Evaluación del potencial antifúngico del diisoespintanol obtenido de Oxandra xylopioides diels (Annonaceae) contra aislamientos clínicos de Candida spp
Las especies del género Candida son la principal causa de las infecciones fúngicas a nivel global. Su elevado poder de diseminación y alta tasa de resistencia a los antifúngicos representa un desafío para el tratamiento médico que, a menudo fracasa no solo por resistencia fúngica, sino también, debi...
- Autores:
-
Ricardo Turizo, Rafael David
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2024
- Institución:
- Universidad de Córdoba
- Repositorio:
- Repositorio Institucional Unicórdoba
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unicordoba.edu.co:ucordoba/8488
- Acceso en línea:
- https://repositorio.unicordoba.edu.co/handle/ucordoba/8488
https://repositorio.unicordoba.edu.co/
- Palabra clave:
- Diterpeno
Antifúngico
Oxandra xylopioides
Candida spp
Diterpene
Antifungal
Oxandra xylopioides
Candida spp
- Rights
- openAccess
- License
- Copyright Universidad de Córdoba, 2024
id |
UCORDOBA2_18101e570fc3047e2995054a542cd5b6 |
---|---|
oai_identifier_str |
oai:repositorio.unicordoba.edu.co:ucordoba/8488 |
network_acronym_str |
UCORDOBA2 |
network_name_str |
Repositorio Institucional Unicórdoba |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Evaluación del potencial antifúngico del diisoespintanol obtenido de Oxandra xylopioides diels (Annonaceae) contra aislamientos clínicos de Candida spp |
title |
Evaluación del potencial antifúngico del diisoespintanol obtenido de Oxandra xylopioides diels (Annonaceae) contra aislamientos clínicos de Candida spp |
spellingShingle |
Evaluación del potencial antifúngico del diisoespintanol obtenido de Oxandra xylopioides diels (Annonaceae) contra aislamientos clínicos de Candida spp Diterpeno Antifúngico Oxandra xylopioides Candida spp Diterpene Antifungal Oxandra xylopioides Candida spp |
title_short |
Evaluación del potencial antifúngico del diisoespintanol obtenido de Oxandra xylopioides diels (Annonaceae) contra aislamientos clínicos de Candida spp |
title_full |
Evaluación del potencial antifúngico del diisoespintanol obtenido de Oxandra xylopioides diels (Annonaceae) contra aislamientos clínicos de Candida spp |
title_fullStr |
Evaluación del potencial antifúngico del diisoespintanol obtenido de Oxandra xylopioides diels (Annonaceae) contra aislamientos clínicos de Candida spp |
title_full_unstemmed |
Evaluación del potencial antifúngico del diisoespintanol obtenido de Oxandra xylopioides diels (Annonaceae) contra aislamientos clínicos de Candida spp |
title_sort |
Evaluación del potencial antifúngico del diisoespintanol obtenido de Oxandra xylopioides diels (Annonaceae) contra aislamientos clínicos de Candida spp |
dc.creator.fl_str_mv |
Ricardo Turizo, Rafael David |
dc.contributor.advisor.none.fl_str_mv |
Contreras Martínez, Orfa Inés Angulo Ortiz, Alberto |
dc.contributor.author.none.fl_str_mv |
Ricardo Turizo, Rafael David |
dc.contributor.jury.none.fl_str_mv |
Lorduy, Álvaro Villegas, Jazmith |
dc.subject.proposal.spa.fl_str_mv |
Diterpeno Antifúngico Oxandra xylopioides Candida spp |
topic |
Diterpeno Antifúngico Oxandra xylopioides Candida spp Diterpene Antifungal Oxandra xylopioides Candida spp |
dc.subject.keywords.eng.fl_str_mv |
Diterpene Antifungal Oxandra xylopioides Candida spp |
description |
Las especies del género Candida son la principal causa de las infecciones fúngicas a nivel global. Su elevado poder de diseminación y alta tasa de resistencia a los antifúngicos representa un desafío para el tratamiento médico que, a menudo fracasa no solo por resistencia fúngica, sino también, debido a los efectos adversos de los fármacos. En este sentido, la búsqueda de nuevas alternativas terapéuticas es apremiante hoy día, cobrando especial interés el estudio de compuestos naturales derivados de plantas. El objetivo de esta investigación fue evaluar el potencial antifúngico del diisoespintanol (DISO) obtenido de Oxandra xylopioides Diels (Annonaceae) contra aislamientos clínicos de Candida spp., y establecer su efecto sobre las biopelículas maduras de estos patógenos. La concentración mínima inhibitoria (MIC90) del DISO se determinó por el método de microdilución en caldo, y la técnica con cristal violeta fue empleada para la cuantificación de biopelículas maduras. Todos los aislamientos evaluados fueron sensibles al DISO con valores de MIC90 entre 296.7 y 890.3 μg/mL. El DISO logró inhibir las biopelículas maduras de Candida spp., mostrando porcentajes de inhibición superiores a la anfotericina B, logrando hasta un 40% de inhibición de biopelículas de C. albicans. Estos resultados ratifican el potencial antifúngico de los terpenos, destacando su importancia en la búsqueda de alternativas novedosas para combatir las levaduras patógenas del género Candida. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-08-09T17:38:22Z |
dc.date.available.none.fl_str_mv |
2024-08-09T17:38:22Z |
dc.date.issued.none.fl_str_mv |
2024-08-06 |
dc.type.none.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.none.fl_str_mv |
Text |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unicordoba.edu.co/handle/ucordoba/8488 |
dc.identifier.instname.none.fl_str_mv |
Universidad de Córdoba |
dc.identifier.reponame.none.fl_str_mv |
Repositorio Universidad de Córdoba |
dc.identifier.repourl.none.fl_str_mv |
https://repositorio.unicordoba.edu.co/ |
url |
https://repositorio.unicordoba.edu.co/handle/ucordoba/8488 https://repositorio.unicordoba.edu.co/ |
identifier_str_mv |
Universidad de Córdoba Repositorio Universidad de Córdoba |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.relation.references.none.fl_str_mv |
Ahamad, I., Bano, F., Anwer, R., Srivastava, P., Kumar, R., & Fatma, T. (2022). Antibiofilm activities of biogenic silver nanoparticles against Candida albicans. Frontiers in Microbiology, 12(2022), 741493. https://doi.org/10.3389/fmicb.2021.741493 Álvarez, C., Morales, S., Rodríguez, G., Rodríguez, J., Roberto, E., Picot, C., Ceballos, A., Parra, C., Le Pape, P. (2023). The mortality attributable to Candidemia in C. auris is higher than that in other Candida species: Myth or Reality? Journal of Fungi, 9(4), 430. https://doi.org/10.3390/jof9040430 Alvarez-Moreno, C. A., Cortes, J. A., & Denning, D. W. (2018). Burden of Fungal Infections in Colombia. Journal of Fungi, 4(2), 41. https://doi.org/10.3390/JOF4020041 Arendrup, M. C., & Patterson, T. F. (2017). Multidrug-resistant Candida: Epidemiology, molecular mechanisms, and treatment. Journal of Infectious Diseases, 216(3), 445–451. https://doi.org/10.1093/infdis/jix131 Balarezo López, G. (2018). Plantas medicinales: Una farmacia natural para la salud pública. Paideia, 6(7), 159–170. https://doi.org/10.31381/paideia.v6i7.1606 Benedict, K., Whitham, H. K., & Jackson, B. R. (2022). Economic burden of fungal diseases in the United States. Open Forum Infectious Diseases, 9(4), ofac097. https://doi.org/10.1093/ofid/ofac097 Berkow, E. L., & Lockhart, S. R. (2017). Fluconazole resistance in Candida species: A current perspective. In Infection and Drug Resistance, 10(2017), 237–245. https://doi.org/10.2147/IDR.S118892 Berrio, I., Maldonado, N., De Bedout, C., Arango, K., Cano, L. E., Valencia, Y., Jiménez-Ortigosa, C., Perlin, D. S., Gómez, B. L., Robledo, C., & Robledo, J. (2018). Comparative study of Candida spp. isolates: Identification and echinocandin susceptibility in isolates obtained from blood cultures in 15 hospitals in Medellín, Colombia. Journal of Global Antimicrobial Resistance, 13(2018), 254–260. https://doi.org/10.1016/J.JGAR.2017.11.010 Bezerra, C. F., de Alencar Júnior, J. G., de Lima Honorato, R., dos Santos, A. T. L., Pereira da Silva, J. C., Gusmão da Silva, T., Leal, A. L. A. B., Rocha, J. E., de Freitas, T. S., Tavares Vieira, T. A., Bezerra, M. C. F., Sales, D. L., Kerntopf, M. R., de Araujo Delmondes, G., Filho, J. M. B., Peixoto, L. R., Pinheiro, A. P., Ribeiro-Filho, J., Coutinho, H. D. M., … Gonçalves da Silva, T. (2020). Antifungal activity of farnesol incorporated in liposomes and associated with fluconazole. Chemistry and Physics of Lipids, 233(2020), 104987. https://doi.org/10.1016/j.chemphyslip.2020.104987 Bhattacharya, A. K., Chand, H. R., John, J., & Deshpande, M. V. (2015). Clerodane type diterpene as a novel antifungal agent from Polyalthia longifolia var. pendula. European Journal of Medicinal Chemistry, 94 (2015), 1–7. https://doi.org/10.1016/J.EJMECH.2015.02.054 Bilal, H., Shafiq, M., Hou, B., Islam, R., Khan, M. N., Khan, R. U., & Zeng, Y. (2022). Distribution and antifungal susceptibility pattern of Candida species from mainland China: A systematic analysis. Virulence, 13(1), 1573–1589. https://doi.org/10.1080/21505594.2022.2123325 Bonincontro, G., Scuderi, S. A., Marino, A., & Simonetti, G. (2023). Synergistic effect of plant compounds in combination with conventional antimicrobials against biofilm of Staphylococcus aureus, Pseudomonas aeruginosa, and Candida spp. Pharmaceuticals, 16(11), 1531. https://doi.org/10.3390/PH16111531 Brown, J. L., Delaney, C., Short, B., Butcher, M. C., McKloud, E., Williams, C., Kean, R., & Ramage, G. (2020). Candida auris phenotypic heterogeneity determines pathogenicity in vitro. MSphere, 5(3). https://doi.org/10.1128/msphere.00371-20 Butts, A., Reitler, P., Nishimoto, A. T., DeJarnette, C., Estredge, L. R., Peters, T. L., Veve, M. P., David Rogers, P., & Palmer, G. E. (2019). A systematic screen reveals a diverse collection of medications that induce antifungal resistance in Candida species. Antimicrobial Agents and Chemotherapy, 63(5), e00371-20. https://doi.org/10.1128/AAC.00054-19/SUPPL_FILE/AAC.00054-19-S0001.PDF Cantón Lacasa, E., Martín Mazuelos, E., & Espinel-Ingroff, A. (2007). Métodos estandarizados por el CLSI para el estudio de la sensibilidad. Revista Iberoamericana de Micología, 2(15), 1-17. ISBN: 978-84-611-8776-8 Campos Péret, V. A., Reis, R. C. F. M., Braga, S. F. P., Benedetti, M. D., Caldas, I. S., Carvalho, D. T., Santana, L. F. de A., Johann, S., & Souza, T. B. de. (2023). New miconazole-based azoles derived from eugenol show activity against Candida spp. and Cryptococcus gattii by inhibiting the fungal ergosterol biosynthesis. European Journal of Medicinal Chemistry, 256(2023), 115436. https://doi.org/10.1016/J.EJMECH.2023.115436 Chakrabartty, I., Vijayasekhar, A., & Rangan, L. (2021). Therapeutic potential of labdane diterpene isolated from Alpinia nigra: detailed hemato-compatibility and antimicrobial studies. Natural Product Research, 35(6), 1000-1004. https://doi.org/10.1080/14786419.2019.1610756 Chen, S., Tsoi, J. K. H., Tsang, P. C. S., Park, Y. J., Song, H. J., & Matinlinna, J. P. (2020). Candida albicans aspects of binary titanium alloys for biomedical applications. Regenerative Biomaterials, 7(2), 213–220. https://doi.org/10.1093/RB/RBZ052 Ciurea, C. N., Kosovski, I. B., Mare, A. D., Toma, F., Pintea-Simon, I. A., & Man, A. (2020). Candida and Candidiasis—Opportunism versus pathogenicity: A review of the virulence traits. Microorganisms, 8(6), 857. https://doi.org/10.3390/MICROORGANISMS8060857 Contreras Martínez, O. I., Angulo Ortíz, A., & Santafé Patiño, G. (2022). Antifungal potential of isoespintanol extracted from Oxandra xylopioides diels (Annonaceae) against intrahospital isolations of Candida spp. Heliyon, 8(10), e11110. https://doi.org/10.1016/j.heliyon.2022.e11110 Contreras Martínez, O. I., Angulo Ortíz, A., & Santafé Patiño, G. (2022a). Mechanism of antifungal action of monoterpene isoespintanol against clinical isolates of Candida tropicalis. Molecules, 27(18), 5808. https://doi.org/10.3390/molecules27185808 Contreras Martínez, O., Angulo Ortíz, A., & Santafé Patiño, G. (2022b). Antibacterial screening of isoespintanol, an aromatic monoterpene isolated from Oxandra xylopioides Diels. Molecules (Basel, Switzerland), 27(22), 8004. https://doi.org/10.3390/molecules27228004 Contreras, O. I., Ortíz, A. A., Patiño, G. S., Peñata-Taborda, A., & Soto, R. B. (2023). Isoespintanol antifungal activity involves mitochondrial dysfunction, inhibition of biofilm formation, and damage to cell wall integrity in Candida tropicalis. International Journal of Molecular Sciences, 24(12), 10187. https://doi.org/10.3390/IJMS241210187 Cortés, J. A., Ruiz, J. F., Melgarejo-Moreno, L. N., & Lemos, E. V. (2020). Candidemia en Colombia. Biomédica, 40(1), 195. https://doi.org/10.7705/biomedica.4400 D’Angeli, F., Guadagni, F., Genovese, C., Nicolosi, D., Salinaro, A. T., Spampinato, M., Mannino, G., Lo Furno, D., Petronio, G. P., Ronsisvalle, S., Sipala, F., Falzone, L., & Calabrese, V. (2021). Anti-candidal activity of the parasitic plant orobanche crenata forssk. Antibiotics, 10(11), 1373. https://doi.org/10.3390/antibiotics10111373 de Alteriis, E., Maselli, V., Falanga, A., Galdiero, S., Di Lella, F. M., Gesuele, R., Guida, M., & Galdiero, E. (2018). Efficiency of gold nanoparticles coated with the antimicrobial peptide indolicidin against biofilm formation and development of Candida spp. clinical isolates. Infection and Drug Resistance, 11(2018), 915–925. https://doi.org/10.2147/IDR.S164262 de Lima Silva, M. G., de Lima, L. F., Alencar Fonseca, V. J., Santos da Silva, L. Y., Calixto Donelardy, A. C., de Almeida, R. S., de Morais Oliveira-Tintino, C. D., Pereira Bezerra Martins, A. O. B., Ribeiro-Filho, J., Bezerra Morais-Braga, M. F., Tintino, S. R., & Alencar de Menezes, I. R. (2023). Enhancing the antifungal efficacy of fluconazole with a diterpene: Abietic acid as a promising adjuvant to combat antifungal resistance in Candida spp. Antibiotics, 12(11), 1565. https://doi.org/10.3390/antibiotics12111565 De Sousa, I. P., Sousa Teixeira, M. V., & Jacometti Cardoso Furtado, N. A. (2018). An overview of biotransformation and toxicity of diterpenes. Molecules, 23(6), 1387. https://doi.org/10.3390/molecules23061387 Del Pozo, J. L., & Cantón, E. (2016). Candidiasis asociada a biopelículas. Revista Iberoamericana de Micologia, 33(3), 176–183. https://doi.org/10.1016/j.riam.2015.06.004 Dellière, S., Sze Wah Wong, S., & Aimanianda, V. (2020). Soluble mediators in anti-fungal immunity. Current Opinion in Microbiology, 58(2020), 24–31. https://doi.org/10.1016/J.MIB.2020.05.005 Deng, Y., Liu, Y., Li, J., Wang, X., He, S., Yan, X., Shi, Y., Zhang, W., & Ding, L. (2022). Marine natural products and their synthetic analogs as promising antibiofilm agents for antibiotics discovery and development. European Journal of Medicinal Chemistry, 239(2022), 114513. https://doi.org/10.1016/j.ejmech.2022.114513 Diniz-Neto, H., Silva, S. L., Cordeiro, L. V., Silva, D. F., Oliveira, R. F., Athayde-Filho, P. F., Oliveira-Filho, A. A., Guerra, F. Q. S., & Lima, E. O. (2022). Antifungal activity of 2-chloro-N-phenylacetamide: a new molecule with fungicidal and antibiofilm activity against fluconazole-resistant Candida spp. Brazilian Journal of Biology, 84(2024), e255080. https://doi.org/10.1590/1519-6984.255080 Donadu, M. G., Peralta-Ruiz, Y., Usai, D., Maggio, F., Molina-Hernandez, J. B., Rizzo, D., Bussu, F., Rubino, S., Zanetti, S., Paparella, A., & Chaves-Lopez, C. (2021). Colombian essential oil of ruta graveolens against nosocomial antifungal resistant Candida strains. Journal of Fungi, 7(5), 383. https://doi.org/10.3390/jof7050383 El‐kholy, M. A., Helaly, G. F., El Ghazzawi, E. F., El‐sawaf, G., & Shawky, S. M. (2021). Virulence factors and antifungal susceptibility profile of Candida tropicalis isolated from various clinical specimens in alexandria, Egypt. Journal of Fungi, 7(5), 351. https://doi.org/10.3390/jof7050351 Escandón, P. (2022). Novel environmental niches for Candida auris: Isolation from a coastal habitat in Colombia. Journal of Fungi, 8(7), 748. https://doi.org/10.3390/jof8070748 Espinosa, H., García, E., & Gastélum, E. (2016). Los compuestos bioactivos y tecnologías de extracción. CIATEJ Editorial. https://ciatej.mx/Los_compuestos_bioactivos_y_tecnologias_de_extraccion.pdf Feldman, M., Sionov, R. V., Mechoulam, R., & Steinberg, D. (2021). Anti-biofilm activity of cannabidiol against Candida albicans. Microorganisms, 9(2), 441. https://doi.org/10.3390/microorganisms9020441 Fuentefria, A. M., Pippi, B., Dalla Lana, D. F., Donato, K. K., & de Andrade, S. F. (2018). Antifungals discovery: an insight into new strategies to combat antifungal resistance. Letters in Applied Microbiology, 66(1), 2-13. https://doi.org/10.1111/lam.12820 He, Y., Cao, Y., Xiang, Y., Hu, F., Tang, F., Zhang, Y., Albashari, A. A., Xing, Z., Luo, L., Sun, Y., Huang, Q., Ye, Q., & Zhang, K. (2020). An evaluation of norspermidine on anti-fungal effect on mature Candida albicans biofilms and angiogenesis potential of dental pulp stem cells. Frontiers in Bioengineering and Biotechnology, 8(2020), 948. https://doi.org/10.3389/fbioe.2020.00948 Herman, A., & Herman, A. P. (2021). Herbal products and their active constituents used alone and in combination with antifungal drugs against drug-resistant Candida sp. Antibiotics, 10(6), 655. https://doi.org/10.3390/antibiotics10060655 Humanez Galindo, L. E. (2021). Obtención de diisoespintanol y berenjenol del subextracto de diclorometano de las hojas de Oxandra xylopioides y revisión bibliográfica sobre actividades biológicas de la familia Annonaceae. https://repositorio.unicordoba.edu.co/handle/ucordoba/3888 Kim, C., Kim, J. G., & Kim, K. Y. (2023). Anti-Candida potential of sclareol in inhibiting growth, biofilm formation, and yeast–hyphal transition. Journal of Fungi, 9(1), 98. https://doi.org/10.3390/jof9010098 Lee, M. J., Kim, M. J., Oh, S. H., & Kwon, J. S. (2020). Novel dental poly (methyl methacrylate) containing phytoncide for antifungal effect and inhibition of oral multispecies biofilm. Materials, 13(2), 371. https://doi.org/10.3390/ma13020371 Lima, T. L. C., Souza, L. B. F. C., Tavares-Pessoa, L. C. S., Dos Santos-Silva, A. M., Cavalcante, R. S., de Araújo-Júnior, R. F., Cornélio, A. M., Fernandes-Pedrosa, M. F., Chaves, G. M., & da Silva-Júnior, A. A. (2020). Phytol-loaded solid lipid nanoparticles as a novel anticandidal nanobiotechnological approach. Pharmaceutics, 12(9), 871. https://doi.org/10.3390/pharmaceutics12090871 Liu, R. H., Shang, Z. C., Li, T. X., Yang, M. H., & Kong, L. Y. (2017). In vitro antibiofilm activity of eucarobustol E against Candida albicans. Antimicrobial Agents and Chemotherapy, 61(8), 10.1128. https://doi.org/10.1128/AAC.02707-16 Lustre Sánchez, H. (2022). Los superpoderes de las plantas: los metabolitos secundarios en su adaptación y defensa. Revista Digital Universitaria, 23(2). https://doi.org/10.22201/cuaieed.16076079e.2022.23.2.10 Maione, A., Pietra, A. La, Salvatore, M. M., Guida, M., Galdiero, E., & de Alteriis, E. (2022). Undesired effect of vancomycin prolonged treatment: Enhanced biofilm production of the nosocomial pathogen Candida auris. Antibiotics, 11(12), 1771. https://doi.org/10.3390/antibiotics11121771 Maldonado, J.; Casaña, R.; Martínez, I.; San Martín, E. (2018). La espectroscopia UV-Vis en la evaluación de la viabilidad de células de cáncer de mama. Latin-American Journal of Physics Education, 12(2), 1–7 Menezes, R. P. B., Sessions, Z., Muratov, E., Scotti, L., & Scotti, M. T. (2021). Secondary Metabolites Extracted from Annonaceae and Chemotaxonomy Study of Terpenoids. Journal of the Brazilian Chemical Society, 32(11), 2061–2070. https://doi.org/10.21577/0103-5053.20210097 Miranda-Cadena, K., Marcos-Arias, C., Mateo, E., Aguirre-Urizar, J. M., Quindós, G., & Eraso, E. (2021). In vitro activities of carvacrol, cinnamaldehyde and thymol against Candida biofilms. Biomedicine & Pharmacotherapy, 143(2021), 112218. https://doi.org/10.1016/j.biopha.2021.112218 Miranda-Cadena, K., Marcos-Arias, C., Pérez-Rodríguez, A., Cabello-Beitia, I., Mateo, E., Sevillano, E., … Eraso, E. (2022). Actividad anti- Candida in vitro e in vivo del citral en combinación con fluconazol. Revista de Microbiología Oral, 14(1), 2045813. https://doi.org/10.1080/20002297.2022.2045813 Nett, J. E., & Andes, D. R. (2020). Contributions of the biofilm matrix to candida pathogenesis. In Journal of Fungi, 6(1), 21. https://doi.org/10.3390/jof6010021 Organización Mundial para la Salud. (2022). WHO fungal priority pathogens list to guide research, development and public health action. Geneva. ISBN 978-92-4-006024-1 Pappas, P. G., Lionakis, M. S., Arendrup, M. C., Ostrosky-Zeichner, L., & Kullberg, B. J. (2018). Invasive candidiasis. Nature Reviews Disease Primers, 4(1), 1–20. https://doi.org/10.1038/nrdp.2018.26 Popova, V., Ivanova, T., Stoyanova, A., Nikolova, V., Hristeva, T., Gochev, V., Yonchev, Y., Nikolov, N., & Zheljazkov, V. D. (2020). Terpenoids in the essential oil and concentrated aromatic products obtained from nicotiana glutinosa L. Leaves. Molecules, 25(1), 30. https://doi.org/10.3390/molecules25010030 Quiles-Melero, I., & García-Rodríguez, J. (2021). Antifúngicos de uso sistémico. Revista Iberoamericana de Micología, 38(2), 42–46. https://doi.org/10.1016/j.riam.2021.04.004 Reddy, G. K. K., & Nancharaiah, Y. V. (2020). Alkylimidazolium Ionic Liquids as Antifungal Alternatives: Antibiofilm activity against Candida albicans and underlying mechanism of action. Frontiers in Microbiology, 11(2020), 730. https://doi.org/10.3389/fmicb.2020.00730 Shahina, Z., Ndlovu, E., Persaud, O., Sultana, T., & Dahms, T. E. S. (2022). Candida albicans Reactive oxygen species (ROS)-dependent lethality and ROS-independent hyphal and biofilm inhibition by eugenol and citral. Microbiology Spectrum, 10(6), e03183-22. https://doi.org/10.1128/spectrum.03183-22 Shariati, A., Didehdar, M., Razavi, S., Heidary, M., Soroush, F., & Chegini, Z. (2022). Natural compounds: A hopeful promise as an antibiofilm agent against Candida species. Frontiers in Pharmacology, 13(2022), 917787. https://doi.org/10.3389/fphar.2022.917787 Silva, D. M., Costa, E. V., De Lima Nogueira, P. C., De Souza Moraes, V. R., De Holanda Cavalcanti, S. C., Salvador, M. J., Ribeiro, L. H. G., Gadelha, F. R., Barison, A., & Ferreira, A. G. (2012). Ent-kaurane diterpenoids and other constituents from the stem of Xylopia laevigata (Annonaceae). Química Nova, 35(8), 1570–1576. https://doi.org/10.1590/S0100-40422012000800015 Sousa Teixeira, M. V., Fernandes, L. M., Stefanelli de Paula, V., Ferreira, A. G., & Jacometti Cardoso Furtado, N. A. (2022). Ent-hardwickiic acid from C. pubiflora and its microbial metabolites are more potent than fluconazole in vitro against Candida glabrata. Letters in Applied Microbiology, 74(4), 622–629. https://doi.org/10.1111/lam.13648 Touil, H. F. Z., Boucherit, K., Boucherit-Otmani, Z., Kohder, G., Madkour, M., & Soliman, S. S. M. (2020). Optimum inhibition of amphotericin-B-resistant candida albicans strain in single-and mixed-species biofilms by Candida and non-Candida terpenoids. Biomolecules, 10(2), 342. https://doi.org/10.3390/biom10020342 Urzúa, A., Rezende, M. C., Mascayano, C., & Vásquez, L. (2008). A structure-activity study of antibacterial diterpenoids. Molecules, 13(4), 882-891. https://doi.org/10.3390/molecules13040822 Žiemytė, M., Rodríguez-Díaz, J. C., Ventero-Martín, M. P., Mira, A., & Ferrer, M. D. (2023). Real-time monitoring of biofilm growth identifies andrographolide as a potent antifungal compound eradicating Candida biofilms. Biofilm, 5(2023), 100134. https://doi.org/10.1016/j.bioflm.2023.100134 |
dc.rights.none.fl_str_mv |
Copyright Universidad de Córdoba, 2024 |
dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.license.none.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Copyright Universidad de Córdoba, 2024 https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de Córdoba |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias Básicas |
dc.publisher.place.none.fl_str_mv |
Montería, Córdoba, Colombia |
dc.publisher.program.none.fl_str_mv |
Biología |
publisher.none.fl_str_mv |
Universidad de Córdoba |
institution |
Universidad de Córdoba |
bitstream.url.fl_str_mv |
https://repositorio.unicordoba.edu.co/bitstreams/6e28d9af-1b08-479b-840b-de29d05342fa/download https://repositorio.unicordoba.edu.co/bitstreams/7af7f65c-36ce-4825-9a04-16796c3377f4/download https://repositorio.unicordoba.edu.co/bitstreams/28acd323-3c98-4060-83e0-d6bb0cbf7ccc/download https://repositorio.unicordoba.edu.co/bitstreams/d151317c-3c0c-4a24-8d5a-0c6a0f3c754d/download https://repositorio.unicordoba.edu.co/bitstreams/8a315160-85e3-4cdd-9cfa-b4b5cd5c5cba/download https://repositorio.unicordoba.edu.co/bitstreams/dc200c26-eddc-402d-a8fd-b4d891d561c2/download https://repositorio.unicordoba.edu.co/bitstreams/1bda1588-d87e-42e3-b3ff-673085acbef6/download |
bitstream.checksum.fl_str_mv |
fa06ae76994e811e8761491fdb2a90a9 93b23e306e5ffa60bc0387ee86104aad 73a5432e0b76442b22b026844140d683 9faa835971330001458193ba09ba336a a51cc78df824e9d9001336ea5d934539 c673fd145a58621050810526ff78b52f 61647ea07f77f9d9d1a9d1b027c57a5c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Universidad de Córdoba |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1812173352568094720 |
spelling |
Contreras Martínez, Orfa Inés5660231f-a24d-4d1b-8fc8-51afcf3538cb600Angulo Ortiz, Albertobdb107b5-3971-4969-a634-59422e204c3a600Ricardo Turizo, Rafael Davidd1f6cee0-c435-4510-9a89-cf5a4c163074-1Lorduy, Álvaro9e4e48b9-7561-4a3c-8678-5b45771a3561-1Villegas, Jazmithf8773342-8ff4-4978-bc4b-ff7e2d0e8173-12024-08-09T17:38:22Z2024-08-09T17:38:22Z2024-08-06https://repositorio.unicordoba.edu.co/handle/ucordoba/8488Universidad de CórdobaRepositorio Universidad de Córdobahttps://repositorio.unicordoba.edu.co/Las especies del género Candida son la principal causa de las infecciones fúngicas a nivel global. Su elevado poder de diseminación y alta tasa de resistencia a los antifúngicos representa un desafío para el tratamiento médico que, a menudo fracasa no solo por resistencia fúngica, sino también, debido a los efectos adversos de los fármacos. En este sentido, la búsqueda de nuevas alternativas terapéuticas es apremiante hoy día, cobrando especial interés el estudio de compuestos naturales derivados de plantas. El objetivo de esta investigación fue evaluar el potencial antifúngico del diisoespintanol (DISO) obtenido de Oxandra xylopioides Diels (Annonaceae) contra aislamientos clínicos de Candida spp., y establecer su efecto sobre las biopelículas maduras de estos patógenos. La concentración mínima inhibitoria (MIC90) del DISO se determinó por el método de microdilución en caldo, y la técnica con cristal violeta fue empleada para la cuantificación de biopelículas maduras. Todos los aislamientos evaluados fueron sensibles al DISO con valores de MIC90 entre 296.7 y 890.3 μg/mL. El DISO logró inhibir las biopelículas maduras de Candida spp., mostrando porcentajes de inhibición superiores a la anfotericina B, logrando hasta un 40% de inhibición de biopelículas de C. albicans. Estos resultados ratifican el potencial antifúngico de los terpenos, destacando su importancia en la búsqueda de alternativas novedosas para combatir las levaduras patógenas del género Candida.Species of the genus Candida are the main cause of fungal infections globally. Its high power of dissemination and high rate of resistance to antifungals represents a challenge for medical treatment that often fails not only due to fungal resistance, but also due to the adverse effects of the drugs. In this sense, the search for new therapeutic alternatives is pressing today, with special interest in the study of natural compounds derived from plants. The objective of this research was to evaluate the antifungal potential of diisoespintanol (DISO) obtained from Oxandra xylopioides Diels (Annonaceae) against clinical isolates of Candida spp., and to establish its effect on mature biofilms of these pathogens. The minimum inhibitory concentration (MIC90) of DISO was determined by the broth microdilution method, and the crystal violet technique was used for the quantification of mature biofilms. All isolates evaluated were sensitive to DISO with MIC90 values between 296.7 and 890.3 μg/mL. DISO managed to inhibit mature Candida spp. biofilms, showing higher inhibition percentages than amphotericin B, achieving up to 40% inhibition of C. albicans biofilms. These results confirm the antifungal potential of terpenes, highlighting their importance in the search for novel alternatives to combat pathogenic yeasts of the Candida genusPregradoBiólogo(a)Trabajos de Investigación y/o Extensiónapplication/pdfspaUniversidad de CórdobaFacultad de Ciencias BásicasMontería, Córdoba, ColombiaBiologíaCopyright Universidad de Córdoba, 2024https://creativecommons.org/licenses/by-nc-nd/4.0/Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Evaluación del potencial antifúngico del diisoespintanol obtenido de Oxandra xylopioides diels (Annonaceae) contra aislamientos clínicos de Candida sppTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/acceptedVersionTextAhamad, I., Bano, F., Anwer, R., Srivastava, P., Kumar, R., & Fatma, T. (2022). Antibiofilm activities of biogenic silver nanoparticles against Candida albicans. Frontiers in Microbiology, 12(2022), 741493. https://doi.org/10.3389/fmicb.2021.741493Álvarez, C., Morales, S., Rodríguez, G., Rodríguez, J., Roberto, E., Picot, C., Ceballos, A., Parra, C., Le Pape, P. (2023). The mortality attributable to Candidemia in C. auris is higher than that in other Candida species: Myth or Reality? Journal of Fungi, 9(4), 430. https://doi.org/10.3390/jof9040430Alvarez-Moreno, C. A., Cortes, J. A., & Denning, D. W. (2018). Burden of Fungal Infections in Colombia. Journal of Fungi, 4(2), 41. https://doi.org/10.3390/JOF4020041Arendrup, M. C., & Patterson, T. F. (2017). Multidrug-resistant Candida: Epidemiology, molecular mechanisms, and treatment. Journal of Infectious Diseases, 216(3), 445–451. https://doi.org/10.1093/infdis/jix131Balarezo López, G. (2018). Plantas medicinales: Una farmacia natural para la salud pública. Paideia, 6(7), 159–170. https://doi.org/10.31381/paideia.v6i7.1606Benedict, K., Whitham, H. K., & Jackson, B. R. (2022). Economic burden of fungal diseases in the United States. Open Forum Infectious Diseases, 9(4), ofac097. https://doi.org/10.1093/ofid/ofac097Berkow, E. L., & Lockhart, S. R. (2017). Fluconazole resistance in Candida species: A current perspective. In Infection and Drug Resistance, 10(2017), 237–245. https://doi.org/10.2147/IDR.S118892Berrio, I., Maldonado, N., De Bedout, C., Arango, K., Cano, L. E., Valencia, Y., Jiménez-Ortigosa, C., Perlin, D. S., Gómez, B. L., Robledo, C., & Robledo, J. (2018). Comparative study of Candida spp. isolates: Identification and echinocandin susceptibility in isolates obtained from blood cultures in 15 hospitals in Medellín, Colombia. Journal of Global Antimicrobial Resistance, 13(2018), 254–260. https://doi.org/10.1016/J.JGAR.2017.11.010Bezerra, C. F., de Alencar Júnior, J. G., de Lima Honorato, R., dos Santos, A. T. L., Pereira da Silva, J. C., Gusmão da Silva, T., Leal, A. L. A. B., Rocha, J. E., de Freitas, T. S., Tavares Vieira, T. A., Bezerra, M. C. F., Sales, D. L., Kerntopf, M. R., de Araujo Delmondes, G., Filho, J. M. B., Peixoto, L. R., Pinheiro, A. P., Ribeiro-Filho, J., Coutinho, H. D. M., … Gonçalves da Silva, T. (2020). Antifungal activity of farnesol incorporated in liposomes and associated with fluconazole. Chemistry and Physics of Lipids, 233(2020), 104987. https://doi.org/10.1016/j.chemphyslip.2020.104987Bhattacharya, A. K., Chand, H. R., John, J., & Deshpande, M. V. (2015). Clerodane type diterpene as a novel antifungal agent from Polyalthia longifolia var. pendula. European Journal of Medicinal Chemistry, 94 (2015), 1–7. https://doi.org/10.1016/J.EJMECH.2015.02.054Bilal, H., Shafiq, M., Hou, B., Islam, R., Khan, M. N., Khan, R. U., & Zeng, Y. (2022). Distribution and antifungal susceptibility pattern of Candida species from mainland China: A systematic analysis. Virulence, 13(1), 1573–1589. https://doi.org/10.1080/21505594.2022.2123325Bonincontro, G., Scuderi, S. A., Marino, A., & Simonetti, G. (2023). Synergistic effect of plant compounds in combination with conventional antimicrobials against biofilm of Staphylococcus aureus, Pseudomonas aeruginosa, and Candida spp. Pharmaceuticals, 16(11), 1531. https://doi.org/10.3390/PH16111531Brown, J. L., Delaney, C., Short, B., Butcher, M. C., McKloud, E., Williams, C., Kean, R., & Ramage, G. (2020). Candida auris phenotypic heterogeneity determines pathogenicity in vitro. MSphere, 5(3). https://doi.org/10.1128/msphere.00371-20Butts, A., Reitler, P., Nishimoto, A. T., DeJarnette, C., Estredge, L. R., Peters, T. L., Veve, M. P., David Rogers, P., & Palmer, G. E. (2019). A systematic screen reveals a diverse collection of medications that induce antifungal resistance in Candida species. Antimicrobial Agents and Chemotherapy, 63(5), e00371-20. https://doi.org/10.1128/AAC.00054-19/SUPPL_FILE/AAC.00054-19-S0001.PDFCantón Lacasa, E., Martín Mazuelos, E., & Espinel-Ingroff, A. (2007). Métodos estandarizados por el CLSI para el estudio de la sensibilidad. Revista Iberoamericana de Micología, 2(15), 1-17. ISBN: 978-84-611-8776-8Campos Péret, V. A., Reis, R. C. F. M., Braga, S. F. P., Benedetti, M. D., Caldas, I. S., Carvalho, D. T., Santana, L. F. de A., Johann, S., & Souza, T. B. de. (2023). New miconazole-based azoles derived from eugenol show activity against Candida spp. and Cryptococcus gattii by inhibiting the fungal ergosterol biosynthesis. European Journal of Medicinal Chemistry, 256(2023), 115436. https://doi.org/10.1016/J.EJMECH.2023.115436Chakrabartty, I., Vijayasekhar, A., & Rangan, L. (2021). Therapeutic potential of labdane diterpene isolated from Alpinia nigra: detailed hemato-compatibility and antimicrobial studies. Natural Product Research, 35(6), 1000-1004. https://doi.org/10.1080/14786419.2019.1610756Chen, S., Tsoi, J. K. H., Tsang, P. C. S., Park, Y. J., Song, H. J., & Matinlinna, J. P. (2020). Candida albicans aspects of binary titanium alloys for biomedical applications. Regenerative Biomaterials, 7(2), 213–220. https://doi.org/10.1093/RB/RBZ052Ciurea, C. N., Kosovski, I. B., Mare, A. D., Toma, F., Pintea-Simon, I. A., & Man, A. (2020). Candida and Candidiasis—Opportunism versus pathogenicity: A review of the virulence traits. Microorganisms, 8(6), 857. https://doi.org/10.3390/MICROORGANISMS8060857Contreras Martínez, O. I., Angulo Ortíz, A., & Santafé Patiño, G. (2022). Antifungal potential of isoespintanol extracted from Oxandra xylopioides diels (Annonaceae) against intrahospital isolations of Candida spp. Heliyon, 8(10), e11110. https://doi.org/10.1016/j.heliyon.2022.e11110Contreras Martínez, O. I., Angulo Ortíz, A., & Santafé Patiño, G. (2022a). Mechanism of antifungal action of monoterpene isoespintanol against clinical isolates of Candida tropicalis. Molecules, 27(18), 5808. https://doi.org/10.3390/molecules27185808Contreras Martínez, O., Angulo Ortíz, A., & Santafé Patiño, G. (2022b). Antibacterial screening of isoespintanol, an aromatic monoterpene isolated from Oxandra xylopioides Diels. Molecules (Basel, Switzerland), 27(22), 8004. https://doi.org/10.3390/molecules27228004Contreras, O. I., Ortíz, A. A., Patiño, G. S., Peñata-Taborda, A., & Soto, R. B. (2023). Isoespintanol antifungal activity involves mitochondrial dysfunction, inhibition of biofilm formation, and damage to cell wall integrity in Candida tropicalis. International Journal of Molecular Sciences, 24(12), 10187. https://doi.org/10.3390/IJMS241210187Cortés, J. A., Ruiz, J. F., Melgarejo-Moreno, L. N., & Lemos, E. V. (2020). Candidemia en Colombia. Biomédica, 40(1), 195. https://doi.org/10.7705/biomedica.4400D’Angeli, F., Guadagni, F., Genovese, C., Nicolosi, D., Salinaro, A. T., Spampinato, M., Mannino, G., Lo Furno, D., Petronio, G. P., Ronsisvalle, S., Sipala, F., Falzone, L., & Calabrese, V. (2021). Anti-candidal activity of the parasitic plant orobanche crenata forssk. Antibiotics, 10(11), 1373. https://doi.org/10.3390/antibiotics10111373de Alteriis, E., Maselli, V., Falanga, A., Galdiero, S., Di Lella, F. M., Gesuele, R., Guida, M., & Galdiero, E. (2018). Efficiency of gold nanoparticles coated with the antimicrobial peptide indolicidin against biofilm formation and development of Candida spp. clinical isolates. Infection and Drug Resistance, 11(2018), 915–925. https://doi.org/10.2147/IDR.S164262de Lima Silva, M. G., de Lima, L. F., Alencar Fonseca, V. J., Santos da Silva, L. Y., Calixto Donelardy, A. C., de Almeida, R. S., de Morais Oliveira-Tintino, C. D., Pereira Bezerra Martins, A. O. B., Ribeiro-Filho, J., Bezerra Morais-Braga, M. F., Tintino, S. R., & Alencar de Menezes, I. R. (2023). Enhancing the antifungal efficacy of fluconazole with a diterpene: Abietic acid as a promising adjuvant to combat antifungal resistance in Candida spp. Antibiotics, 12(11), 1565. https://doi.org/10.3390/antibiotics12111565De Sousa, I. P., Sousa Teixeira, M. V., & Jacometti Cardoso Furtado, N. A. (2018). An overview of biotransformation and toxicity of diterpenes. Molecules, 23(6), 1387. https://doi.org/10.3390/molecules23061387Del Pozo, J. L., & Cantón, E. (2016). Candidiasis asociada a biopelículas. Revista Iberoamericana de Micologia, 33(3), 176–183. https://doi.org/10.1016/j.riam.2015.06.004Dellière, S., Sze Wah Wong, S., & Aimanianda, V. (2020). Soluble mediators in anti-fungal immunity. Current Opinion in Microbiology, 58(2020), 24–31. https://doi.org/10.1016/J.MIB.2020.05.005Deng, Y., Liu, Y., Li, J., Wang, X., He, S., Yan, X., Shi, Y., Zhang, W., & Ding, L. (2022). Marine natural products and their synthetic analogs as promising antibiofilm agents for antibiotics discovery and development. European Journal of Medicinal Chemistry, 239(2022), 114513. https://doi.org/10.1016/j.ejmech.2022.114513Diniz-Neto, H., Silva, S. L., Cordeiro, L. V., Silva, D. F., Oliveira, R. F., Athayde-Filho, P. F., Oliveira-Filho, A. A., Guerra, F. Q. S., & Lima, E. O. (2022). Antifungal activity of 2-chloro-N-phenylacetamide: a new molecule with fungicidal and antibiofilm activity against fluconazole-resistant Candida spp. Brazilian Journal of Biology, 84(2024), e255080. https://doi.org/10.1590/1519-6984.255080Donadu, M. G., Peralta-Ruiz, Y., Usai, D., Maggio, F., Molina-Hernandez, J. B., Rizzo, D., Bussu, F., Rubino, S., Zanetti, S., Paparella, A., & Chaves-Lopez, C. (2021). Colombian essential oil of ruta graveolens against nosocomial antifungal resistant Candida strains. Journal of Fungi, 7(5), 383. https://doi.org/10.3390/jof7050383El‐kholy, M. A., Helaly, G. F., El Ghazzawi, E. F., El‐sawaf, G., & Shawky, S. M. (2021). Virulence factors and antifungal susceptibility profile of Candida tropicalis isolated from various clinical specimens in alexandria, Egypt. Journal of Fungi, 7(5), 351. https://doi.org/10.3390/jof7050351Escandón, P. (2022). Novel environmental niches for Candida auris: Isolation from a coastal habitat in Colombia. Journal of Fungi, 8(7), 748. https://doi.org/10.3390/jof8070748Espinosa, H., García, E., & Gastélum, E. (2016). Los compuestos bioactivos y tecnologías de extracción. CIATEJ Editorial. https://ciatej.mx/Los_compuestos_bioactivos_y_tecnologias_de_extraccion.pdfFeldman, M., Sionov, R. V., Mechoulam, R., & Steinberg, D. (2021). Anti-biofilm activity of cannabidiol against Candida albicans. Microorganisms, 9(2), 441. https://doi.org/10.3390/microorganisms9020441Fuentefria, A. M., Pippi, B., Dalla Lana, D. F., Donato, K. K., & de Andrade, S. F. (2018). Antifungals discovery: an insight into new strategies to combat antifungal resistance. Letters in Applied Microbiology, 66(1), 2-13. https://doi.org/10.1111/lam.12820He, Y., Cao, Y., Xiang, Y., Hu, F., Tang, F., Zhang, Y., Albashari, A. A., Xing, Z., Luo, L., Sun, Y., Huang, Q., Ye, Q., & Zhang, K. (2020). An evaluation of norspermidine on anti-fungal effect on mature Candida albicans biofilms and angiogenesis potential of dental pulp stem cells. Frontiers in Bioengineering and Biotechnology, 8(2020), 948. https://doi.org/10.3389/fbioe.2020.00948Herman, A., & Herman, A. P. (2021). Herbal products and their active constituents used alone and in combination with antifungal drugs against drug-resistant Candida sp. Antibiotics, 10(6), 655. https://doi.org/10.3390/antibiotics10060655Humanez Galindo, L. E. (2021). Obtención de diisoespintanol y berenjenol del subextracto de diclorometano de las hojas de Oxandra xylopioides y revisión bibliográfica sobre actividades biológicas de la familia Annonaceae. https://repositorio.unicordoba.edu.co/handle/ucordoba/3888Kim, C., Kim, J. G., & Kim, K. Y. (2023). Anti-Candida potential of sclareol in inhibiting growth, biofilm formation, and yeast–hyphal transition. Journal of Fungi, 9(1), 98. https://doi.org/10.3390/jof9010098Lee, M. J., Kim, M. J., Oh, S. H., & Kwon, J. S. (2020). Novel dental poly (methyl methacrylate) containing phytoncide for antifungal effect and inhibition of oral multispecies biofilm. Materials, 13(2), 371. https://doi.org/10.3390/ma13020371Lima, T. L. C., Souza, L. B. F. C., Tavares-Pessoa, L. C. S., Dos Santos-Silva, A. M., Cavalcante, R. S., de Araújo-Júnior, R. F., Cornélio, A. M., Fernandes-Pedrosa, M. F., Chaves, G. M., & da Silva-Júnior, A. A. (2020). Phytol-loaded solid lipid nanoparticles as a novel anticandidal nanobiotechnological approach. Pharmaceutics, 12(9), 871. https://doi.org/10.3390/pharmaceutics12090871Liu, R. H., Shang, Z. C., Li, T. X., Yang, M. H., & Kong, L. Y. (2017). In vitro antibiofilm activity of eucarobustol E against Candida albicans. Antimicrobial Agents and Chemotherapy, 61(8), 10.1128. https://doi.org/10.1128/AAC.02707-16Lustre Sánchez, H. (2022). Los superpoderes de las plantas: los metabolitos secundarios en su adaptación y defensa. Revista Digital Universitaria, 23(2). https://doi.org/10.22201/cuaieed.16076079e.2022.23.2.10Maione, A., Pietra, A. La, Salvatore, M. M., Guida, M., Galdiero, E., & de Alteriis, E. (2022). Undesired effect of vancomycin prolonged treatment: Enhanced biofilm production of the nosocomial pathogen Candida auris. Antibiotics, 11(12), 1771. https://doi.org/10.3390/antibiotics11121771Maldonado, J.; Casaña, R.; Martínez, I.; San Martín, E. (2018). La espectroscopia UV-Vis en la evaluación de la viabilidad de células de cáncer de mama. Latin-American Journal of Physics Education, 12(2), 1–7Menezes, R. P. B., Sessions, Z., Muratov, E., Scotti, L., & Scotti, M. T. (2021). Secondary Metabolites Extracted from Annonaceae and Chemotaxonomy Study of Terpenoids. Journal of the Brazilian Chemical Society, 32(11), 2061–2070. https://doi.org/10.21577/0103-5053.20210097Miranda-Cadena, K., Marcos-Arias, C., Mateo, E., Aguirre-Urizar, J. M., Quindós, G., & Eraso, E. (2021). In vitro activities of carvacrol, cinnamaldehyde and thymol against Candida biofilms. Biomedicine & Pharmacotherapy, 143(2021), 112218. https://doi.org/10.1016/j.biopha.2021.112218Miranda-Cadena, K., Marcos-Arias, C., Pérez-Rodríguez, A., Cabello-Beitia, I., Mateo, E., Sevillano, E., … Eraso, E. (2022). Actividad anti- Candida in vitro e in vivo del citral en combinación con fluconazol. Revista de Microbiología Oral, 14(1), 2045813. https://doi.org/10.1080/20002297.2022.2045813Nett, J. E., & Andes, D. R. (2020). Contributions of the biofilm matrix to candida pathogenesis. In Journal of Fungi, 6(1), 21. https://doi.org/10.3390/jof6010021Organización Mundial para la Salud. (2022). WHO fungal priority pathogens list to guide research, development and public health action. Geneva. ISBN 978-92-4-006024-1Pappas, P. G., Lionakis, M. S., Arendrup, M. C., Ostrosky-Zeichner, L., & Kullberg, B. J. (2018). Invasive candidiasis. Nature Reviews Disease Primers, 4(1), 1–20. https://doi.org/10.1038/nrdp.2018.26Popova, V., Ivanova, T., Stoyanova, A., Nikolova, V., Hristeva, T., Gochev, V., Yonchev, Y., Nikolov, N., & Zheljazkov, V. D. (2020). Terpenoids in the essential oil and concentrated aromatic products obtained from nicotiana glutinosa L. Leaves. Molecules, 25(1), 30. https://doi.org/10.3390/molecules25010030Quiles-Melero, I., & García-Rodríguez, J. (2021). Antifúngicos de uso sistémico. Revista Iberoamericana de Micología, 38(2), 42–46. https://doi.org/10.1016/j.riam.2021.04.004Reddy, G. K. K., & Nancharaiah, Y. V. (2020). Alkylimidazolium Ionic Liquids as Antifungal Alternatives: Antibiofilm activity against Candida albicans and underlying mechanism of action. Frontiers in Microbiology, 11(2020), 730. https://doi.org/10.3389/fmicb.2020.00730Shahina, Z., Ndlovu, E., Persaud, O., Sultana, T., & Dahms, T. E. S. (2022). Candida albicans Reactive oxygen species (ROS)-dependent lethality and ROS-independent hyphal and biofilm inhibition by eugenol and citral. Microbiology Spectrum, 10(6), e03183-22. https://doi.org/10.1128/spectrum.03183-22Shariati, A., Didehdar, M., Razavi, S., Heidary, M., Soroush, F., & Chegini, Z. (2022). Natural compounds: A hopeful promise as an antibiofilm agent against Candida species. Frontiers in Pharmacology, 13(2022), 917787. https://doi.org/10.3389/fphar.2022.917787Silva, D. M., Costa, E. V., De Lima Nogueira, P. C., De Souza Moraes, V. R., De Holanda Cavalcanti, S. C., Salvador, M. J., Ribeiro, L. H. G., Gadelha, F. R., Barison, A., & Ferreira, A. G. (2012). Ent-kaurane diterpenoids and other constituents from the stem of Xylopia laevigata (Annonaceae). Química Nova, 35(8), 1570–1576. https://doi.org/10.1590/S0100-40422012000800015Sousa Teixeira, M. V., Fernandes, L. M., Stefanelli de Paula, V., Ferreira, A. G., & Jacometti Cardoso Furtado, N. A. (2022). Ent-hardwickiic acid from C. pubiflora and its microbial metabolites are more potent than fluconazole in vitro against Candida glabrata. Letters in Applied Microbiology, 74(4), 622–629. https://doi.org/10.1111/lam.13648Touil, H. F. Z., Boucherit, K., Boucherit-Otmani, Z., Kohder, G., Madkour, M., & Soliman, S. S. M. (2020). Optimum inhibition of amphotericin-B-resistant candida albicans strain in single-and mixed-species biofilms by Candida and non-Candida terpenoids. Biomolecules, 10(2), 342. https://doi.org/10.3390/biom10020342Urzúa, A., Rezende, M. C., Mascayano, C., & Vásquez, L. (2008). A structure-activity study of antibacterial diterpenoids. Molecules, 13(4), 882-891. https://doi.org/10.3390/molecules13040822Žiemytė, M., Rodríguez-Díaz, J. C., Ventero-Martín, M. P., Mira, A., & Ferrer, M. D. (2023). Real-time monitoring of biofilm growth identifies andrographolide as a potent antifungal compound eradicating Candida biofilms. Biofilm, 5(2023), 100134. https://doi.org/10.1016/j.bioflm.2023.100134DiterpenoAntifúngicoOxandra xylopioidesCandida sppDiterpeneAntifungalOxandra xylopioidesCandida sppPublicationORIGINALRicardoRafael.pdfRicardoRafael.pdfapplication/pdf518280https://repositorio.unicordoba.edu.co/bitstreams/6e28d9af-1b08-479b-840b-de29d05342fa/downloadfa06ae76994e811e8761491fdb2a90a9MD51FORMATO DE AUTORIZACION.pdfFORMATO DE AUTORIZACION.pdfapplication/pdf915169https://repositorio.unicordoba.edu.co/bitstreams/7af7f65c-36ce-4825-9a04-16796c3377f4/download93b23e306e5ffa60bc0387ee86104aadMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://repositorio.unicordoba.edu.co/bitstreams/28acd323-3c98-4060-83e0-d6bb0cbf7ccc/download73a5432e0b76442b22b026844140d683MD53TEXTRicardoRafael.pdf.txtRicardoRafael.pdf.txtExtracted texttext/plain53390https://repositorio.unicordoba.edu.co/bitstreams/d151317c-3c0c-4a24-8d5a-0c6a0f3c754d/download9faa835971330001458193ba09ba336aMD54FORMATO DE AUTORIZACION.pdf.txtFORMATO DE AUTORIZACION.pdf.txtExtracted texttext/plain4564https://repositorio.unicordoba.edu.co/bitstreams/8a315160-85e3-4cdd-9cfa-b4b5cd5c5cba/downloada51cc78df824e9d9001336ea5d934539MD56THUMBNAILRicardoRafael.pdf.jpgRicardoRafael.pdf.jpgGenerated Thumbnailimage/jpeg15535https://repositorio.unicordoba.edu.co/bitstreams/dc200c26-eddc-402d-a8fd-b4d891d561c2/downloadc673fd145a58621050810526ff78b52fMD55FORMATO DE AUTORIZACION.pdf.jpgFORMATO DE AUTORIZACION.pdf.jpgGenerated Thumbnailimage/jpeg15504https://repositorio.unicordoba.edu.co/bitstreams/1bda1588-d87e-42e3-b3ff-673085acbef6/download61647ea07f77f9d9d1a9d1b027c57a5cMD57ucordoba/8488oai:repositorio.unicordoba.edu.co:ucordoba/84882024-08-10 03:00:19.207https://creativecommons.org/licenses/by-nc-nd/4.0/Copyright Universidad de Córdoba, 2024open.accesshttps://repositorio.unicordoba.edu.coRepositorio Universidad de Córdobabdigital@metabiblioteca.comPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K |