Sistema de visión artificial para la detección y control de plagas y enfermedades en los cultivos de sandía en el departamento de Córdoba

En este estudio se desarrolló una aplicación móvil bajo el nombre “Sandiapp”, con el objetivo de identificar las diferentes plagas y enfermedades que afectan el cultivo de sandía en el municipio de San Bernardo del Viento - Córdoba. Para cumplir con este objetivo, se realizó un levantamiento de camp...

Full description

Autores:
Atencio Flórez, Juan Carlos
Cueto Morelo, Raúl Andrés
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2024
Institución:
Universidad de Córdoba
Repositorio:
Repositorio Institucional Unicórdoba
Idioma:
spa
OAI Identifier:
oai:repositorio.unicordoba.edu.co:ucordoba/8393
Acceso en línea:
https://repositorio.unicordoba.edu.co/handle/ucordoba/8393
https://repositorio.unicordoba.edu.co/home
Palabra clave:
Procesamiento de imágenes
Aprendizaje informático o automatizado
Aprendizaje supervisado
Aprendizaje no supervisado
Sandía
Inteligencia artificial
Visión artificial
Image processing
Computer orautomated learning
Supervised learning
Unsupervised learning
Watermelon
Artificial intelligence
Artificial vision
Rights
openAccess
License
Copyright Universidad de Córdoba, 2024
id UCORDOBA2_1303e207d1a15e3febf6824838f371c6
oai_identifier_str oai:repositorio.unicordoba.edu.co:ucordoba/8393
network_acronym_str UCORDOBA2
network_name_str Repositorio Institucional Unicórdoba
repository_id_str
dc.title.spa.fl_str_mv Sistema de visión artificial para la detección y control de plagas y enfermedades en los cultivos de sandía en el departamento de Córdoba
title Sistema de visión artificial para la detección y control de plagas y enfermedades en los cultivos de sandía en el departamento de Córdoba
spellingShingle Sistema de visión artificial para la detección y control de plagas y enfermedades en los cultivos de sandía en el departamento de Córdoba
Procesamiento de imágenes
Aprendizaje informático o automatizado
Aprendizaje supervisado
Aprendizaje no supervisado
Sandía
Inteligencia artificial
Visión artificial
Image processing
Computer orautomated learning
Supervised learning
Unsupervised learning
Watermelon
Artificial intelligence
Artificial vision
title_short Sistema de visión artificial para la detección y control de plagas y enfermedades en los cultivos de sandía en el departamento de Córdoba
title_full Sistema de visión artificial para la detección y control de plagas y enfermedades en los cultivos de sandía en el departamento de Córdoba
title_fullStr Sistema de visión artificial para la detección y control de plagas y enfermedades en los cultivos de sandía en el departamento de Córdoba
title_full_unstemmed Sistema de visión artificial para la detección y control de plagas y enfermedades en los cultivos de sandía en el departamento de Córdoba
title_sort Sistema de visión artificial para la detección y control de plagas y enfermedades en los cultivos de sandía en el departamento de Córdoba
dc.creator.fl_str_mv Atencio Flórez, Juan Carlos
Cueto Morelo, Raúl Andrés
dc.contributor.advisor.none.fl_str_mv Gómez Gómez, Jorge Eliecer
dc.contributor.author.none.fl_str_mv Atencio Flórez, Juan Carlos
Cueto Morelo, Raúl Andrés
dc.subject.proposal.spa.fl_str_mv Procesamiento de imágenes
Aprendizaje informático o automatizado
Aprendizaje supervisado
Aprendizaje no supervisado
Sandía
Inteligencia artificial
Visión artificial
topic Procesamiento de imágenes
Aprendizaje informático o automatizado
Aprendizaje supervisado
Aprendizaje no supervisado
Sandía
Inteligencia artificial
Visión artificial
Image processing
Computer orautomated learning
Supervised learning
Unsupervised learning
Watermelon
Artificial intelligence
Artificial vision
dc.subject.keywords.eng.fl_str_mv Image processing
Computer orautomated learning
Supervised learning
Unsupervised learning
Watermelon
Artificial intelligence
Artificial vision
description En este estudio se desarrolló una aplicación móvil bajo el nombre “Sandiapp”, con el objetivo de identificar las diferentes plagas y enfermedades que afectan el cultivo de sandía en el municipio de San Bernardo del Viento - Córdoba. Para cumplir con este objetivo, se realizó un levantamiento de campo utilizando el método cuantitativo, como estudio sistemático de los hechos dentro de los cuales se presentó el caso, para obtener información útil para formular la propuesta y sustentar la propuesta a través de un sistema que a través del aprendizaje automático identifica los tipos de plagas y enfermedades que afectan los cultivos de sandía. Para el desarrollo de este proyecto se utilizaron ciertos algoritmos de visión artificial, el cual consiste en reconocer formas, distancias, ángulos, colores y determinar las dimensiones de la planta de sandía. Para realizar este procedimiento se ha considerado la forma y tamaño de la lámina. A través de las pruebas realizadas durante el desarrollo de este trabajo se concluye que: Mediante la implementación del sistema de visión artificial se demostró el incremento en el porcentaje de agricultores, los cuales ahora cuentan con un mayor nivel de información sobre plagas y enfermedades del cultivo de sandía.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-07-14T03:07:50Z
dc.date.available.none.fl_str_mv 2024-07-14T03:07:50Z
dc.date.issued.none.fl_str_mv 2024-07-12
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unicordoba.edu.co/handle/ucordoba/8393
dc.identifier.instname.none.fl_str_mv Universidad de Córdoba
dc.identifier.reponame.none.fl_str_mv Repositorio universidad de Córdoba
dc.identifier.repourl.none.fl_str_mv https://repositorio.unicordoba.edu.co/home
url https://repositorio.unicordoba.edu.co/handle/ucordoba/8393
https://repositorio.unicordoba.edu.co/home
identifier_str_mv Universidad de Córdoba
Repositorio universidad de Córdoba
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv Gómez-Camperos, J.A., Jaramillo, H.Y., & Guerrero-Gómez, G. (2021). Técnicas de procesamiento digital de imágenes para detección de plagas y enfermedades en cultivos: una revisión. INGENIERÍA Y COMPETITIVIDAD.
Martínez-Corral, L., Martínez-Rubín, E., Flores-García, F., Castellanos, G.C., Juarez, A.L., & López, M. (2009). Desarrollo de una base de datos para caracterización de alfalfa (Medicago sativa L.) en un sistema de visión artificial.
Santa María Pinedo, J.C., Ríos López, C.A., Rodríguez Grández, C., & García Estrella, C.W. (2021). Reconocimiento de patrones de imágenes a través de un sistema de visión artificial en MATLAB. Revista Científica de Sistemas e Informática.
Malpartida, S., & Ángel, E.T. (2011). Sistema de visión artificial para el reconocimiento y manipulación de objetos utilizando un brazo robot.
Vargas, O.L., & Perrez, Á.A. (2019). Implementación de un Sistema de Visión Artificial para la clasificación de naranja producida en el departamento del Quindío.
León León, R.A., Jara, B.J., Cruz Saavedra, R., Terrones Julcamoro, K., Torres Verastegui, A., & Aponte de la Cruz, M.A. (2020). DESARROLLO DE SISTEMA DE VISIÓN ARTIFICIAL PARA CONTROL DE CALIDAD DE BOTELLAS EN LA EMPRESA CARTAVIO RUM COMPANY. Ingeniería Investigación y Desarrollo.
Bautista, R.A., Constante, P., Gordon, A., & Mendoza, D. (2019). Diseño e implementación de un sistema de visión artificial para análisis de datos NDVI en imágenes espectrales de cultivos de brócoli obtenidos mediante una aeronave pilotada remotamente. Infociencia.
Prócel, P.N., & Garcés, A.M. (2015). Diseño e implementación de un sistema de visión artificial para clasificación de al menos tres tipos de frutas.
Yandún Velasteguí, M.A. (2020). Detección de enfermedades en cultivos de Papa usando procesamiento de imágenes.
Martínez, F.H., Montiel, H., & Martínez, F. (2022). A Machine Learning Model for the Diagnosis of Coffee Diseases. International Journal of Advanced Computer Science and Applications.
Ortega, B.R., Biswal, R.R., & Sánchez-Delacruz, E. (2019). Detección de enfermedades en el sector agrícola utilizando Inteligencia Artificial. Res. Comput. Sci., 148, 419-427.
Zapata, V., & Alejandro, J.R. (2019). Diseño y desarrollo de un sistema prototipo de diagnóstico de afecciones en plantas de cítricos utilizando procesamiento de imágenes y aprendizaje profundo.
Pillajo, M.A., Pillajo, M.A., & Cabascango, A.S. (2019). Diagnóstico inteligente de enfermedades y plagas en plantas ornamentales.
Narciso Horna, W.A., & Manzano Ramos, E.A. (2021). Sistema de visión artificial basado en redes neuronales convolucionales para la selección de arándanos según estándares de exportación. Campus.
Huaccha, E.D. (2018). Desarrollo de un sistema de visión artificial para realizar una clasificación uniforme de limones.
Bautista, R.A., Constante, P., Gordon, A., & Mendoza, D. (2019). Diseño e implementación de un sistema de visión artificial para análisis de datos NDVI en imágenes espectrales de cultivos de brócoli obtenidos mediante una aeronave pilotada remotamente. Infociencia.
Tinajero, J., Acosta, L.A., Chango, E.F., & Moyon, J.F. (2020). Sistema de visión artificial para clasificación de latas de pintura por color considerando el espacio de color RGB.
Salazar, P., Ortiz, S., Hernandez, T.H., & Bermeo, N.V. (2016). Artificial Vision System Using Mobile Devices for Detection of Fusarium Fungus in Corn. Res. Comput. Sci., 121, 95-104.
Ghyar, B.S., & Birajdar, G.K. (2017). Computer vision based approach to detect rice leaf diseases using texture and color descriptors. 2017 International Conference on Inventive Computing and Informatics (ICICI), 1074-1078.
Yasir, R., Rahman, M.A., & Ahmed, N. (2014). Dermatological disease detection using image processing and artificial neural network. 8th International Conference on Electrical and Computer Engineering, 687-690.
P. P. Garcia Garcia, Reconocimiento de imagenes utilizando redes neuronales artificiales, Madrid, España, 2013.
Orduz, J. O., León, G. A., Chacón Díaz, A., Linares, V. M., & Rey, C. A. (2000). El cultivo de la sandía o patilla (Citrullus lanatus) en el departamento del Meta (No. Doc. 21998) CO- BAC, Bogotá).
González Sánchez, H. A. (1999). Impacto ambiental de la labranza mecánica convencional. Departamento de Ciencias Agropecuarias.
J. M. G. Recinos, Rendimiento de híbridos de sandía tipo personal; valle del Motagua,Zacapa., Zacapa, 2015.
R. Jorge, Introducción a los sistemas de visión artificial, Madrid, España, 2011.
Ramírez Escalante, Boris. Procesamiento Digital de Imágenes [en línea], Verona, [citado agosto, 2006].
CHAVEZ, Procesamiento de imágenes [en linea], Puebla, Universidad de las Américas puebla [citado en 6 de Julio de 2015].
MATWORKS, Detección de bordes [en línea], [citado en 6 de octubre de 2015].
A. Marin Poatoni, Desarrollo de prototipo de aplicacion (APP), para dispositivos móviles basados en el sistemas IOS, para el reconocimiento de objetos"Hojas" en imagenes, Motecillo, Mexico, 2014.
H. T. T. ,. L. V. G. Bay, «Speeded-Up Robust,» EE.UU, 2006.
Simeone, O. A Very Brief Introduction to Machine Learning With Applications to Communication Systems. Repositorio Universidad de Cornell, 2018.
Computerworld. Tendencias tecnológicas para 2020: las apuestas de Gartner.
Abney, S., Semisupervised Learning for Computational Linguistics. Chapman & Hall/CRC, 2008.
Blum, A., Mitchell, T. Combining labeled and unlabeled data with co-training. COLT: Proceedings of the Workshop on Computational Learning Theory, Morgan Kaufmann, 1998, p. 92-100.
Chapelle, O., B. Schölkopf and A. Zien: Semi-Supervised Learning. MIT Press, Cambridge, MA (2006). Further information.
Huang T-M., Kecman V., Kopriva I., Kernel Based Algorithms for Mining Huge Data Sets, Supervised, Semisupervised and Unsupervised Learning, Springer-Verlag, Berlin, Heidelberg, 260 pp. 96 illus., Hardcover, ISBN 3-540-31681-7, 2006.
Alfonso Ibáñez Martín Semi-Supervised Learning, 2019.
Ilanchezhian, Shanmugaraja, Thangaraj, & Stalin, A.R. (2021). A CONVOLUTION NEURAL NETWORK BASED SMART INTELLIGENT WEED DETECTION SYSTEM.
Asefpour Vakilian, K., & Massah, J. (2013). Performance evaluation of a machine vision system for insect pests identification of field crops using artificial neural networks. Archives of Phytopathology and Plant Protection, 46, 1262 – 1269.
Lurstwut, B., & Pornpanomchai, C. (2016). Application of Image Processing and Computer Vision on Rice Seed Germination Analysis.
Pusdá-Chulde, M., Salazar-Fierro, F.A., Sandoval-Pillajo, L., Herrera-Granda, E.P., García- Santillán, I.D., & De Giusti, A. (2019). Image Analysis Based on Heterogeneous Architectures for Precision Agriculture: A Systematic Literature Review. Advances and Applications in Computer Science, Electronics and Industrial Engineering.
dc.rights.none.fl_str_mv Copyright Universidad de Córdoba, 2024
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.license.none.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Copyright Universidad de Córdoba, 2024
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de Córdoba
dc.publisher.faculty.none.fl_str_mv Facultad de Ingeniería
dc.publisher.place.none.fl_str_mv Montería, Córdoba, Colombia
dc.publisher.program.none.fl_str_mv Ingeniería de Sistemas
publisher.none.fl_str_mv Universidad de Córdoba
institution Universidad de Córdoba
bitstream.url.fl_str_mv https://repositorio.unicordoba.edu.co/bitstreams/bc5cba9f-f178-4510-bc8f-dc1f14f0311f/download
https://repositorio.unicordoba.edu.co/bitstreams/2672bba3-5f08-4773-83a7-6a707c432c9b/download
https://repositorio.unicordoba.edu.co/bitstreams/a3bfe238-caff-4089-9d2c-ea76eec15170/download
https://repositorio.unicordoba.edu.co/bitstreams/fb3a41da-58b5-4e78-856b-b48e2b28a4df/download
https://repositorio.unicordoba.edu.co/bitstreams/3da09451-10d2-44aa-a5f7-0f61eca4b85c/download
https://repositorio.unicordoba.edu.co/bitstreams/98bafff8-23a5-4973-b2d8-e985b8d0418d/download
https://repositorio.unicordoba.edu.co/bitstreams/4402038a-9753-471a-a654-a144811161b6/download
bitstream.checksum.fl_str_mv 12517e1145febce145a9646999caab87
dc911adc4fd9945c7cf7de8e44a5071d
73a5432e0b76442b22b026844140d683
97cdbcb9445548ef53cebbf15743c671
e477f7e548d60c6b1b65795bef8619c3
ee2197b4e32fed8bfab0235e8c60b925
8b30546e47bda1254d6ab2fba4b6cfee
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de Córdoba
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1839636037659262976
spelling Gómez Gómez, Jorge Eliecerf407d01b-8994-4169-9130-6104f3418af3-1Atencio Flórez, Juan Carlos17e38f4c-1051-430f-9e54-166264638998-1Cueto Morelo, Raúl Andrés980d2a26-4fae-46c9-b904-2dc58dd5ab84-12024-07-14T03:07:50Z2024-07-14T03:07:50Z2024-07-12https://repositorio.unicordoba.edu.co/handle/ucordoba/8393Universidad de CórdobaRepositorio universidad de Córdobahttps://repositorio.unicordoba.edu.co/homeEn este estudio se desarrolló una aplicación móvil bajo el nombre “Sandiapp”, con el objetivo de identificar las diferentes plagas y enfermedades que afectan el cultivo de sandía en el municipio de San Bernardo del Viento - Córdoba. Para cumplir con este objetivo, se realizó un levantamiento de campo utilizando el método cuantitativo, como estudio sistemático de los hechos dentro de los cuales se presentó el caso, para obtener información útil para formular la propuesta y sustentar la propuesta a través de un sistema que a través del aprendizaje automático identifica los tipos de plagas y enfermedades que afectan los cultivos de sandía. Para el desarrollo de este proyecto se utilizaron ciertos algoritmos de visión artificial, el cual consiste en reconocer formas, distancias, ángulos, colores y determinar las dimensiones de la planta de sandía. Para realizar este procedimiento se ha considerado la forma y tamaño de la lámina. A través de las pruebas realizadas durante el desarrollo de este trabajo se concluye que: Mediante la implementación del sistema de visión artificial se demostró el incremento en el porcentaje de agricultores, los cuales ahora cuentan con un mayor nivel de información sobre plagas y enfermedades del cultivo de sandía.In this study, a mobile application was developed under the name “Sandiapp”, with the aim of identifying the different pests and diseases that affect the cultivation of watermelon in the municipalityof San Bernardo del Viento -Córdoba. To meet this objective, a field survey was carried out using the quantitative method, as a systematic study of the facts within which the case was presented, to obtain useful information to formulate the proposal and support the proposal through a system that through machine learning identifies the types of pests and Diseases that affect watermelon crops. For the development of this project, certain artificial vision algorithms were used, which consists of recognizing shapes, distances, angles, colors and determining the dimensions of the watermelon plant. To carry out this procedure, the shape and size of the sheet has been considered. Through the tests carried out during the development of this work, it is concluded that: Through the implementation of the artificial vision system, the increase in the percentage of farmers was demonstrated, which now has a higher level of information on pests and diseases of the watermelon crop.Introducción ................................. 10Planteamiento del problema ............................ 11Justificación .............................. 14Objetivos ................................... 16Marco Hipótesis ........................................ 16Estado del arte ....................... 17Marco conceptual ................................ 33Metodología ............................................. 42Desarrollo del Sistema ............................... 43Análisis del Sistema ........................ 43Diseño del Sistema .............................. 44Modelo Entidad Relación ............................... 44Modelo Relacional ................................ 45Casos de Usos del Sistema ............................ 46Diagrama de Clases ............... 71Diagramas de Estados ........................... 72Pruebas .................... 74Pruebas del sistema en Android ......................... 74Resultados y Discusiones ................................... 77Conclusiones .............................. 85Recomendaciones ............................... 87Anexos ................................... 89ANEXO 1. MANUAL DEL USUARIO ....................... 89ANEXO 2. MANUAL DEL USUARIO DE LA APP IMPLEMENTADO EN UN SISTEMA RASPBERRY .................................................................................................................................. 100Algoritmo del modelo de clasificación ............ 106Referencias ............ 147PregradoIngeniero(a) de SistemasTrabajos de Investigación y/o Extensiónapplication/pdfspaUniversidad de CórdobaFacultad de IngenieríaMontería, Córdoba, ColombiaIngeniería de SistemasCopyright Universidad de Córdoba, 2024https://creativecommons.org/licenses/by-nc-nd/4.0/Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Sistema de visión artificial para la detección y control de plagas y enfermedades en los cultivos de sandía en el departamento de CórdobaTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TPGómez-Camperos, J.A., Jaramillo, H.Y., & Guerrero-Gómez, G. (2021). Técnicas de procesamiento digital de imágenes para detección de plagas y enfermedades en cultivos: una revisión. INGENIERÍA Y COMPETITIVIDAD.Martínez-Corral, L., Martínez-Rubín, E., Flores-García, F., Castellanos, G.C., Juarez, A.L., & López, M. (2009). Desarrollo de una base de datos para caracterización de alfalfa (Medicago sativa L.) en un sistema de visión artificial.Santa María Pinedo, J.C., Ríos López, C.A., Rodríguez Grández, C., & García Estrella, C.W. (2021). Reconocimiento de patrones de imágenes a través de un sistema de visión artificial en MATLAB. Revista Científica de Sistemas e Informática.Malpartida, S., & Ángel, E.T. (2011). Sistema de visión artificial para el reconocimiento y manipulación de objetos utilizando un brazo robot.Vargas, O.L., & Perrez, Á.A. (2019). Implementación de un Sistema de Visión Artificial para la clasificación de naranja producida en el departamento del Quindío.León León, R.A., Jara, B.J., Cruz Saavedra, R., Terrones Julcamoro, K., Torres Verastegui, A., & Aponte de la Cruz, M.A. (2020). DESARROLLO DE SISTEMA DE VISIÓN ARTIFICIAL PARA CONTROL DE CALIDAD DE BOTELLAS EN LA EMPRESA CARTAVIO RUM COMPANY. Ingeniería Investigación y Desarrollo.Bautista, R.A., Constante, P., Gordon, A., & Mendoza, D. (2019). Diseño e implementación de un sistema de visión artificial para análisis de datos NDVI en imágenes espectrales de cultivos de brócoli obtenidos mediante una aeronave pilotada remotamente. Infociencia.Prócel, P.N., & Garcés, A.M. (2015). Diseño e implementación de un sistema de visión artificial para clasificación de al menos tres tipos de frutas.Yandún Velasteguí, M.A. (2020). Detección de enfermedades en cultivos de Papa usando procesamiento de imágenes.Martínez, F.H., Montiel, H., & Martínez, F. (2022). A Machine Learning Model for the Diagnosis of Coffee Diseases. International Journal of Advanced Computer Science and Applications.Ortega, B.R., Biswal, R.R., & Sánchez-Delacruz, E. (2019). Detección de enfermedades en el sector agrícola utilizando Inteligencia Artificial. Res. Comput. Sci., 148, 419-427.Zapata, V., & Alejandro, J.R. (2019). Diseño y desarrollo de un sistema prototipo de diagnóstico de afecciones en plantas de cítricos utilizando procesamiento de imágenes y aprendizaje profundo.Pillajo, M.A., Pillajo, M.A., & Cabascango, A.S. (2019). Diagnóstico inteligente de enfermedades y plagas en plantas ornamentales.Narciso Horna, W.A., & Manzano Ramos, E.A. (2021). Sistema de visión artificial basado en redes neuronales convolucionales para la selección de arándanos según estándares de exportación. Campus.Huaccha, E.D. (2018). Desarrollo de un sistema de visión artificial para realizar una clasificación uniforme de limones.Bautista, R.A., Constante, P., Gordon, A., & Mendoza, D. (2019). Diseño e implementación de un sistema de visión artificial para análisis de datos NDVI en imágenes espectrales de cultivos de brócoli obtenidos mediante una aeronave pilotada remotamente. Infociencia.Tinajero, J., Acosta, L.A., Chango, E.F., & Moyon, J.F. (2020). Sistema de visión artificial para clasificación de latas de pintura por color considerando el espacio de color RGB.Salazar, P., Ortiz, S., Hernandez, T.H., & Bermeo, N.V. (2016). Artificial Vision System Using Mobile Devices for Detection of Fusarium Fungus in Corn. Res. Comput. Sci., 121, 95-104.Ghyar, B.S., & Birajdar, G.K. (2017). Computer vision based approach to detect rice leaf diseases using texture and color descriptors. 2017 International Conference on Inventive Computing and Informatics (ICICI), 1074-1078.Yasir, R., Rahman, M.A., & Ahmed, N. (2014). Dermatological disease detection using image processing and artificial neural network. 8th International Conference on Electrical and Computer Engineering, 687-690.P. P. Garcia Garcia, Reconocimiento de imagenes utilizando redes neuronales artificiales, Madrid, España, 2013.Orduz, J. O., León, G. A., Chacón Díaz, A., Linares, V. M., & Rey, C. A. (2000). El cultivo de la sandía o patilla (Citrullus lanatus) en el departamento del Meta (No. Doc. 21998) CO- BAC, Bogotá).González Sánchez, H. A. (1999). Impacto ambiental de la labranza mecánica convencional. Departamento de Ciencias Agropecuarias.J. M. G. Recinos, Rendimiento de híbridos de sandía tipo personal; valle del Motagua,Zacapa., Zacapa, 2015.R. Jorge, Introducción a los sistemas de visión artificial, Madrid, España, 2011.Ramírez Escalante, Boris. Procesamiento Digital de Imágenes [en línea], Verona, [citado agosto, 2006].CHAVEZ, Procesamiento de imágenes [en linea], Puebla, Universidad de las Américas puebla [citado en 6 de Julio de 2015].MATWORKS, Detección de bordes [en línea], [citado en 6 de octubre de 2015].A. Marin Poatoni, Desarrollo de prototipo de aplicacion (APP), para dispositivos móviles basados en el sistemas IOS, para el reconocimiento de objetos"Hojas" en imagenes, Motecillo, Mexico, 2014.H. T. T. ,. L. V. G. Bay, «Speeded-Up Robust,» EE.UU, 2006.Simeone, O. A Very Brief Introduction to Machine Learning With Applications to Communication Systems. Repositorio Universidad de Cornell, 2018.Computerworld. Tendencias tecnológicas para 2020: las apuestas de Gartner.Abney, S., Semisupervised Learning for Computational Linguistics. Chapman & Hall/CRC, 2008.Blum, A., Mitchell, T. Combining labeled and unlabeled data with co-training. COLT: Proceedings of the Workshop on Computational Learning Theory, Morgan Kaufmann, 1998, p. 92-100.Chapelle, O., B. Schölkopf and A. Zien: Semi-Supervised Learning. MIT Press, Cambridge, MA (2006). Further information.Huang T-M., Kecman V., Kopriva I., Kernel Based Algorithms for Mining Huge Data Sets, Supervised, Semisupervised and Unsupervised Learning, Springer-Verlag, Berlin, Heidelberg, 260 pp. 96 illus., Hardcover, ISBN 3-540-31681-7, 2006.Alfonso Ibáñez Martín Semi-Supervised Learning, 2019.Ilanchezhian, Shanmugaraja, Thangaraj, & Stalin, A.R. (2021). A CONVOLUTION NEURAL NETWORK BASED SMART INTELLIGENT WEED DETECTION SYSTEM.Asefpour Vakilian, K., & Massah, J. (2013). Performance evaluation of a machine vision system for insect pests identification of field crops using artificial neural networks. Archives of Phytopathology and Plant Protection, 46, 1262 – 1269.Lurstwut, B., & Pornpanomchai, C. (2016). Application of Image Processing and Computer Vision on Rice Seed Germination Analysis.Pusdá-Chulde, M., Salazar-Fierro, F.A., Sandoval-Pillajo, L., Herrera-Granda, E.P., García- Santillán, I.D., & De Giusti, A. (2019). Image Analysis Based on Heterogeneous Architectures for Precision Agriculture: A Systematic Literature Review. Advances and Applications in Computer Science, Electronics and Industrial Engineering.Procesamiento de imágenesAprendizaje informático o automatizadoAprendizaje supervisadoAprendizaje no supervisadoSandíaInteligencia artificialVisión artificialImage processingComputer orautomated learningSupervised learningUnsupervised learningWatermelonArtificial intelligenceArtificial visionPublicationORIGINALAtencioFlorezJuanCarlos.pdfAtencioFlorezJuanCarlos.pdfapplication/pdf5024593https://repositorio.unicordoba.edu.co/bitstreams/bc5cba9f-f178-4510-bc8f-dc1f14f0311f/download12517e1145febce145a9646999caab87MD56Formato de autorización.pdfFormato de autorización.pdfapplication/pdf392040https://repositorio.unicordoba.edu.co/bitstreams/2672bba3-5f08-4773-83a7-6a707c432c9b/downloaddc911adc4fd9945c7cf7de8e44a5071dMD57LICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://repositorio.unicordoba.edu.co/bitstreams/a3bfe238-caff-4089-9d2c-ea76eec15170/download73a5432e0b76442b22b026844140d683MD53TEXTAtencioFlorezJuanCarlos.pdf.txtAtencioFlorezJuanCarlos.pdf.txtExtracted texttext/plain101990https://repositorio.unicordoba.edu.co/bitstreams/fb3a41da-58b5-4e78-856b-b48e2b28a4df/download97cdbcb9445548ef53cebbf15743c671MD58Formato de autorización.pdf.txtFormato de autorización.pdf.txtExtracted texttext/plain4554https://repositorio.unicordoba.edu.co/bitstreams/3da09451-10d2-44aa-a5f7-0f61eca4b85c/downloade477f7e548d60c6b1b65795bef8619c3MD510THUMBNAILAtencioFlorezJuanCarlos.pdf.jpgAtencioFlorezJuanCarlos.pdf.jpgGenerated Thumbnailimage/jpeg9460https://repositorio.unicordoba.edu.co/bitstreams/98bafff8-23a5-4973-b2d8-e985b8d0418d/downloadee2197b4e32fed8bfab0235e8c60b925MD59Formato de autorización.pdf.jpgFormato de autorización.pdf.jpgGenerated Thumbnailimage/jpeg14705https://repositorio.unicordoba.edu.co/bitstreams/4402038a-9753-471a-a654-a144811161b6/download8b30546e47bda1254d6ab2fba4b6cfeeMD511ucordoba/8393oai:repositorio.unicordoba.edu.co:ucordoba/83932024-07-14 03:00:26.483https://creativecommons.org/licenses/by-nc-nd/4.0/Copyright Universidad de Córdoba, 2024open.accesshttps://repositorio.unicordoba.edu.coRepositorio Universidad de Córdobabdigital@metabiblioteca.comPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K