Caracterización nutricional y producción de gas de especies vegetales con potencial alimenticio para la alimentación de rumiantes

Objetivo. Evaluar la composición química, contenido de compuestos fenólicos, cinética de producción de gas y emisiones de metano in vitro de siete especies vegetales con potencial alimenticio para alimentación de rumiantes. Materiales y métodos. Siete especies fueron evaluadas: encino gris (EG), enc...

Full description

Autores:
Araiza-Rosales, Elia E
Pámanes-Carrasco, Gerardo A
Sánchez-Arroyo, Juan F
Herrera-Torres, Esperanza
Rosales-Castro, Martha
Carrete-Carreón, Francisco O
Tipo de recurso:
Article of journal
Fecha de publicación:
2022
Institución:
Universidad de Córdoba
Repositorio:
Repositorio Institucional Unicórdoba
Idioma:
spa
OAI Identifier:
oai:repositorio.unicordoba.edu.co:ucordoba/6296
Acceso en línea:
https://repositorio.unicordoba.edu.co/handle/ucordoba/6296
https://doi.org/10.21897/rmvz.2142
Palabra clave:
Methane
chemical composition
phenolic compounds
ruminants
Metano
composición química
compuestos fenólicos
rumiantes
Rights
openAccess
License
https://creativecommons.org/licenses/by-nc-sa/4.0
id UCORDOBA2_1cb207c3c9b52bd47252880a8b5c6aea
oai_identifier_str oai:repositorio.unicordoba.edu.co:ucordoba/6296
network_acronym_str UCORDOBA2
network_name_str Repositorio Institucional Unicórdoba
repository_id_str
dc.title.spa.fl_str_mv Caracterización nutricional y producción de gas de especies vegetales con potencial alimenticio para la alimentación de rumiantes
dc.title.translated.eng.fl_str_mv Nutritional characterization and gas production of vegetative species with potential as feedstuffs for ruminants feeding
title Caracterización nutricional y producción de gas de especies vegetales con potencial alimenticio para la alimentación de rumiantes
spellingShingle Caracterización nutricional y producción de gas de especies vegetales con potencial alimenticio para la alimentación de rumiantes
Methane
chemical composition
phenolic compounds
ruminants
Metano
composición química
compuestos fenólicos
rumiantes
title_short Caracterización nutricional y producción de gas de especies vegetales con potencial alimenticio para la alimentación de rumiantes
title_full Caracterización nutricional y producción de gas de especies vegetales con potencial alimenticio para la alimentación de rumiantes
title_fullStr Caracterización nutricional y producción de gas de especies vegetales con potencial alimenticio para la alimentación de rumiantes
title_full_unstemmed Caracterización nutricional y producción de gas de especies vegetales con potencial alimenticio para la alimentación de rumiantes
title_sort Caracterización nutricional y producción de gas de especies vegetales con potencial alimenticio para la alimentación de rumiantes
dc.creator.fl_str_mv Araiza-Rosales, Elia E
Pámanes-Carrasco, Gerardo A
Sánchez-Arroyo, Juan F
Herrera-Torres, Esperanza
Rosales-Castro, Martha
Carrete-Carreón, Francisco O
dc.contributor.author.spa.fl_str_mv Araiza-Rosales, Elia E
Pámanes-Carrasco, Gerardo A
Sánchez-Arroyo, Juan F
Herrera-Torres, Esperanza
Rosales-Castro, Martha
Carrete-Carreón, Francisco O
dc.subject.eng.fl_str_mv Methane
chemical composition
phenolic compounds
ruminants
topic Methane
chemical composition
phenolic compounds
ruminants
Metano
composición química
compuestos fenólicos
rumiantes
dc.subject.spa.fl_str_mv Metano
composición química
compuestos fenólicos
rumiantes
description Objetivo. Evaluar la composición química, contenido de compuestos fenólicos, cinética de producción de gas y emisiones de metano in vitro de siete especies vegetales con potencial alimenticio para alimentación de rumiantes. Materiales y métodos. Siete especies fueron evaluadas: encino gris (EG), encino rojo (ER), chicalote (CHIC), mezquite (MEZ), huizache (HUI), morera (MOR) y la estevia (STE). Los análisis de las muestras fueron: extracto etéreo (EE), cenizas (Cen), proteína cruda (PC), carbohidratos no estructurales (CNE), fibra en detergente neutro (FDN), fibra en detergente ácido (FDA), hemicelulosa, celulosa, lignina detergente ácida (LDA), taninos condensados (TC) y fenoles totales (FT), digestibilidad in vitro de la materia seca (DIVMS); así como las condiciones ruminales in vitro, producción de gas (PG), producción de metano y dióxido de carbono, nitrógeno amoniacal (N-NH3) y ácidos grasos volátiles (AGV´s). Resultados. Los resultados muestran que HUI, MEZ y MOR presentaron un mayor contenido de PC, las mayores digestibilidades (DIVMS) se observaron en CHIC, HUI y STE. De lo contrario, las producciones de metano más bajas fueron generadas por MEZ, ER Y HUI. Conclusiones. De acuerdo con los resultados en la composición química, CHIC, MOR y STE presentaron la mejor calidad nutricional ya que mostraron los más altos contenidos de proteína y una digestibilidad adecuada. Estos resultados sugieren que el uso de CHIC no afectaría las características nutricionales que ofrece un forraje de buena calidad. Además, las otras especies pueden usarse como aditivos o suplementos para alimentar a los rumiantes debido a su mayor contenido de proteína y taninos condensados.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-07-31 22:38:42
2022-08-11T09:37:06Z
dc.date.available.none.fl_str_mv 2022-07-31 22:38:42
2022-08-11T09:37:06Z
dc.date.issued.none.fl_str_mv 2022-07-31
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_6501
dc.type.local.eng.fl_str_mv Journal article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ARTREF
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 0122-0268
dc.identifier.uri.none.fl_str_mv https://repositorio.unicordoba.edu.co/handle/ucordoba/6296
dc.identifier.doi.none.fl_str_mv 10.21897/rmvz.2142
dc.identifier.url.none.fl_str_mv https://doi.org/10.21897/rmvz.2142
dc.identifier.eissn.none.fl_str_mv 1909-0544
identifier_str_mv 0122-0268
10.21897/rmvz.2142
1909-0544
url https://repositorio.unicordoba.edu.co/handle/ucordoba/6296
https://doi.org/10.21897/rmvz.2142
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Singh B, Todaria NP. Nutrients composition changes in leaves of Quercus semecarpifolia at different seasons and altitudes. Ann For Res. 2012; 55(2):189-196. http://afrjournal.org/index.php/afr/article/view/59
Pavarini D, Pavarini S, Niehues M, Lopes N. Exogenous influences on plant secondary metabolite levels. Anim Feed Sci Technol. 2012; 176:5-16. https://doi.org/10.1016/j.anifeedsci.2012.07.002
Tavendale MH, Meagher LP, Pacheco D, Walker N, Attwood GT, Sivakumaran S. Methane production from in vitro rumen incubations with Lotus pedunculatus and Medicago sativa, and effects of extractable condensed tannin fractions on methanogenesis. Anim Feed Sci Technol. 2005; 123(124):403–419. https://doi.org/10.1016/j.anifeedsci.2005.04.037
Knapp JR, Laur GL, Vadas PA, Weiss WP andTricarico JM. Invited review: Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing. J Dairy Sci. 2014; 97:3231-3261. https://doi.org/10.3168/jds.2013-7234
Rocha-Guzmán NE, Gallegos-Infante JA, González-Laredo RF, Reynoso- Camacho R, Ramos-Gómez M, García-Gasca T. Antioxidant activity and genotoxic effect on HeLa cells of phenolic compounds from infusions of Quercus resinosa leaves. Food Chem. 2009; 115:1320–1325. https://doi.org/10.1016/j.foodchem.2009.01.050
Abdel SE, Maes L, Mahmoud SM. In vitro activities of plant extracts from Saudi Arabia against malaria, leishmaniasis, sleeping sickness and chagas disease. Phytother Res. 2010; 24:1322-1328. https://doi.org/10.1002/ptr.3108
Sytar O, Borankulova A, Shevchenko Y, Wendt A, Smetanska I. Antioxidant activity and phenolics composition in Stevia rebaudiana plants of different origin. J Microbiol Biotechnol Food Sci. 2016; 5(3):221-224. https://doi.org/10.15414/jmbfs.2015.16.5.3.221-224
Molina CM, Priego CF, de Luque CMD. Characterization of stevia leaves by LC-QTOF MS/MS analysis of polar and non-polar extracts. Food Chem. 2017; 219(6):329-338. https://doi.org/10.1016/j.foodchem.2016.09.148
González N, Abdalla AL, Galindo J y Santos MR. Effect of five inclusión levels of mulberry (Morus alba cv. Cubana) on methanogens and some main cellulolytic populations within rumen liquor of water buffalos (Bubalus bubalis). Cuban J Agricul Sci. 2016; 50(3):393-402. https://www.cjascience.com/index.php/CJAS/article/view/633
Armijo-Nájera MG, Moreno-Reséndez A Blanco-Contreras E, Borroel-García VJ, Reyes-Carrillo JL. Vaina de mezquite (Prosopis spp.) alimento para el ganado caprino en el semidesierto. Rev Mex Cie Agric. 2019; 10(1):113-122. https://dx.doi.org/10.29312/remexca.v10i1.1728
AOAC International. Association of Official Analytical Chemists. Association of Official Methods of Analysis. AOAC, Arlington, Va, USA; 2005.
Van Soest PJ, Robertson JB, Lewis BA. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci. 1991; 74:3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
Menke KH and Steingass H. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim Res and Develop. 1988; 28(1):7-55.
Heimler D, Isolani L, Vignolini P, Tombelli S, Romani A. Polyphenol content and antioxidative activity in some species of freshly consumed salads. J Agric Food Chem. 2007; 55:1724-1729. https://doi.org/10.1021/jf0628983
Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdicphosphotungstic acid reagents. Am J Enol Vitic. 1965; 16:144-158. https://www.ajevonline.org/content/16/3/144
Theodorou MK, Williams BA, Dhanoa MS, McAllan AB, France J. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim Feed Sci Technol. 1994; 48:185-197. https://doi.org/10.1016/0377-8401(94)90171-6
Murillo OM, Herrera TE, Corral LA, Pámanes CG. Effect of inclusion of graded level of water hyacinth on in vitro gas production kinetics and chemical composition of alfalfa hay based beef cattle diets. Indian J Animal Res. 2018; 52(8):1298-1303. https://doi.org/10.18805/ijar.11417
Mills JA, Kebreab E, Yates CM, Cromton LA, Cammell SB, Dhanoa MS, Agnew RE, France J. Alternative approaches to predicting methane emissions form dairy cattle. J Anim Sci. 2003; 81:3141-3150. https://doi.org/10.2527/2003.81123141x
Galyean ML. Laboratory Procedures in Animal Nutrition Research. 13th ed. Lubbock: USA; 2010. https://www.depts.ttu.edu/afs/home/mgalyean/lab_man.pdf
Aberra M, Steingass H, Shollenberger M and Rodehutscord M. Screening of common tropical grass and megume forages in Ethiopia for their nutrient composition and methane production profile in vitro. Trop Grasslands. 2017; 5(3):163-175. http://dx.doi.org/10.17138/TGFT(5)163-175
Fox DG, Tedeschi LO, Tylutki TP, Russell JB,Van Amburgh ME, Chase LE, Pell A N, Overton TR. The cornell net carbohydrate and protein system model for evaluating herd nutrition and nutrient excretion. Anim Feed Sci Technol. 2004; 112:29–78. https://doi.org/10.1016/j.anifeedsci.2003.10.006
Arenas FA, Noguera RR, Restrepo LF. Efecto de diferentes tipos de grasa en dietas para rumiantes sobre la cinética de degradación y fermentación de la materia seca in vitro. Rev Col Cien Pec. 2010; 23(1):55-64. https://revistas.udea.edu.co/index.php/rccp/article/view/324530
Li JT, Li DF, Zang JJ, Yan WJ, Zhang WJ and Zhang LY. Evaluation of energy digestibility and prediction of digestible and metabolizable energy from chemical composition of different cottonseed meal sources fed to growing pigs. 2012; 25(10):1430-1438. https://dx.doi.org/10.5713%2Fajas.2012.12201
Hurtado DI, Nocua S, Nárvaez-Solarte W y Vargas-Sánchez JE. Valor nutricional de la morera (Morus sp.), matarratón (Gliricidia sepium), pasto indio (Panicum máximum) y arboloco (Montanoa quadrangularis) en la alimentación de cuyes (Cavia porcellus). Vet Zootec. 2012; 6(1):56-65. http://vip.ucaldas.edu.co/vetzootec/downloads/v6n1a06.pdf
Ivan SK, Grant RJ, Weakley D, Beck J. Comparison of a corn silage hybrid with high cell wall content and digestibility with a hybrid of lower cell-wall content on performance of Holstein cows. J Dairy Sci. 2005; 88:244. https://doi.org/10.3168/jds.s0022-0302(05)72682-5
Han KJ, McCormick ME. Evaluation of nutritive value and in vitro rumen fermentation gas accumulation of de-oiled algal residues. J Anim Sci and Biotechnol. 2014; 5(1):31. https://doi.org/10.1186/2049-1891-5-31
Akanmu AM, Hassen A and Adejoro FA. Gas production, digestibility and efficacy of stored or fresh plant extracts to reduce methane production on different substrates. Animals. 2020; 10:146. https://doi.org/10.3390/ani10010146
Sarnataro Ch, Spanghero M. In vitro rumen fermentation of feed susbtrates added with chestnut tannins or an extract from Stevia rebaudiana Bertoni. Anim Nutr. 2020; 6:54-60. https://doi.org/10.1016/j.aninu.2019.11.009
Qin WZ, Li CY, Kim JK, Ju JG, Song MK. Effects of defaunation on fermentation characteristics and methane production by rumen microbes in vitro when incubated with starchy feed sources. Asian-Australas J Anim Sci. 2012; 25(10):1381-1388. https://doi.org/10.5713/ajas.2012.1224
Deutschmann K, Phatsara Ch, Sorachakula Ch,Vearasilp T, Phunphiphat W, Cherdthong A, Gerlach K, Karl-Heinz S. In vitro gas production and in vivo nutrient digestibility and growth performance of Thai indigenous cattle fed fresh and conserved pangola grass. Italian J Anim Sci. 2017; 16:1-9. https://doi.org/10.1080/1828051x.2017.1293478
Wang P and Zhiliang T. Ammonia assimilation in rumen bacteria: A review. Anim Biotechnol. 2013; 24(2):107-128. https://doi.org/10.1080/10495398.2012.756402
Cheeke PR. Applied Animal Nutrition, Feeds and Feeding. 3rd ed. new Jersey, Prentice Hall; 2004.
Lunsin R, Wanapat M, Rowlinson P. Effect of cassava hay and rice bran oil supplementation on rumen fermentation, milk yield and milk composition in lactating dairy cows. Asian-Australas J Anim Sci. 2012; 25:1364-1373. https://doi.org/10.5713/ajas.2012.12051
Pond WG, Church DC, Pond K, Schoknecht PA. Basic Animal Nutrition and Feeding. 5th ed. Wiley; 2005
Abdullah N, Ho YW, Mahyuddin M, Jalaludin S. Microbial colonization and digestion of feed materials in cattle and buffaloes ll. Rice straw and palm press fibre. Asian-Aust J Anim Sci. 1992; 5:329-335. http://www.ajas.info/Editor/manuscript/upload/5-47.pdf
Griswold KE, Apgar GA, Bouton J, Firkins JL. Effects of urea infusion and ruminal degradable protein concentration on microbial growth, digestibility, and fermentation in continuous cultura. J Anim Sci. 2003; 81:329-336. https://doi.org/10.2527/2003.811329x
Williams BA. Cumulative gas-production techniques for forage evaluation. In: Givens D I, Owen E, Omed H M and Axford RF E (editors). Forage evaluation in ruminant nutrition. Wallingford (UK). CAB International; 2000.
Alves BG, Martins CMMR, Peti APF, Moraes LAB and Santos MV. In vitro evaluation of novel crude extracts produced by actinobacteria for modulation of ruminal fermentation. R Bras Zootec. 2019; 48: e20190066. https://doi.org/10.1590/rbz4820190066
Almaraz-Buendía I, García AM, Sánchez-Santillán P, Torres-Salado N, Herrera-Pérez. Análisis bromatológico y producción de gas in vitro de forrajes utilizados en el trópico seco mexicano. Arch Zootec. 2019; 68(262):260-266. https://doi.org/10.21071/az.v68i262.4145
dc.relation.bitstream.none.fl_str_mv https://revistamvz.unicordoba.edu.co/article/download/2142/4160
https://revistamvz.unicordoba.edu.co/article/download/2142/4161
https://revistamvz.unicordoba.edu.co/article/download/2142/4162
https://revistamvz.unicordoba.edu.co/article/download/2142/4163
https://revistamvz.unicordoba.edu.co/article/download/2142/4164
dc.relation.citationedition.spa.fl_str_mv Núm. 2 , Año 2022 : Revista MVZ Córdoba Volumen 27(2) Mayo-Agosto 2022
dc.relation.citationendpage.none.fl_str_mv e2142
dc.relation.citationissue.spa.fl_str_mv 2
dc.relation.citationstartpage.none.fl_str_mv e2142
dc.relation.citationvolume.spa.fl_str_mv 27
dc.relation.ispartofjournal.spa.fl_str_mv Revista MVZ Córdoba
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
application/pdf
audio/mpeg
audio/mpeg

dc.publisher.spa.fl_str_mv Universidad de Córdoba
dc.source.spa.fl_str_mv https://revistamvz.unicordoba.edu.co/article/view/2142
institution Universidad de Córdoba
bitstream.url.fl_str_mv https://repositorio.unicordoba.edu.co/bitstreams/a4d952b8-d54d-4709-bd05-92f8fcd7d950/download
bitstream.checksum.fl_str_mv 7b928722ac9bae5bd44e1a3e249e73bd
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Universidad de Córdoba
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1839636050610225152
spelling Araiza-Rosales, Elia E69b2bb29-a63c-41b5-800c-e8d018cf3b29-1Pámanes-Carrasco, Gerardo A93f4b8db-2c48-4ee3-923a-68665b46f132-1Sánchez-Arroyo, Juan F2bf4e42c-8d41-4af4-ad46-8771066ecaec-1Herrera-Torres, Esperanzaf37ce3a1-ed26-4381-a554-bfbd714f91a4-1Rosales-Castro, Martha827d9793-a510-47cc-9b8b-07ab859aeab9-1Carrete-Carreón, Francisco Ob873fb39-2606-4309-a196-7bc2cd4e1601-12022-07-31 22:38:422022-08-11T09:37:06Z2022-07-31 22:38:422022-08-11T09:37:06Z2022-07-310122-0268https://repositorio.unicordoba.edu.co/handle/ucordoba/629610.21897/rmvz.2142https://doi.org/10.21897/rmvz.21421909-0544Objetivo. Evaluar la composición química, contenido de compuestos fenólicos, cinética de producción de gas y emisiones de metano in vitro de siete especies vegetales con potencial alimenticio para alimentación de rumiantes. Materiales y métodos. Siete especies fueron evaluadas: encino gris (EG), encino rojo (ER), chicalote (CHIC), mezquite (MEZ), huizache (HUI), morera (MOR) y la estevia (STE). Los análisis de las muestras fueron: extracto etéreo (EE), cenizas (Cen), proteína cruda (PC), carbohidratos no estructurales (CNE), fibra en detergente neutro (FDN), fibra en detergente ácido (FDA), hemicelulosa, celulosa, lignina detergente ácida (LDA), taninos condensados (TC) y fenoles totales (FT), digestibilidad in vitro de la materia seca (DIVMS); así como las condiciones ruminales in vitro, producción de gas (PG), producción de metano y dióxido de carbono, nitrógeno amoniacal (N-NH3) y ácidos grasos volátiles (AGV´s). Resultados. Los resultados muestran que HUI, MEZ y MOR presentaron un mayor contenido de PC, las mayores digestibilidades (DIVMS) se observaron en CHIC, HUI y STE. De lo contrario, las producciones de metano más bajas fueron generadas por MEZ, ER Y HUI. Conclusiones. De acuerdo con los resultados en la composición química, CHIC, MOR y STE presentaron la mejor calidad nutricional ya que mostraron los más altos contenidos de proteína y una digestibilidad adecuada. Estos resultados sugieren que el uso de CHIC no afectaría las características nutricionales que ofrece un forraje de buena calidad. Además, las otras especies pueden usarse como aditivos o suplementos para alimentar a los rumiantes debido a su mayor contenido de proteína y taninos condensados.Objective. To evaluate the chemical composition, phenolic compounds content, and in vitro methane and gas production kinetics of seven vegetable species as potential feedstuffs for ruminants feeding. Materials and methods. Seven species were evaluated: gray oak (GO), red oak (RO), prickly poppies (PP), mesquite (MES), wattle tree (WT), white mulberry (WM) and stevia (STE). The analyses of the samples were: ether extract (EE), ash, crude protein (CP), non-structural carbohydrates (NSC), neutral detergent fiber (NDF), acid detergent fiber (ADF), hemicellulose, cellulose, acid detergent lignin (ADL), condensed tannins (CT), total phenolic compounds (TPC), in vitro dry matter true digestibility (IVDMD); as well as under in vitro ruminal conditions, gas production (GP), methane and carbon dioxide CO2 production, N-ammonia, and volatile fatty acids (VFA). Results. The results show that WT, MES and WM foliage presented the highest content in CP, the highest digestibility’s (IVDMD) were observed in PP, WM and STE. Otherwise, the lowest methane productions were generated by MES, RO and WM. Conclusions. According to the results in the chemical composition, PP, WM and STE presented the best nutritional quality since they showed the highest protein contents and an adequate digestibility. These results suggest that the use of PP would not affect the nutritional characteristics offered by good quality forage. In addition, the other species may be used as additives or supplements for feeding ruminants because of their higher protein and CT contents.application/pdfapplication/pdfaudio/mpegaudio/mpegspaUniversidad de CórdobaElia E Araiza-Rosales, Gerardo A Pámanes-Carrasco, Juan F Sánchez-Arroyo, Esperanza Herrera-Torres, Martha Rosales-Castro, Francisco O Carrete-Carreón - 2022https://creativecommons.org/licenses/by-nc-sa/4.0info:eu-repo/semantics/openAccessEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.http://purl.org/coar/access_right/c_abf2https://revistamvz.unicordoba.edu.co/article/view/2142Methanechemical compositionphenolic compoundsruminantsMetanocomposición químicacompuestos fenólicosrumiantesCaracterización nutricional y producción de gas de especies vegetales con potencial alimenticio para la alimentación de rumiantesNutritional characterization and gas production of vegetative species with potential as feedstuffs for ruminants feedingArtículo de revistainfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Journal articleinfo:eu-repo/semantics/publishedVersionTexthttp://purl.org/redcol/resource_type/ARTREFhttp://purl.org/coar/version/c_970fb48d4fbd8a85Singh B, Todaria NP. Nutrients composition changes in leaves of Quercus semecarpifolia at different seasons and altitudes. Ann For Res. 2012; 55(2):189-196. http://afrjournal.org/index.php/afr/article/view/59Pavarini D, Pavarini S, Niehues M, Lopes N. Exogenous influences on plant secondary metabolite levels. Anim Feed Sci Technol. 2012; 176:5-16. https://doi.org/10.1016/j.anifeedsci.2012.07.002Tavendale MH, Meagher LP, Pacheco D, Walker N, Attwood GT, Sivakumaran S. Methane production from in vitro rumen incubations with Lotus pedunculatus and Medicago sativa, and effects of extractable condensed tannin fractions on methanogenesis. Anim Feed Sci Technol. 2005; 123(124):403–419. https://doi.org/10.1016/j.anifeedsci.2005.04.037Knapp JR, Laur GL, Vadas PA, Weiss WP andTricarico JM. Invited review: Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing. J Dairy Sci. 2014; 97:3231-3261. https://doi.org/10.3168/jds.2013-7234Rocha-Guzmán NE, Gallegos-Infante JA, González-Laredo RF, Reynoso- Camacho R, Ramos-Gómez M, García-Gasca T. Antioxidant activity and genotoxic effect on HeLa cells of phenolic compounds from infusions of Quercus resinosa leaves. Food Chem. 2009; 115:1320–1325. https://doi.org/10.1016/j.foodchem.2009.01.050Abdel SE, Maes L, Mahmoud SM. In vitro activities of plant extracts from Saudi Arabia against malaria, leishmaniasis, sleeping sickness and chagas disease. Phytother Res. 2010; 24:1322-1328. https://doi.org/10.1002/ptr.3108Sytar O, Borankulova A, Shevchenko Y, Wendt A, Smetanska I. Antioxidant activity and phenolics composition in Stevia rebaudiana plants of different origin. J Microbiol Biotechnol Food Sci. 2016; 5(3):221-224. https://doi.org/10.15414/jmbfs.2015.16.5.3.221-224Molina CM, Priego CF, de Luque CMD. Characterization of stevia leaves by LC-QTOF MS/MS analysis of polar and non-polar extracts. Food Chem. 2017; 219(6):329-338. https://doi.org/10.1016/j.foodchem.2016.09.148González N, Abdalla AL, Galindo J y Santos MR. Effect of five inclusión levels of mulberry (Morus alba cv. Cubana) on methanogens and some main cellulolytic populations within rumen liquor of water buffalos (Bubalus bubalis). Cuban J Agricul Sci. 2016; 50(3):393-402. https://www.cjascience.com/index.php/CJAS/article/view/633Armijo-Nájera MG, Moreno-Reséndez A Blanco-Contreras E, Borroel-García VJ, Reyes-Carrillo JL. Vaina de mezquite (Prosopis spp.) alimento para el ganado caprino en el semidesierto. Rev Mex Cie Agric. 2019; 10(1):113-122. https://dx.doi.org/10.29312/remexca.v10i1.1728AOAC International. Association of Official Analytical Chemists. Association of Official Methods of Analysis. AOAC, Arlington, Va, USA; 2005.Van Soest PJ, Robertson JB, Lewis BA. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci. 1991; 74:3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2Menke KH and Steingass H. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim Res and Develop. 1988; 28(1):7-55.Heimler D, Isolani L, Vignolini P, Tombelli S, Romani A. Polyphenol content and antioxidative activity in some species of freshly consumed salads. J Agric Food Chem. 2007; 55:1724-1729. https://doi.org/10.1021/jf0628983Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdicphosphotungstic acid reagents. Am J Enol Vitic. 1965; 16:144-158. https://www.ajevonline.org/content/16/3/144Theodorou MK, Williams BA, Dhanoa MS, McAllan AB, France J. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim Feed Sci Technol. 1994; 48:185-197. https://doi.org/10.1016/0377-8401(94)90171-6Murillo OM, Herrera TE, Corral LA, Pámanes CG. Effect of inclusion of graded level of water hyacinth on in vitro gas production kinetics and chemical composition of alfalfa hay based beef cattle diets. Indian J Animal Res. 2018; 52(8):1298-1303. https://doi.org/10.18805/ijar.11417Mills JA, Kebreab E, Yates CM, Cromton LA, Cammell SB, Dhanoa MS, Agnew RE, France J. Alternative approaches to predicting methane emissions form dairy cattle. J Anim Sci. 2003; 81:3141-3150. https://doi.org/10.2527/2003.81123141xGalyean ML. Laboratory Procedures in Animal Nutrition Research. 13th ed. Lubbock: USA; 2010. https://www.depts.ttu.edu/afs/home/mgalyean/lab_man.pdfAberra M, Steingass H, Shollenberger M and Rodehutscord M. Screening of common tropical grass and megume forages in Ethiopia for their nutrient composition and methane production profile in vitro. Trop Grasslands. 2017; 5(3):163-175. http://dx.doi.org/10.17138/TGFT(5)163-175Fox DG, Tedeschi LO, Tylutki TP, Russell JB,Van Amburgh ME, Chase LE, Pell A N, Overton TR. The cornell net carbohydrate and protein system model for evaluating herd nutrition and nutrient excretion. Anim Feed Sci Technol. 2004; 112:29–78. https://doi.org/10.1016/j.anifeedsci.2003.10.006Arenas FA, Noguera RR, Restrepo LF. Efecto de diferentes tipos de grasa en dietas para rumiantes sobre la cinética de degradación y fermentación de la materia seca in vitro. Rev Col Cien Pec. 2010; 23(1):55-64. https://revistas.udea.edu.co/index.php/rccp/article/view/324530Li JT, Li DF, Zang JJ, Yan WJ, Zhang WJ and Zhang LY. Evaluation of energy digestibility and prediction of digestible and metabolizable energy from chemical composition of different cottonseed meal sources fed to growing pigs. 2012; 25(10):1430-1438. https://dx.doi.org/10.5713%2Fajas.2012.12201Hurtado DI, Nocua S, Nárvaez-Solarte W y Vargas-Sánchez JE. Valor nutricional de la morera (Morus sp.), matarratón (Gliricidia sepium), pasto indio (Panicum máximum) y arboloco (Montanoa quadrangularis) en la alimentación de cuyes (Cavia porcellus). Vet Zootec. 2012; 6(1):56-65. http://vip.ucaldas.edu.co/vetzootec/downloads/v6n1a06.pdfIvan SK, Grant RJ, Weakley D, Beck J. Comparison of a corn silage hybrid with high cell wall content and digestibility with a hybrid of lower cell-wall content on performance of Holstein cows. J Dairy Sci. 2005; 88:244. https://doi.org/10.3168/jds.s0022-0302(05)72682-5Han KJ, McCormick ME. Evaluation of nutritive value and in vitro rumen fermentation gas accumulation of de-oiled algal residues. J Anim Sci and Biotechnol. 2014; 5(1):31. https://doi.org/10.1186/2049-1891-5-31Akanmu AM, Hassen A and Adejoro FA. Gas production, digestibility and efficacy of stored or fresh plant extracts to reduce methane production on different substrates. Animals. 2020; 10:146. https://doi.org/10.3390/ani10010146Sarnataro Ch, Spanghero M. In vitro rumen fermentation of feed susbtrates added with chestnut tannins or an extract from Stevia rebaudiana Bertoni. Anim Nutr. 2020; 6:54-60. https://doi.org/10.1016/j.aninu.2019.11.009Qin WZ, Li CY, Kim JK, Ju JG, Song MK. Effects of defaunation on fermentation characteristics and methane production by rumen microbes in vitro when incubated with starchy feed sources. Asian-Australas J Anim Sci. 2012; 25(10):1381-1388. https://doi.org/10.5713/ajas.2012.1224Deutschmann K, Phatsara Ch, Sorachakula Ch,Vearasilp T, Phunphiphat W, Cherdthong A, Gerlach K, Karl-Heinz S. In vitro gas production and in vivo nutrient digestibility and growth performance of Thai indigenous cattle fed fresh and conserved pangola grass. Italian J Anim Sci. 2017; 16:1-9. https://doi.org/10.1080/1828051x.2017.1293478Wang P and Zhiliang T. Ammonia assimilation in rumen bacteria: A review. Anim Biotechnol. 2013; 24(2):107-128. https://doi.org/10.1080/10495398.2012.756402Cheeke PR. Applied Animal Nutrition, Feeds and Feeding. 3rd ed. new Jersey, Prentice Hall; 2004.Lunsin R, Wanapat M, Rowlinson P. Effect of cassava hay and rice bran oil supplementation on rumen fermentation, milk yield and milk composition in lactating dairy cows. Asian-Australas J Anim Sci. 2012; 25:1364-1373. https://doi.org/10.5713/ajas.2012.12051Pond WG, Church DC, Pond K, Schoknecht PA. Basic Animal Nutrition and Feeding. 5th ed. Wiley; 2005Abdullah N, Ho YW, Mahyuddin M, Jalaludin S. Microbial colonization and digestion of feed materials in cattle and buffaloes ll. Rice straw and palm press fibre. Asian-Aust J Anim Sci. 1992; 5:329-335. http://www.ajas.info/Editor/manuscript/upload/5-47.pdfGriswold KE, Apgar GA, Bouton J, Firkins JL. Effects of urea infusion and ruminal degradable protein concentration on microbial growth, digestibility, and fermentation in continuous cultura. J Anim Sci. 2003; 81:329-336. https://doi.org/10.2527/2003.811329xWilliams BA. Cumulative gas-production techniques for forage evaluation. In: Givens D I, Owen E, Omed H M and Axford RF E (editors). Forage evaluation in ruminant nutrition. Wallingford (UK). CAB International; 2000.Alves BG, Martins CMMR, Peti APF, Moraes LAB and Santos MV. In vitro evaluation of novel crude extracts produced by actinobacteria for modulation of ruminal fermentation. R Bras Zootec. 2019; 48: e20190066. https://doi.org/10.1590/rbz4820190066Almaraz-Buendía I, García AM, Sánchez-Santillán P, Torres-Salado N, Herrera-Pérez. Análisis bromatológico y producción de gas in vitro de forrajes utilizados en el trópico seco mexicano. Arch Zootec. 2019; 68(262):260-266. https://doi.org/10.21071/az.v68i262.4145https://revistamvz.unicordoba.edu.co/article/download/2142/4160https://revistamvz.unicordoba.edu.co/article/download/2142/4161https://revistamvz.unicordoba.edu.co/article/download/2142/4162https://revistamvz.unicordoba.edu.co/article/download/2142/4163https://revistamvz.unicordoba.edu.co/article/download/2142/4164Núm. 2 , Año 2022 : Revista MVZ Córdoba Volumen 27(2) Mayo-Agosto 2022e21422e214227Revista MVZ CórdobaPublicationOREORE.xmltext/xml3465https://repositorio.unicordoba.edu.co/bitstreams/a4d952b8-d54d-4709-bd05-92f8fcd7d950/download7b928722ac9bae5bd44e1a3e249e73bdMD51ucordoba/6296oai:repositorio.unicordoba.edu.co:ucordoba/62962023-10-06 00:45:42.136https://creativecommons.org/licenses/by-nc-sa/4.0Elia E Araiza-Rosales, Gerardo A Pámanes-Carrasco, Juan F Sánchez-Arroyo, Esperanza Herrera-Torres, Martha Rosales-Castro, Francisco O Carrete-Carreón - 2022metadata.onlyhttps://repositorio.unicordoba.edu.coRepositorio Universidad de Córdobabdigital@metabiblioteca.com