and Fertility of Soils, 24(4), 358-364. https://doi.org/10.1007/s003740050258
Dey, G., Maity, J. P., Banerjee, P., Sharma, R. K., Etesami, H., Bastia, T. K., Rath, P., Sukul, U., Huang, H.-B., Huang, K.-W., & Chen, C.-Y. (2024). Characterization of halotolerant phosphate-solubilizing rhizospheric bacteria from mangrove (Avicennia sp.) with biotechnological potential in agriculture and pollution mitigation. Biocatalysis and Agricultural Biotechnology, 55, 102960. https://doi.org/10.1016/j.bcab.2023.102960
Ferreira, C. M. H., Soares, H. M. V. M., & Soares, E. V. (2019). Promising bacterial genera for agricultural practices: An insight on plant growth-promoting properties and microbial safety aspects. Science of The Total Environment, 682, 779-799. https://doi.org/10.1016/j.scitotenv.2019.04.225
Gao, C., Zhang, M., Song, K., Wei, Y., & Zhang, S. (2020). Spatiotemporal analysis of anthropogenic phosphorus fluxes in China. Science of the Total Environment, 721. https://doi.org/10.1016/j.scitotenv.2020.137588
Goldstein, A. H. (1995). Recent Progress in Understanding the Molecular Genetics and Biochemistry of Calcium Phosphate Solubilization by Gram Negative Bacteria. Biological Agriculture & Horticulture, 12(2), 185-193. https://doi.org/10.1080/01448765.1995.9754736
Goldstein, A. H., & Liu, S. T. (1987). Molecular Cloning and Regulation of a Mineral Phosphate Solubilizing Gene from Erwinia Herbicola. Nature Biotechnology, 5(1), 72-74. 46 https://doi.org/10.1038/nbt0187-72
Gulati, A., Vyas, P., Rahi, P., & Kasana, R. C. (2009). Plant Growth-Promoting and RhizosphereCompetent Acinetobacter rhizosphaerae Strain BIHB 723 from the Cold Deserts of the Himalayas. Current Microbiology, 58(4), 371-377. https://doi.org/10.1007/s00284-008- 9339-x
Illmer, P., & Schinner, F. (1995). Solubilization of inorganic calcium phosphates—Solubilization mechanisms. Soil Biology and Biochemistry, 27(3), 257-263. https://doi.org/10.1016/0038- 0717(94)00190-C
Jalali, M., & Sajadi Tabar, S. (2011). Chemical fractionation of phosphorus in calcareous soils of Hamedan, western Iran under different land use. Journal of Plant Nutrition and Soil Science, 174(4), 523-531. https://doi.org/10.1002/jpln.201000217
Khan, M. S., Zaidi, A., & Wani, P. A. (2007). Role of phosphate-solubilizing microorganisms in sustainable agriculture—A review. Agronomy for Sustainable Development, 27(1), 29-43. https://doi.org/10.1051/agro:2006011
Kim, K. Y., Hwangbo, H., Park, R. D., Kim, Y. W., Rim, Y. S., Park, K. H., Kim, T. H., & Suh, J. S. (2003). 2-Ketogluconic Acid Production and Phosphate Solubilization by Enterobacter intermedium. Current Microbiology, 47(2), 87-92. https://doi.org/10.1007/s00284-002- 3951-y
Kim, Y., Bae, B., & Choung, Y. (2005). Optimization of biological phosphorus removal from contaminated sediments with phosphate-solubilizing microorganisms. Journal of Bioscience and Bioengineering, 99(1), 23-29. https://doi.org/10.1263/jbb.99.23
Kumar, C., Yadav, K., Archana, G., & Naresh Kumar, G. (2013). 2-Ketogluconic Acid Secretion by Incorporation of Pseudomonas putida KT 2440 Gluconate Dehydrogenase (gad) Operon in Enterobacter asburiae PSI3 Improves Mineral Phosphate Solubilization. Current 47 Microbiology, 67(3), 388-394. https://doi.org/10.1007/s00284-013-0372-z
Kumar, M. S., Reddy, G. C., Phogat, M., & Korav, S. (2018). Role of bio-fertilizers towards sustainable agricultural development: A review. Journal of Pharmacognosy and Phytochemistry, 7(6), 1915-1921.
Lata, D. L., Abdie, O., & Rezene, Y. (2024). IAA-producing bacteria from the rhizosphere of chickpea (Cicer arietinum L.): Isolation, characterization, and their effects on plant growth performance. Heliyon, 10(21), e39702. https://doi.org/10.1016/j.heliyon.2024.e39702
Lebrazi, S., Niehaus, K., Bednarz, H., Fadil, M., Chraibi, M., & Fikri-Benbrahim, K. (2020). Screening and optimization of indole-3-acetic acid production and phosphate solubilization by rhizobacterial strains isolated from Acacia cyanophylla root nodules and their effects on its plant growth. Journal of Genetic Engineering and Biotechnology, 18(1), 71. https://doi.org/10.1186/s43141-020-00090-2
Li, C., Li, Q., Wang, Z., Ji, G., Zhao, H., Gao, F., Su, M., Jiao, J., Li, Z., & Li, H. (2019). Environmental fungi and bacteria facilitate lecithin decomposition and the transformation of phosphorus to apatite. Scientific Reports, 9(1), 15291. https://doi.org/10.1038/s41598- 019-51804-7
Li, H.-P., Han, Q.-Q., Liu, Q.-M., Gan, Y.-N., Rensing, C., Rivera, W. L., Zhao, Q., & Zhang, J.- L. (2023). Roles of phosphate-solubilizing bacteria in mediating soil legacy phosphorus availability. Microbiological Research, 272, 127375. https://doi.org/10.1016/j.micres.2023.127375
Li, Q., Fu, L., Wang, Y., Zhou, D., & Rittmann, B. E. (2018). Excessive phosphorus caused inhibition and cell damage during heterotrophic growth of Chlorella regularis. Bioresource Technology, 268, 266-270. https://doi.org/10.1016/j.biortech.2018.07.148
Liang, J.-L., Liu, J., Jia, P., Yang, T., Zeng, Q., Zhang, S., Liao, B., Shu, W., & Li, J. (2020). Novel 48 phosphate-solubilizing bacteria enhance soil phosphorus cycling following ecological restoration of land degraded by mining. The ISME Journal, 14(6), 1600-1613. https://doi.org/10.1038/s41396-020-0632-4
Liu, Z., Li, Y. C., Zhang, S., Fu, Y., Fan, X., Patel, J. S., & Zhang, M. (2015a). Characterization of phosphate-solubilizing bacteria isolated from calcareous soils. Applied Soil Ecology, 96, 217-224. https://doi.org/10.1016/j.apsoil.2015.08.003
Liu, Z., Li, Y. C., Zhang, S., Fu, Y., Fan, X., Patel, J. S., & Zhang, M. (2015b). Characterization of phosphate-solubilizing bacteria isolated from calcareous soils. Applied Soil Ecology, 96, 217-224. https://doi.org/10.1016/j.apsoil.2015.08.003
Makki, R. M. (2023). SUSTAINABLE FARMING USING PLANT GROWTHPROMOTING BACTERIA. Applied Ecology and Environmental Research, 21(3), 2363-2382. https://doi.org/10.15666/aeer/2103_23632382
Meyer, J. B., Frapolli, M., Keel, C., & Maurhofer, M. (2011). Pyrroloquinoline Quinone Biosynthesis Gene pqqC , a Novel Molecular Marker for Studying the Phylogeny and Diversity of Phosphate-Solubilizing Pseudomonads. Applied and Environmental Microbiology, 77(20), 7345-7354. https://doi.org/10.1128/AEM.05434-11
Nejati Sini, H., Barzegar, R., Soodaee Mashaee, S., Ghasemi Ghahsare, M., Mousavi-Fard, S., & Mozafarian, M. (2024). Effects of biofertilizer on the production of bell pepper (Capsicum annuum L.) in greenhouse. Journal of Agriculture and Food Research, 16, 101060. https://doi.org/10.1016/j.jafr.2024.101060
Pantoja-Guerra, M., Burkett-Cadena, M., Cadena, J., Dunlap, C. A., & Ramírez, C. A. (2023). Lysinibacillus spp.: An IAA-producing endospore forming-bacteria that promotes plant growth. Antonie van Leeuwenhoek, 116(7), 615-630. https://doi.org/10.1007/s10482-023- 01828-x
Park, J. H., Bolan, N., Megharaj, M., & Naidu, R. (2011). Isolation of phosphate solubilizing bacteria and their potential for lead immobilization in soil. Journal of Hazardous Materials, 185(2-3), 829-836. https://doi.org/10.1016/j.jhazmat.2010.09.095
Patel, D. K., Archana, G., & Kumar, G. N. (2008). Variation in the Nature of Organic Acid Secretion and Mineral Phosphate Solubilization by Citrobacter sp. DHRSS in the Presence of Different Sugars. Current Microbiology, 56(2), 168-174. https://doi.org/10.1007/s00284-007-9053-0
Pedraza, R. O., Bellone, C. H., Carrizo de Bellone, S., Boa Sorte, P. M. F., & Teixeira, K. R. dos S. (2009). Azospirillum inoculation and nitrogen fertilization effect on grain yield and on the diversity of endophytic bacteria in the phyllosphere of rice rainfed crop. European Journal of Soil Biology, 45(1), 36-43. https://doi.org/10.1016/J.EJSOBI.2008.09.007
Postma, J., Nijhuis, E. H., & Someus, E. (2010). Selection of phosphorus solubilizing bacteria with biocontrol potential for growth in phosphorus rich animal bone charcoal. Applied Soil Ecology, 46(3), 464-469. https://doi.org/10.1016/j.apsoil.2010.08.016
Raymond, N. S., Gómez‐Muñoz, B., Van Der Bom, F. J. T., Nybroe, O., Jensen, L. S., Müller‐ Stöver, D. S., Oberson, A., & Richardson, A. E. (2021). Phosphate‐solubilising microorganisms for improved crop productivity: A critical assessment. New Phytologist, 229(3), 1268-1277. https://doi.org/10.1111/nph.16924
Rehman, A., Ma, H., Ahmad, M., Irfan, M., Traore, O., & Chandio, A. A. (2021). Towards environmental Sustainability: Devolving the influence of carbon dioxide emission to population growth, climate change, Forestry, livestock and crops production in Pakistan. Ecological Indicators, 125, 107460. https://doi.org/10.1016/j.ecolind.2021.107460
Rodríguez, H., Fraga, R., Gonzalez, T., & Bashan, Y. (2006). Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant and 50 Soil, 287(1-2), 15-21. https://doi.org/10.1007/s11104-006-9056-9
Rodríguez-Vázquez, R., & Mesa-Marín, J. (2023). Plant responses to plant growth promoting bacteria: Insights from proteomics. Journal of Plant Physiology, 287, 154031. https://doi.org/10.1016/J.JPLPH.2023.154031
Sashidhar, B., & Podile, A. R. (2009). Transgenic expression of glucose dehydrogenase in Azotobacter vinelandii enhances mineral phosphate solubilization and growth of sorghum seedlings. Microbial Biotechnology, 2(4), 521-529. https://doi.org/10.1111/j.1751- 7915.2009.00119.x
Secco, D., Bouain, N., Rouached, A., Prom-u-thai, C., Hanin, M., Pandey, A. K., & Rouached, H. (2017). Phosphate, phytate and phytases in plants: From fundamental knowledge gained in Arabidopsis to potential biotechnological applications in wheat. Critical Reviews in Biotechnology, 37(7), 898-910. https://doi.org/10.1080/07388551.2016.1268089
Sharma, S. B., Sayyed, R. Z., Trivedi, M. H., & Gobi, T. A. (2013). Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus, 2(1), 587. https://doi.org/10.1186/2193-1801-2-587
Singh, A., Parmar, N., Kuhad, R. C., & Ward, O. P. (2011). Bioaugmentation, Biostimulation, and Biocontrol in Soil Biology. En A. Singh, N. Parmar, & R. C. Kuhad (Eds.), Bioaugmentation, Biostimulation and Biocontrol (Vol. 108, pp. 1-23). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-19769-7_1
Singh, V., & Kumar, B. (2024). A review of agricultural microbial inoculants and their carriers in bioformulation. Rhizosphere, 29, 100843. https://doi.org/10.1016/j.rhisph.2023.100843
Son, H.-J., Park, G.-T., Cha, M.-S., & Heo, M.-S. (2006). Solubilization of insoluble inorganic phosphates by a novel salt- and pH-tolerant Pantoea agglomerans R-42 isolated from soybean rhizosphere. Bioresource Technology, 97(2), 204-210. 51 https://doi.org/10.1016/j.biortech.2005.02.021
Song, O.-R., Lee, S.-J., Lee, Y.-S., Lee, S.-C., Kim, K.-K., & Choi, Y.-L. (2008). Solubilization of insoluble inorganic phosphate by Burkholderia cepacia DA23 isolated from cultivated soil. Brazilian Journal of Microbiology, 39, 151-156. https://doi.org/10.1590/S1517- 83822008000100030
Tian, J., Ge, F., Zhang, D., Deng, S., & Liu, X. (2021a). Roles of Phosphate Solubilizing Microorganisms from Managing Soil Phosphorus Deficiency to Mediating Biogeochemical P Cycle. Biology, 10(2), 158. https://doi.org/10.3390/biology10020158
Tian, J., Ge, F., Zhang, D., Deng, S., & Liu, X. (2021b). Roles of Phosphate Solubilizing Microorganisms from Managing Soil Phosphorus Deficiency to Mediating Biogeochemical P Cycle. Biology, 10(2), 158. https://doi.org/10.3390/biology10020158
Vazquez, P., Holguin, G., Puente, M. E., Lopez-Cortes, A., & Bashan, Y. (2000). Phosphatesolubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biology and Fertility of Soils, 30(5-6), 460-468. https://doi.org/10.1007/s003740050024
Vitousek, P. M., Porder, S., Houlton, B. Z., & Chadwick, O. A. (2010). Terrestrial phosphorus limitation: Mechanisms, implications, and nitrogen-phosphorus interactions. Ecological Applications, 20(1), 5-15. https://doi.org/10.1890/08-0127.1
Vyas, P., & Gulati, A. (2009). Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas. BMC Microbiology, 9(1), 174. https://doi.org/10.1186/1471-2180-9-174
Wagh, J., Shah, S., Bhandari, P., Archana, G., & Kumar, G. N. (2014). Heterologous expression of pyrroloquinoline quinone (pqq) gene cluster confers mineral phosphate solubilization ability to Herbaspirillum seropedicae Z67. Applied Microbiology and Biotechnology, 52 98(11), 5117-5129. https://doi.org/10.1007/s00253-014-5610-1
Walpola, B., & Yoon, M.-H. (2012). Prospectus of phosphate solubilizing microorganisms and phosphorus availability in agricultural soils: A review. African journal of microbiology research, 6, 6600-6605. https://doi.org/10.5897/AJMR12.889
Wang, S., Li, Y., Zhang, J., Wang, X., Hong, J., Qiu, C., & Meng, H. (2022). Transcriptome Profiling Analysis of Phosphate-Solubilizing Mechanism of Pseudomonas Strain W134. Microorganisms, 10(10), 1998. https://doi.org/10.3390/microorganisms10101998
Wei, Y., Zhao, Y., Shi, M., Cao, Z., Lu, Q., Yang, T., Fan, Y., & Wei, Z. (2018). Effect of organic acids production and bacterial community on the possible mechanism of phosphorus solubilization during composting with enriched phosphate-solubilizing bacteria inoculation. Bioresource Technology, 247, 190-199. https://doi.org/10.1016/j.biortech.2017.09.092
Yi, Y., Huang, W., & Ge, Y. (2008). Exopolysaccharide: A novel important factor in the microbial dissolution of tricalcium phosphate. World Journal of Microbiology and Biotechnology, 24(7), 1059-1065. https://doi.org/10.1007/s11274-007-9575-4
Zaidi, A., Khan, M., Ahemad, M., & Oves, M. (2009). Plant growth promotion by phosphate solubilizing bacteria. Acta Microbiologica et Immunologica Hungarica, 56(3), 263-284. https://doi.org/10.1556/AMicr.56.2009.3.6
Zhang, X., Zhi, X., Chen, L., & Shen, Z. (2020). Spatiotemporal variability and key influencing factors of river fecal coliform within a typical complex watershed. Water Research, 178, 115835. https://doi.org/10.1016/j.watres.2020.115835
Zhao, K., Penttinen, P., Zhang, X., Ao, X., Liu, M., Yu, X., & Chen, Q. (2014). Maize rhizosphere in Sichuan, China, hosts plant growth promoting Burkholderia cepacia with phosphate solubilizing and antifungal abilities. Microbiological Research, 169(1), 76-82. 53 https://doi.org/10.1016/j.micres.2013.07.003
Zhao, L. F., Xu, Y. J., & Lai, X. H. (2018). Antagonistic endophytic bacteria associated with nodules of soybean (Glycine max L.) and plant growth-promoting properties. Brazilian Journal of Microbiology, 49(2), 269-278. https://doi.org/10.1016/J.BJM.2017.06.007
Zhao, Y. (2010). Auxin Biosynthesis and Its Role in Plant Development. Annual Review of Plant Biology, 61(1), 49-64. https://doi.org/10.1146/annurev-arplant-042809-112308
Zhu, J., Li, M., & Whelan, M. (2018). Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: A review. Science of The Total Environment, 612, 522- 537. https://doi.org/10.1016/j.scitotenv.2017.08.095
dc.rights.none.fl_str_mv Copyright Universidad de Córdoba, 2024
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc/4.0/
dc.rights.license.none.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/embargoedAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv Copyright Universidad de Córdoba, 2024
https://creativecommons.org/licenses/by-nc/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_f1cf
eu_rights_str_mv embargoedAccess
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de Córdoba
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias Básicas
dc.publisher.place.none.fl_str_mv Montería, Córdoba, Colombia
dc.publisher.program.none.fl_str_mv Química
publisher.none.fl_str_mv Universidad de Córdoba
institution Universidad de Córdoba
bitstream.url.fl_str_mv https://repositorio.unicordoba.edu.co/bitstreams/83275963-ab68-42b1-9e04-53b5750f0e01/download
https://repositorio.unicordoba.edu.co/bitstreams/cac21c8f-f877-4c50-a2a4-a13c52b3ad87/download
https://repositorio.unicordoba.edu.co/bitstreams/46c0b2a8-c7d5-483e-a7f9-9866693dc072/download
https://repositorio.unicordoba.edu.co/bitstreams/0fae70e2-c50b-4066-89f6-03587a53319c/download
https://repositorio.unicordoba.edu.co/bitstreams/a6260dfe-cc83-48f2-bf98-f69af6ebad2e/download
https://repositorio.unicordoba.edu.co/bitstreams/9c4e86ff-aeb8-4a06-93b1-62df62971db1/download
https://repositorio.unicordoba.edu.co/bitstreams/1c95875d-bf45-4b87-9313-22a4f298e571/download
bitstream.checksum.fl_str_mv 84c525b710ecc9915f5e13643fb3ab72
7f461267e7c9ad4cc24c5bf4f3f6f43e
73a5432e0b76442b22b026844140d683
5478362cde7082bf3b4a894d37b11657
d99a5cd31700cd4f91f39cfebc8c57c7
a56d6ecbfab5a1a31a183155202521a9
c390023f807672d29d53ae81529531fb
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de Córdoba
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1839636047531606016
spelling Cantero Guevara, Miriam Elena3e8eda8e-66c5-4436-b6e6-bec1bc12b57f-1Betin Ruiz , Andrés José7f3427db-1e75-48be-ba50-571dc44cba38600Mercado Rosso, Sara Yomar0be5e25d-f2fc-462c-9466-7cbfd6300477-1Oviedo Zumaqué, Luis Eliécer16244141-aa15-45d4-a620-56014ced68f7-1Villalba Anaya, Mara de la Concepciónfedd63bd-a245-463e-8b72-9f6cfd07234d-12024-11-16T16:34:05Z2025-11-142024-11-16T16:34:05Z2024-11-15https://repositorio.unicordoba.edu.co/handle/ucordoba/8746Universidad de CórdobaRepositorio Institucional Unicórdobahttps://repositorio.unicordoba.edu.coLos microorganismos del suelo son fundamentales para el equilibrio ecológico, debido a que participan activamente en los ciclos de elementos esenciales como el carbono, nitrógeno, azufre y fósforo. Entre estos, las bacterias solubilizadoras de fósforo y productoras de ácido indol acético desempeñan un papel crucial en la rizosfera. Estas bacterias han atraído un gran interés en el campo de la agricultura por su potencial uso como biofertilizantes para mejorar la nutrición de los cultivos. El objetivo de esta investigación fue caracterizar bacterias nativas solubilizadoras de fósforo y productoras de ácido indol acético aisladas de suelo franco-arenoso como alternativa de biofertilización. A las cepas aisladas se les realizó la prueba de solubilización de fósforo empleando el Método de Molibdovanadato y la producción de ácido indol acético se evaluó a través del reactivo de Salkowski. Las cepas fueron identificadas molecularmente utilizando los cebadores universales 27F, 5′-AGAGTTTGATCMTGGCTCAG-3′ y 1492R, 5′-TACGGYTACCTTGTTACGACTT-3′, que amplifican el gen 16S rRNA. Se realizó un análisis de varianza unidireccional (ANOVA) siguiendo la prueba post hoc de Tukey (p <0.05), con un nivel de significancia del 5%. La secuenciación del gen 16S rRNA revela la confirmación de aislamientos de Enterobacter cloacae (cepa S105E PP405613.1 y S106F PP2688674632) y Enterobacter hormaechei (cepa S104B PP 2688674632. En condiciones in vitro, se encontró que la cepa S105E solubilizó una concentración de fósforo de 2224.73 ± 26.16 mg L-1, seguida por S104B con 2169.11 ± 49.31 mg L-1 y S106F con 2028.62 ± 44.03 mg L-1, por otro lado, las cepas 11 y 19 produjeron una concentración de ácido indol acético de 27.60 ± 0.25 mg L-1. Las cepas nativas S105E, S106F, S104B, 11 y 19 demostraron gran capacidad de solubilización de fósforo y producción de ácido indol acético en condiciones in vitro.Soil microorganisms are essential for ecological balance, since they actively participate in the cycles of essential elements such as carbon, nitrogen, sulfur and phosphorus. Among these, phosphorus-solubilizing and indole-acetic acid-producing bacteria play a crucial role in the rhizosphere. These bacteria have attracted great interest in the field of agriculture for their potential use as biofertilizers to improve crop nutrition. The objective of this research was to characterize native phosphorus-solubilizing and indole-acetic acid-producing bacteria isolated from sandy loam soil as an alternative for biofertilization. The isolated strains were tested for phosphorus solubilization using the Molybdovanadate Method and the production of indole-acetic acid was evaluated through the Salkowski reagent. Strains were molecularly identified using universal primers 27F, 5′-AGAGTTTGATCMTGGCTCAG-3′ and 1492R, 5′-TACGGYTACCTTGTTACGACTT-3′, which amplify the 16S rRNA gene. A one-way analysis of variance (ANOVA) was performed following Tukey's post hoc test (p < 0.05), with a significance level of 5%. 16S rRNA gene sequencing reveals confirmation of Enterobacter cloacae (strain S105E PP405613.1 and S106F PP2688674632) and Enterobacter hormaechei (strain S104B PP 2688674632) isolates. Under in vitro conditions, strain S105E was found to solubilise a phosphorus concentration of 2224.73 ± 26.16 mg L-1, followed by S104B with 2169.11 ± 49.31 mg L-1 and S106F with 2028.62 ± 44.03 mg L-1, on the other hand, strains 11 and 19 produced an indole acetic acid concentration of 27.60 ± 0.25 mg L-1. Native strains S105E, S106F, S104B, 11 and 19 showed great capacity for phosphorus solubilization and indole acetic acid production under in vitro conditions.Resumen....................................................................111. Introducción ................................................... 132. Objetivos...................................................... 152.1. Objetivo General ..........................................152.2. Objetivos Específicos.................................153. Antecedentes................................................. 164. Marco Teórico............................................ 184.1. Formas Básicas y Ciclos del Fósforo en el Suelo ....................... 184.1.1. Fosforo Inorgánico en el Suelo ....................................194.2. Ácido Indol Acético (AIA)........................................ 204.2. Bacterias Promotoras del Crecimiento Vegetal (PGPB) .......................214.2.1. Bacterias Solubilizadoras de Fósforo ........................224.2.1.1. Biodiversidad de Bacterias Solubilizadoras de Fósforo ....................224.2.2.2. Mecanismo de Solubilización de Fósforo................... 235. Metodología ...................................................... 275.1. Tipo de Estudio ..............................................275.2. Área de Estudio ........................................275.3. Identificación de Bacterias Nativas Solubilizadoras de Fósforo y Productoras de Ácido Indol Acético Aisladas a Partir de Muestras de Suelo Franco-Arenoso...........275.3.1. Muestreo de Suelo...................................... 275.3.2. Aislamiento de Bacterias Nativas Solubilizadoras de Fósforo y Productoras de Ácido Indol Acético ............................275.3.3. Identificación Molecular de BSF y Productoras de AIA........................................285.3.3.1. Extracción de ADN Genómico..................................285.3.3.2. Amplificación de ADN Mediante Reacción en Cadena de la Polimerasa (PCR) 285.3.3.3. Secuenciación de Productos de PCR y Análisis de Secuencia............................ 295.4. Evaluación in vitro de la Capacidad Solubilizadora de Fosforo y Productora de AIA de las Cepas Aisladas .................... 295.4.1. Detección in vitro de la Actividad Solubilizadora de Fósforo................................ 295.4.2. Cuantificación in vitro de la Producción de AIA................ 306. Resultados y Discusión...........................................316.1. Aislamiento de BSF y Productora de AIA ..................316.2. Evaluación in vitro de la Actividad Solubilizadora de Fósforo y Productora de AIA....326.2.1. Detección in vitro de la Actividad Solubilizadora de Fósforo................................ 326.2.2. Cuantificación in vitro de la Producción de AIA..................... 366.3. Identificación Molecular de BSF y Productoras de AIA...............................................377. Conclusiones......................................... 398. Recomendaciones..............................................409. Referencias Bibliográficas................................4110. Anexos ............................................. 53PregradoQuímico(a)Trabajos de Investigación y/o Extensiónapplication/pdfspaUniversidad de CórdobaFacultad de Ciencias BásicasMontería, Córdoba, ColombiaQuímicaCopyright Universidad de Córdoba, 2024https://creativecommons.org/licenses/by-nc/4.0/Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfCaracterización de bacterias nativas solubilizadoras de fósforo y productoras de ácido indol acético aisladas de suelo franco arenosos, como alternativa de biofertilizaciónTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/acceptedVersionTextAlori, E. T., Glick, B. R., & Babalola, O. O. (2017). Microbial Phosphorus Solubilization and Its Potential for Use in Sustainable Agriculture. Frontiers in Microbiology, 8, 971. 42 https://doi.org/10.3389/fmicb.2017.00971Asea, P. E. A., Kucey, R. M. N., & Stewart, J. W. B. (1988). Inorganic phosphate solubilization by two Penicillium species in solution culture and soil. Soil Biology and Biochemistry, 20(4), 459-464. https://doi.org/10.1016/0038-0717(88)90058-2Babu-Khan, S., Yeo, T., Martin, W., Duron, M., Rogers, R., & Goldstein, A. (1995). Cloning of a mineral phosphate-solubilizing gene from Pseudomonas cepacia. Applied and Environmental Microbiology, 61(3), 972-978. https://doi.org/10.1128/aem.61.3.972- 978.1995Baggam, S., Padal, S., Department of Botany, Andhra University, Visakhapatnam, India. Pin- 530 003., Ummidi, Vr., TRIMS Lab Visakhapatnam India., Paltati, A., TRIMS Lab Visakhapatnam India., Thanagala, N., & Department of Botany, Andhra University, Visakhapatnam, India. Pin- 530 003. (2017). ISOLATION OF IAA PRODUCING BACTERIA FROM SOIL AND OPTIMISATION OF CULTURE CONDITIONS FOR MAXIMUM IAA PRODUCTION. International Journal of Advanced Research, 5(10), 1003-1010. https://doi.org/10.21474/IJAR01/5617Banik, S., & Dey, B. K. (1983). Phosphate-Solubilizing Potentiality of the Microorganisms Capable of Utilizing Aluminium Phosphate as a Sole Phosphate Source. Zentralblatt Für Mikrobiologie, 138(1), 17-23. https://doi.org/10.1016/S0232-4393(83)80060-2Bar-Yosef, B., Rogers, R. D., Wolfram, J. H., & Richman, E. (1999). Pseudomonas cepacia – Mediated Rock Phosphate Solubilization in Kaolinite and Montmorillonite Suspensions. Soil Science Society of America Journal, 63(6), 1703-1708. https://doi.org/10.2136/sssaj1999.6361703xBidondo, L. F., Silvani, V., Colombo, R., Pérgola, M., Bompadre, J., & Godeas, A. (2011). Presymbiotic and symbiotic interactions between Glomus intraradices and two Paenibacillus 43 species isolated from AM propagules. In vitro and in vivo assays with soybean (AG043RG) as plant host. Soil Biology and Biochemistry, 43(9), 1866-1872. https://doi.org/10.1016/j.soilbio.2011.05.004Bononi, L., Chiaramonte, J. B., Pansa, C. C., Moitinho, M. A., & Melo, I. S. (2020). Phosphorussolubilizing Trichoderma spp. From Amazon soils improve soybean plant growth. Scientific Reports, 10(1), 2858. https://doi.org/10.1038/s41598-020-59793-8Brito, L. F., López, M. G., Straube, L., Passaglia, L. M. P., & Wendisch, V. F. (2020). Inorganic Phosphate Solubilization by Rhizosphere Bacterium Paenibacillus sonchi: Gene Expression and Physiological Functions. Frontiers in Microbiology, 11, 588605. https://doi.org/10.3389/fmicb.2020.588605Buch, A., Archana, G., & Naresh Kumar, G. (2010). Heterologous expression of phosphoenolpyruvate carboxylase enhances the phosphate solubilizing ability of fluorescent pseudomonads by altering the glucose catabolism to improve biomass yield. Bioresource Technology, 101(2), 679-687. https://doi.org/10.1016/j.biortech.2009.08.075Cai, G., Li, J., Zhou, M., Zhu, G., Li, Y., Lv, N., Wang, R., Li, C., & Pan, X. (2022). Compostderived indole-3-acetic-acid-producing bacteria and their effects on enhancing the secondary fermentation of a swine manure-corn stalk composting. Chemosphere, 291, 132750. https://doi.org/10.1016/j.chemosphere.2021.132750Campos, P., Borie, F., Cornejo, P., López-Ráez, J. A., López-García, Á., & Seguel, A. (2018). Phosphorus acquisition efficiency related to root traits: Is mycorrhizal symbiosis a key factor to wheat and barley cropping? Frontiers in Plant Science, 9, 752. https://doi.org/10.3389/FPLS.2018.00752/BIBTEXCastagno, L. N., Sannazzaro, A. I., Gonzalez, M. E., Pieckenstain, F. L., & Estrella, M. J. (2021). Phosphobacteria as key actors to overcome phosphorus deficiency in plants. Annals of 44 Applied Biology, 178(2), 256-267. https://doi.org/10.1111/aab.12673Chakraborty, U., Chakraborty, B. N., Basnet, M., & Chakraborty, A. P. (2009). Evaluation of Ochrobactrum anthropi TRS-2 and its talc based formulation for enhancement of growth of tea plants and management of brown root rot disease. Journal of Applied Microbiology, 107(2), 625-634. https://doi.org/10.1111/j.1365-2672.2009.04242.xChandra, S., Askari, K., & Kumari, M. (2018). Optimization of indole acetic acid production by isolated bacteria from Stevia rebaudiana rhizosphere and its effects on plant growth. Journal of Genetic Engineering and Biotechnology, 16(2), 581-586. https://doi.org/10.1016/j.jgeb.2018.09.001Chen, W., Yang, F., Zhang, L., & Wang, J. (2016). Organic Acid Secretion and Phosphate Solubilizing Efficiency of Pseudomonas sp . PSB12: Effects of Phosphorus Forms and Carbon Sources. Geomicrobiology Journal, 33(10), 870-877. https://doi.org/10.1080/01490451.2015.1123329Chen, Y. P., Rekha, P. D., Arun, A. B., Shen, F. T., Lai, W.-A., & Young, C. C. (2006). Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Applied Soil Ecology, 34(1), 33-41. https://doi.org/10.1016/j.apsoil.2005.12.002Choi, O., Kim, J., Kim, J.-G., Jeong, Y., Moon, J. S., Park, C. S., & Hwang, I. (2008). Pyrroloquinoline Quinone Is a Plant Growth Promotion Factor Produced by Pseudomonas fluorescens B16. Plant Physiology, 146(2), 657-668. https://doi.org/10.1104/pp.107.112748Chung, H., Park, M., Madhaiyan, M., Seshadri, S., Song, J., Cho, H., & Sa, T. (2005). Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of crop plants of Korea. Soil Biology and Biochemistry, 37(10), 1970-1974. https://doi.org/10.1016/j.soilbio.2005.02.025Datta, C., & Basu, P. S. (2000). Producción de ácido indol acético por una especie de Rhizobium a partir de nódulos de la raíz de un arbusto leguminoso, Cajanus cajan. Microbiological Research, 155(2), 123-127. https://doi.org/10.1016/S0944-5013(00)80047-6De Freitas, J. R., Banerjee, M. R., & Germida, J. J. (1997). Phosphate-solubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola (Brassica napus L.). Biology and Fertility of Soils, 24(4), 358-364. https://doi.org/10.1007/s003740050258Dey, G., Maity, J. P., Banerjee, P., Sharma, R. K., Etesami, H., Bastia, T. K., Rath, P., Sukul, U., Huang, H.-B., Huang, K.-W., & Chen, C.-Y. (2024). Characterization of halotolerant phosphate-solubilizing rhizospheric bacteria from mangrove (Avicennia sp.) with biotechnological potential in agriculture and pollution mitigation. Biocatalysis and Agricultural Biotechnology, 55, 102960. https://doi.org/10.1016/j.bcab.2023.102960Ferreira, C. M. H., Soares, H. M. V. M., & Soares, E. V. (2019). Promising bacterial genera for agricultural practices: An insight on plant growth-promoting properties and microbial safety aspects. Science of The Total Environment, 682, 779-799. https://doi.org/10.1016/j.scitotenv.2019.04.225Gao, C., Zhang, M., Song, K., Wei, Y., & Zhang, S. (2020). Spatiotemporal analysis of anthropogenic phosphorus fluxes in China. Science of the Total Environment, 721. https://doi.org/10.1016/j.scitotenv.2020.137588Goldstein, A. H. (1995). Recent Progress in Understanding the Molecular Genetics and Biochemistry of Calcium Phosphate Solubilization by Gram Negative Bacteria. Biological Agriculture & Horticulture, 12(2), 185-193. https://doi.org/10.1080/01448765.1995.9754736Goldstein, A. H., & Liu, S. T. (1987). Molecular Cloning and Regulation of a Mineral Phosphate Solubilizing Gene from Erwinia Herbicola. Nature Biotechnology, 5(1), 72-74. 46 https://doi.org/10.1038/nbt0187-72Gulati, A., Vyas, P., Rahi, P., & Kasana, R. C. (2009). Plant Growth-Promoting and RhizosphereCompetent Acinetobacter rhizosphaerae Strain BIHB 723 from the Cold Deserts of the Himalayas. Current Microbiology, 58(4), 371-377. https://doi.org/10.1007/s00284-008- 9339-xIllmer, P., & Schinner, F. (1995). Solubilization of inorganic calcium phosphates—Solubilization mechanisms. Soil Biology and Biochemistry, 27(3), 257-263. https://doi.org/10.1016/0038- 0717(94)00190-CJalali, M., & Sajadi Tabar, S. (2011). Chemical fractionation of phosphorus in calcareous soils of Hamedan, western Iran under different land use. Journal of Plant Nutrition and Soil Science, 174(4), 523-531. https://doi.org/10.1002/jpln.201000217Khan, M. S., Zaidi, A., & Wani, P. A. (2007). Role of phosphate-solubilizing microorganisms in sustainable agriculture—A review. Agronomy for Sustainable Development, 27(1), 29-43. https://doi.org/10.1051/agro:2006011Kim, K. Y., Hwangbo, H., Park, R. D., Kim, Y. W., Rim, Y. S., Park, K. H., Kim, T. H., & Suh, J. S. (2003). 2-Ketogluconic Acid Production and Phosphate Solubilization by Enterobacter intermedium. Current Microbiology, 47(2), 87-92. https://doi.org/10.1007/s00284-002- 3951-yKim, Y., Bae, B., & Choung, Y. (2005). Optimization of biological phosphorus removal from contaminated sediments with phosphate-solubilizing microorganisms. Journal of Bioscience and Bioengineering, 99(1), 23-29. https://doi.org/10.1263/jbb.99.23Kumar, C., Yadav, K., Archana, G., & Naresh Kumar, G. (2013). 2-Ketogluconic Acid Secretion by Incorporation of Pseudomonas putida KT 2440 Gluconate Dehydrogenase (gad) Operon in Enterobacter asburiae PSI3 Improves Mineral Phosphate Solubilization. Current 47 Microbiology, 67(3), 388-394. https://doi.org/10.1007/s00284-013-0372-zKumar, M. S., Reddy, G. C., Phogat, M., & Korav, S. (2018). Role of bio-fertilizers towards sustainable agricultural development: A review. Journal of Pharmacognosy and Phytochemistry, 7(6), 1915-1921.Lata, D. L., Abdie, O., & Rezene, Y. (2024). IAA-producing bacteria from the rhizosphere of chickpea (Cicer arietinum L.): Isolation, characterization, and their effects on plant growth performance. Heliyon, 10(21), e39702. https://doi.org/10.1016/j.heliyon.2024.e39702Lebrazi, S., Niehaus, K., Bednarz, H., Fadil, M., Chraibi, M., & Fikri-Benbrahim, K. (2020). Screening and optimization of indole-3-acetic acid production and phosphate solubilization by rhizobacterial strains isolated from Acacia cyanophylla root nodules and their effects on its plant growth. Journal of Genetic Engineering and Biotechnology, 18(1), 71. https://doi.org/10.1186/s43141-020-00090-2Li, C., Li, Q., Wang, Z., Ji, G., Zhao, H., Gao, F., Su, M., Jiao, J., Li, Z., & Li, H. (2019). Environmental fungi and bacteria facilitate lecithin decomposition and the transformation of phosphorus to apatite. Scientific Reports, 9(1), 15291. https://doi.org/10.1038/s41598- 019-51804-7Li, H.-P., Han, Q.-Q., Liu, Q.-M., Gan, Y.-N., Rensing, C., Rivera, W. L., Zhao, Q., & Zhang, J.- L. (2023). Roles of phosphate-solubilizing bacteria in mediating soil legacy phosphorus availability. Microbiological Research, 272, 127375. https://doi.org/10.1016/j.micres.2023.127375Li, Q., Fu, L., Wang, Y., Zhou, D., & Rittmann, B. E. (2018). Excessive phosphorus caused inhibition and cell damage during heterotrophic growth of Chlorella regularis. Bioresource Technology, 268, 266-270. https://doi.org/10.1016/j.biortech.2018.07.148Liang, J.-L., Liu, J., Jia, P., Yang, T., Zeng, Q., Zhang, S., Liao, B., Shu, W., & Li, J. (2020). Novel 48 phosphate-solubilizing bacteria enhance soil phosphorus cycling following ecological restoration of land degraded by mining. The ISME Journal, 14(6), 1600-1613. https://doi.org/10.1038/s41396-020-0632-4Liu, Z., Li, Y. C., Zhang, S., Fu, Y., Fan, X., Patel, J. S., & Zhang, M. (2015a). Characterization of phosphate-solubilizing bacteria isolated from calcareous soils. Applied Soil Ecology, 96, 217-224. https://doi.org/10.1016/j.apsoil.2015.08.003Liu, Z., Li, Y. C., Zhang, S., Fu, Y., Fan, X., Patel, J. S., & Zhang, M. (2015b). Characterization of phosphate-solubilizing bacteria isolated from calcareous soils. Applied Soil Ecology, 96, 217-224. https://doi.org/10.1016/j.apsoil.2015.08.003Makki, R. M. (2023). SUSTAINABLE FARMING USING PLANT GROWTHPROMOTING BACTERIA. Applied Ecology and Environmental Research, 21(3), 2363-2382. https://doi.org/10.15666/aeer/2103_23632382Meyer, J. B., Frapolli, M., Keel, C., & Maurhofer, M. (2011). Pyrroloquinoline Quinone Biosynthesis Gene pqqC , a Novel Molecular Marker for Studying the Phylogeny and Diversity of Phosphate-Solubilizing Pseudomonads. Applied and Environmental Microbiology, 77(20), 7345-7354. https://doi.org/10.1128/AEM.05434-11Nejati Sini, H., Barzegar, R., Soodaee Mashaee, S., Ghasemi Ghahsare, M., Mousavi-Fard, S., & Mozafarian, M. (2024). Effects of biofertilizer on the production of bell pepper (Capsicum annuum L.) in greenhouse. Journal of Agriculture and Food Research, 16, 101060. https://doi.org/10.1016/j.jafr.2024.101060Pantoja-Guerra, M., Burkett-Cadena, M., Cadena, J., Dunlap, C. A., & Ramírez, C. A. (2023). Lysinibacillus spp.: An IAA-producing endospore forming-bacteria that promotes plant growth. Antonie van Leeuwenhoek, 116(7), 615-630. https://doi.org/10.1007/s10482-023- 01828-xPark, J. H., Bolan, N., Megharaj, M., & Naidu, R. (2011). Isolation of phosphate solubilizing bacteria and their potential for lead immobilization in soil. Journal of Hazardous Materials, 185(2-3), 829-836. https://doi.org/10.1016/j.jhazmat.2010.09.095Patel, D. K., Archana, G., & Kumar, G. N. (2008). Variation in the Nature of Organic Acid Secretion and Mineral Phosphate Solubilization by Citrobacter sp. DHRSS in the Presence of Different Sugars. Current Microbiology, 56(2), 168-174. https://doi.org/10.1007/s00284-007-9053-0Pedraza, R. O., Bellone, C. H., Carrizo de Bellone, S., Boa Sorte, P. M. F., & Teixeira, K. R. dos S. (2009). Azospirillum inoculation and nitrogen fertilization effect on grain yield and on the diversity of endophytic bacteria in the phyllosphere of rice rainfed crop. European Journal of Soil Biology, 45(1), 36-43. https://doi.org/10.1016/J.EJSOBI.2008.09.007Postma, J., Nijhuis, E. H., & Someus, E. (2010). Selection of phosphorus solubilizing bacteria with biocontrol potential for growth in phosphorus rich animal bone charcoal. Applied Soil Ecology, 46(3), 464-469. https://doi.org/10.1016/j.apsoil.2010.08.016Raymond, N. S., Gómez‐Muñoz, B., Van Der Bom, F. J. T., Nybroe, O., Jensen, L. S., Müller‐ Stöver, D. S., Oberson, A., & Richardson, A. E. (2021). Phosphate‐solubilising microorganisms for improved crop productivity: A critical assessment. New Phytologist, 229(3), 1268-1277. https://doi.org/10.1111/nph.16924Rehman, A., Ma, H., Ahmad, M., Irfan, M., Traore, O., & Chandio, A. A. (2021). Towards environmental Sustainability: Devolving the influence of carbon dioxide emission to population growth, climate change, Forestry, livestock and crops production in Pakistan. Ecological Indicators, 125, 107460. https://doi.org/10.1016/j.ecolind.2021.107460Rodríguez, H., Fraga, R., Gonzalez, T., & Bashan, Y. (2006). Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant and 50 Soil, 287(1-2), 15-21. https://doi.org/10.1007/s11104-006-9056-9Rodríguez-Vázquez, R., & Mesa-Marín, J. (2023). Plant responses to plant growth promoting bacteria: Insights from proteomics. Journal of Plant Physiology, 287, 154031. https://doi.org/10.1016/J.JPLPH.2023.154031Sashidhar, B., & Podile, A. R. (2009). Transgenic expression of glucose dehydrogenase in Azotobacter vinelandii enhances mineral phosphate solubilization and growth of sorghum seedlings. Microbial Biotechnology, 2(4), 521-529. https://doi.org/10.1111/j.1751- 7915.2009.00119.xSecco, D., Bouain, N., Rouached, A., Prom-u-thai, C., Hanin, M., Pandey, A. K., & Rouached, H. (2017). Phosphate, phytate and phytases in plants: From fundamental knowledge gained in Arabidopsis to potential biotechnological applications in wheat. Critical Reviews in Biotechnology, 37(7), 898-910. https://doi.org/10.1080/07388551.2016.1268089Sharma, S. B., Sayyed, R. Z., Trivedi, M. H., & Gobi, T. A. (2013). Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus, 2(1), 587. https://doi.org/10.1186/2193-1801-2-587Singh, A., Parmar, N., Kuhad, R. C., & Ward, O. P. (2011). Bioaugmentation, Biostimulation, and Biocontrol in Soil Biology. En A. Singh, N. Parmar, & R. C. Kuhad (Eds.), Bioaugmentation, Biostimulation and Biocontrol (Vol. 108, pp. 1-23). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-19769-7_1Singh, V., & Kumar, B. (2024). A review of agricultural microbial inoculants and their carriers in bioformulation. Rhizosphere, 29, 100843. https://doi.org/10.1016/j.rhisph.2023.100843Son, H.-J., Park, G.-T., Cha, M.-S., & Heo, M.-S. (2006). Solubilization of insoluble inorganic phosphates by a novel salt- and pH-tolerant Pantoea agglomerans R-42 isolated from soybean rhizosphere. Bioresource Technology, 97(2), 204-210. 51 https://doi.org/10.1016/j.biortech.2005.02.021Song, O.-R., Lee, S.-J., Lee, Y.-S., Lee, S.-C., Kim, K.-K., & Choi, Y.-L. (2008). Solubilization of insoluble inorganic phosphate by Burkholderia cepacia DA23 isolated from cultivated soil. Brazilian Journal of Microbiology, 39, 151-156. https://doi.org/10.1590/S1517- 83822008000100030Tian, J., Ge, F., Zhang, D., Deng, S., & Liu, X. (2021a). Roles of Phosphate Solubilizing Microorganisms from Managing Soil Phosphorus Deficiency to Mediating Biogeochemical P Cycle. Biology, 10(2), 158. https://doi.org/10.3390/biology10020158Tian, J., Ge, F., Zhang, D., Deng, S., & Liu, X. (2021b). Roles of Phosphate Solubilizing Microorganisms from Managing Soil Phosphorus Deficiency to Mediating Biogeochemical P Cycle. Biology, 10(2), 158. https://doi.org/10.3390/biology10020158Vazquez, P., Holguin, G., Puente, M. E., Lopez-Cortes, A., & Bashan, Y. (2000). Phosphatesolubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biology and Fertility of Soils, 30(5-6), 460-468. https://doi.org/10.1007/s003740050024Vitousek, P. M., Porder, S., Houlton, B. Z., & Chadwick, O. A. (2010). Terrestrial phosphorus limitation: Mechanisms, implications, and nitrogen-phosphorus interactions. Ecological Applications, 20(1), 5-15. https://doi.org/10.1890/08-0127.1Vyas, P., & Gulati, A. (2009). Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas. BMC Microbiology, 9(1), 174. https://doi.org/10.1186/1471-2180-9-174Wagh, J., Shah, S., Bhandari, P., Archana, G., & Kumar, G. N. (2014). Heterologous expression of pyrroloquinoline quinone (pqq) gene cluster confers mineral phosphate solubilization ability to Herbaspirillum seropedicae Z67. Applied Microbiology and Biotechnology, 52 98(11), 5117-5129. https://doi.org/10.1007/s00253-014-5610-1Walpola, B., & Yoon, M.-H. (2012). Prospectus of phosphate solubilizing microorganisms and phosphorus availability in agricultural soils: A review. African journal of microbiology research, 6, 6600-6605. https://doi.org/10.5897/AJMR12.889Wang, S., Li, Y., Zhang, J., Wang, X., Hong, J., Qiu, C., & Meng, H. (2022). Transcriptome Profiling Analysis of Phosphate-Solubilizing Mechanism of Pseudomonas Strain W134. Microorganisms, 10(10), 1998. https://doi.org/10.3390/microorganisms10101998Wei, Y., Zhao, Y., Shi, M., Cao, Z., Lu, Q., Yang, T., Fan, Y., & Wei, Z. (2018). Effect of organic acids production and bacterial community on the possible mechanism of phosphorus solubilization during composting with enriched phosphate-solubilizing bacteria inoculation. Bioresource Technology, 247, 190-199. https://doi.org/10.1016/j.biortech.2017.09.092Yi, Y., Huang, W., & Ge, Y. (2008). Exopolysaccharide: A novel important factor in the microbial dissolution of tricalcium phosphate. World Journal of Microbiology and Biotechnology, 24(7), 1059-1065. https://doi.org/10.1007/s11274-007-9575-4Zaidi, A., Khan, M., Ahemad, M., & Oves, M. (2009). Plant growth promotion by phosphate solubilizing bacteria. Acta Microbiologica et Immunologica Hungarica, 56(3), 263-284. https://doi.org/10.1556/AMicr.56.2009.3.6Zhang, X., Zhi, X., Chen, L., & Shen, Z. (2020). Spatiotemporal variability and key influencing factors of river fecal coliform within a typical complex watershed. Water Research, 178, 115835. https://doi.org/10.1016/j.watres.2020.115835Zhao, K., Penttinen, P., Zhang, X., Ao, X., Liu, M., Yu, X., & Chen, Q. (2014). Maize rhizosphere in Sichuan, China, hosts plant growth promoting Burkholderia cepacia with phosphate solubilizing and antifungal abilities. Microbiological Research, 169(1), 76-82. 53 https://doi.org/10.1016/j.micres.2013.07.003Zhao, L. F., Xu, Y. J., & Lai, X. H. (2018). Antagonistic endophytic bacteria associated with nodules of soybean (Glycine max L.) and plant growth-promoting properties. Brazilian Journal of Microbiology, 49(2), 269-278. https://doi.org/10.1016/J.BJM.2017.06.007Zhao, Y. (2010). Auxin Biosynthesis and Its Role in Plant Development. Annual Review of Plant Biology, 61(1), 49-64. https://doi.org/10.1146/annurev-arplant-042809-112308Zhu, J., Li, M., & Whelan, M. (2018). Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: A review. Science of The Total Environment, 612, 522- 537. https://doi.org/10.1016/j.scitotenv.2017.08.095BiofertilizantesBacterias promotoras del crecimiento vegetalDepartamento de CórdobaBiofertilizersplant growth promoting bacteriaDepartment of CórdobaPublicationORIGINALINFORME FINAL DE TRABAJO DE GRADO- SARA YOMAR MERCADO ROSSO (1).pdfINFORME FINAL DE TRABAJO DE GRADO- SARA YOMAR MERCADO ROSSO (1).pdfapplication/pdf644261https://repositorio.unicordoba.edu.co/bitstreams/83275963-ab68-42b1-9e04-53b5750f0e01/download84c525b710ecc9915f5e13643fb3ab72MD51SARA MERCADO .pdfSARA MERCADO .pdfapplication/pdf773290https://repositorio.unicordoba.edu.co/bitstreams/cac21c8f-f877-4c50-a2a4-a13c52b3ad87/download7f461267e7c9ad4cc24c5bf4f3f6f43eMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://repositorio.unicordoba.edu.co/bitstreams/46c0b2a8-c7d5-483e-a7f9-9866693dc072/download73a5432e0b76442b22b026844140d683MD53TEXTINFORME FINAL DE TRABAJO DE GRADO- SARA YOMAR MERCADO ROSSO (1).pdf.txtINFORME FINAL DE TRABAJO DE GRADO- SARA YOMAR MERCADO ROSSO (1).pdf.txtExtracted texttext/plain90554https://repositorio.unicordoba.edu.co/bitstreams/0fae70e2-c50b-4066-89f6-03587a53319c/download5478362cde7082bf3b4a894d37b11657MD54SARA MERCADO .pdf.txtSARA MERCADO .pdf.txtExtracted texttext/plain126https://repositorio.unicordoba.edu.co/bitstreams/a6260dfe-cc83-48f2-bf98-f69af6ebad2e/downloadd99a5cd31700cd4f91f39cfebc8c57c7MD56THUMBNAILINFORME FINAL DE TRABAJO DE GRADO- SARA YOMAR MERCADO ROSSO (1).pdf.jpgINFORME FINAL DE TRABAJO DE GRADO- SARA YOMAR MERCADO ROSSO (1).pdf.jpgGenerated Thumbnailimage/jpeg8136https://repositorio.unicordoba.edu.co/bitstreams/9c4e86ff-aeb8-4a06-93b1-62df62971db1/downloada56d6ecbfab5a1a31a183155202521a9MD55SARA MERCADO .pdf.jpgSARA MERCADO .pdf.jpgGenerated Thumbnailimage/jpeg13042https://repositorio.unicordoba.edu.co/bitstreams/1c95875d-bf45-4b87-9313-22a4f298e571/downloadc390023f807672d29d53ae81529531fbMD57ucordoba/8746oai:repositorio.unicordoba.edu.co:ucordoba/87462024-11-17 03:00:33.449https://creativecommons.org/licenses/by-nc/4.0/Copyright Universidad de Córdoba, 2024embargohttps://repositorio.unicordoba.edu.coRepositorio Universidad de Córdobabdigital@metabiblioteca.comPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K