Ajuste de modelos de Machine Learning para pronosticar el ausentismo de usuarios en una IPS
La falta de asistencia a citas médicas programadas se refiere a la situación en la que los usuarios de una empresa de servicios de salud no se presentan a su cita acordada. Esta problemática puede estar influenciada por diversos factores, tales como la edad del paciente, el tipo de cita, el perfil s...
- Autores:
-
Padilla Avila, Estefani Esther
Cochet Tirado, Brayan Said
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2024
- Institución:
- Universidad de Córdoba
- Repositorio:
- Repositorio Institucional Unicórdoba
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unicordoba.edu.co:ucordoba/8387
- Acceso en línea:
- https://repositorio.unicordoba.edu.co/handle/ucordoba/8387
https://repositorio.unicordoba.edu.co
- Palabra clave:
- Ausentismo
Clasificación
Machine Learning
Sobreagendamiento
Absenteeism
Classification
Machine Learning
Overbooking
- Rights
- openAccess
- License
- Copyright Universidad de Córdoba, 2024
Summary: | La falta de asistencia a citas médicas programadas se refiere a la situación en la que los usuarios de una empresa de servicios de salud no se presentan a su cita acordada. Esta problemática puede estar influenciada por diversos factores, tales como la edad del paciente, el tipo de cita, el perfil socioeconómico, el lugar de residencia entre otros El ausentismo a las consultas médicas tiene importantes implicaciones para la entidad prestadora del servicio, tanto en términos de costos como de eficiencia. Por lo tanto, es crucial poder estimar la probabilidad de que los usuarios de una institución prestadora de salud (IPS) no se presenten a la cita previamente programada, para proponer soluciones efectivas basadas en esta información. En esta ponencia se presentarán los resultados del entrenamiento de modelos de Machine Learning (ML) para clasificar a los usuarios de la IPS según el riesgo de no asistir a una cita médica previamente programada, considerando algunas características tanto del paciente como de la cita. Además, explica una estrategia de sobre agendamiento de citas basadas en las predicciones hechas por los modelos, que brinde confianza a la IPS para administrar de manera más eficiente la programación de la agenda de los médicos, lo que a su vez contribuirá a la reducción de costos y aumento de la eficiencia de la organización. Esta aplicación de los modelos de ML proporciona una oportunidad para que la empresa optimice la asignación de citas, reduciendo el ausentismo y lo cual se vería reflejado en una atención más oportuna para los afiliados a esta entidad, con tiempos de espera más cortos al solicitar los servicios. |
---|