Influencia de la temperatura de precalentamiento en los parámetros cinéticos de la Aguamarina (Be3Al2(SiO3)6:Fe)

En este trabajo se reporta la respuesta termoluminiscente de berilo en su variedad conocida como aguamarina (Be3Al2(SiO3)6:Fe). Muestras comerciales de aguamarina fueron irradiadas a temperatura ambiente utilizando una fuente de radiación β (90Sr/90Y) a una tasa de dosis de 0.10 °Gy−1. Las medidas s...

Full description

Autores:
Vertel Ramos Orlando Enrique
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2023
Institución:
Universidad de Córdoba
Repositorio:
Repositorio Institucional Unicórdoba
Idioma:
spa
OAI Identifier:
oai:repositorio.unicordoba.edu.co:ucordoba/7905
Acceso en línea:
https://repositorio.unicordoba.edu.co/handle/ucordoba/7905
https://repositorio.unicordoba.edu.co/
Palabra clave:
Termoluminiscencia
Aguamarina
Parámetros cinéticos
Temperatura de precalentamiento
Dosis
Thermoluminescence
Aquamarine
Kinetic parameters
Temperature warm-up
Dose
Rights
openAccess
License
Copyright Universidad de Córdoba, 2023
id UCORDOBA2_0b14020c9837e912a7c5304be4405695
oai_identifier_str oai:repositorio.unicordoba.edu.co:ucordoba/7905
network_acronym_str UCORDOBA2
network_name_str Repositorio Institucional Unicórdoba
repository_id_str
dc.title.none.fl_str_mv Influencia de la temperatura de precalentamiento en los parámetros cinéticos de la Aguamarina (Be3Al2(SiO3)6:Fe)
title Influencia de la temperatura de precalentamiento en los parámetros cinéticos de la Aguamarina (Be3Al2(SiO3)6:Fe)
spellingShingle Influencia de la temperatura de precalentamiento en los parámetros cinéticos de la Aguamarina (Be3Al2(SiO3)6:Fe)
Termoluminiscencia
Aguamarina
Parámetros cinéticos
Temperatura de precalentamiento
Dosis
Thermoluminescence
Aquamarine
Kinetic parameters
Temperature warm-up
Dose
title_short Influencia de la temperatura de precalentamiento en los parámetros cinéticos de la Aguamarina (Be3Al2(SiO3)6:Fe)
title_full Influencia de la temperatura de precalentamiento en los parámetros cinéticos de la Aguamarina (Be3Al2(SiO3)6:Fe)
title_fullStr Influencia de la temperatura de precalentamiento en los parámetros cinéticos de la Aguamarina (Be3Al2(SiO3)6:Fe)
title_full_unstemmed Influencia de la temperatura de precalentamiento en los parámetros cinéticos de la Aguamarina (Be3Al2(SiO3)6:Fe)
title_sort Influencia de la temperatura de precalentamiento en los parámetros cinéticos de la Aguamarina (Be3Al2(SiO3)6:Fe)
dc.creator.fl_str_mv Vertel Ramos Orlando Enrique
dc.contributor.advisor.none.fl_str_mv Cogollo Pitalúa, Rafael Ricardo
dc.contributor.author.none.fl_str_mv Vertel Ramos Orlando Enrique
dc.contributor.educationalvalidator.none.fl_str_mv Maya Taboada Héctor Roger
dc.contributor.jury.none.fl_str_mv Oviedo Cueter Juan Manuel
Sánchez, Luis Carlos
dc.subject.proposal.spa.fl_str_mv Termoluminiscencia
Aguamarina
Parámetros cinéticos
Temperatura de precalentamiento
Dosis
topic Termoluminiscencia
Aguamarina
Parámetros cinéticos
Temperatura de precalentamiento
Dosis
Thermoluminescence
Aquamarine
Kinetic parameters
Temperature warm-up
Dose
dc.subject.keywords.eng.fl_str_mv Thermoluminescence
Aquamarine
Kinetic parameters
Temperature warm-up
Dose
description En este trabajo se reporta la respuesta termoluminiscente de berilo en su variedad conocida como aguamarina (Be3Al2(SiO3)6:Fe). Muestras comerciales de aguamarina fueron irradiadas a temperatura ambiente utilizando una fuente de radiación β (90Sr/90Y) a una tasa de dosis de 0.10 °Gy−1. Las medidas se registraron en un lector RISØ TL / OSL DA-20, desde 1 hasta 400°C, a una tasa de calentamiento de 1°C−1 después de la exposición a dosis de radiación beta de 10 Gy. Antes de cada lectura la aguamarina fue sometida a diferentes temperaturas de precalentamiento postirradiación desde los 20°C hasta los 52°C. La aguamarina exhibe un pico de brillo de alta intensidad alrededor de los 77°C y dos picos secundarios alrededor de los 115°C, 190°C y 300°C respectivamente. La posición del pico principal (TM) es independiente de la temperatura de precalentamiento evidenciándose una ligera disminución en la intensidad máxima () a medida que aumenta la temperatura de precalentamiento. El análisis cinético de la curva completa se llevó a cabo utilizando la técnica de ajuste de curva de Kitis et al. [1], los picos secundarios siguen en general una cinética de orden mixto, estos resultados concuerdan con los obtenidos por medio del software de análisis Peakfit el cual permite hacer la deconvolución de la curva de brillo de la aguamarina, encontrándose una tendencia hacia el primer orden. Los resultados muestran que el pico principal sigue una cinética de primer orden, su energía de activación está alrededor de 1eV y tiene un factor de frecuencia alrededor de 1014 −1, independientemente de la temperatura de precalentamiento. El análisis cinético del pico principal realizado utilizando los métodos de ajuste de curvas, pico de brillo completo y el ascenso inicial muestran que el pico sigue una cinética de primer orden, que su energía de activación es del orden de 1 eV y que tiene un factor de frecuencia de ~1012 s− 1.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-11-16T16:26:04Z
dc.date.available.none.fl_str_mv 2023-11-16T16:26:04Z
dc.date.issued.none.fl_str_mv 2023-11-15
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.none.fl_str_mv Text
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unicordoba.edu.co/handle/ucordoba/7905
dc.identifier.instname.none.fl_str_mv Universidad de Córdoba
dc.identifier.reponame.none.fl_str_mv Repositorio Universidad de Córdoba
dc.identifier.repourl.none.fl_str_mv https://repositorio.unicordoba.edu.co/
url https://repositorio.unicordoba.edu.co/handle/ucordoba/7905
https://repositorio.unicordoba.edu.co/
identifier_str_mv Universidad de Córdoba
Repositorio Universidad de Córdoba
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv Azorin, J. (1979). Termoluminiscencia del SiO2, del (Al2(F,OH)2)SiO4 y del Na2OAl2O36SiO2 para la dosimetría de la radiación ionizante. (Tesis de maestría). Universidad Nacional Autónoma de México-Facultad de ciencias, México.
Azorín.N. (1993). Estudio de las propiedades termoluminiscentes y ópticas de los principales materiales dosimétricos. Univeersidad Autónoma Metropolitana.
Bortolussi.C. (2013). Dosimetric dating techniques applied to desert prehistoric pottery. Padova.
Bos.A. (2001). High sensitivity thermoluminescence. Dosimetry.En: Nucl. Instr.Meth.Phys.Res, No 184,1 p.3-28. ISSN 0168-9002.
Bos.A. (2007). Radiation Measurements. Radiation Measurements 41, S45-S56.
Bragg et al. (1965). Crystal Structures of Minerals. Cornell University Press.
Chen.R, & Mckeever. (1997). Luminescence Models. Radiation Masurements, 27, 625- 661.
Chithambo, M. (2007). The analysis of time-resolved optically stimulated luminescence: II. Computer simulations and experimental results. Journal of Physics D: Applied Physics, 1880–1889.
Cuevas, E. (2016). Thermoluminescence, Optical Absorption and Electron Paramagnetic Resonance Studies of Emerald. (Tesis de maestría). Universidade de São Paulo-Instituto de Física, São Paulo.
D. Daniel et al. (2014). Thermoluminescence characteristics and dosimetric aspects of fluoroperovskites (NaMgF3:Eu2+,Ce3+). Journal of rare earths, 496-500.
DTU Nutech, D. (Agosto de 2015). The Risø TL/OSL Reader. Manual del usuario.
Duggan.L, & Budzanowski.M. (2000). The light sensitivity of thermoluminescent materials: LiF:Mg;Cu,P;LiF:Mg,Ti and Al2O3:C. Radiat.Meas, 32, 335-342.
Garlick.G, & Gibson.A. (1948). The electron trap mechanism of luminescence in sulphide and silicate Phosphors. Radiat.Prot.Dosim, 101(1-4), 179-184.
Horowitz, Y. S. (1984). Thermoluminescence and thermoluminescent dosimetry (Vol. 1). Boca Raton: CRC Press.
Kalita.J, & Chithambo.M. (2016). The influence of dose on the kinetic parameters and dosimetric features of the main thermoluminescence glow peak in a-Al2O3:C,Mg. Beam interactions with materials and atoms.
Kalita.J, & Chithambo.M. (2017). The influence of dose on the kinetic parameters and dosimetric features of the main thermoluminescence glow peak in a-Al2O3:C,Mg. Beam interactions with materials and atoms.
Kittis.G., Gómez-Ros, J.M., & Tuyn.J. (1998). Thermoluminescence glow curve deconvolution functions for first second and general order kinetics Phys.D: Appl. Phys. 31, 2636-2641.
Lee et al. (2005). On the role of the dopants in LiF:Mg,Cu,Na,Si thermoluminescent material. Radiation Protection Dosimetry, 115, 340-344.
M. Moscovitch, Y. H. (2006). Thermoluminescent materials for medical application: LiF:Mg,Ti and LiF:Mg,Cu,P. Radiation measurements, 41, S71-S77.
M.I. Katı et al. (2012). Luminescence behaviour of beryl (aquamarine variety) from Turkey. Journal of Luminescence, 2599-2602.
M.L. Chitambo et al. (1995). Low temperature luminescence of transition metal-doped beryls. Journal of Afrcan Earth Sciences, 20, 53-60.
Mahmoud, B., & Mohamed, O. (2020). Determination of Thermoluminescence Kinetic Parameters of La2O3 Doped with Dy3+ and Eu3+. Multidisciplinary Digital Publishing Institute, 2-23.
May.C, & Partridge.J. (1964). Thermoluminescence kinetics of alpha irradiated alkali halides. J.Chem.Phys, 40,1401-1415.
McKeever et al. (1995). Thermoluminescence Dosimetry Materials:Properties and Uses. United Kingdom: Nuclear Technology Publishing.
McKeever, S. (1985). Thermoluminescence of solids. Cambridge University Press, Cambridge.
McKinlay, A. (1981). Thermoluminescence Dosimetry. Medical Phisics Handbook 5.
Oberhofer, M. y. (1981). Applied Thermoluminescence Dosimetry . Adam hilger, Bristol.
Osorio.A. (2008). Pastillas delgadas de AL2O3 como dosímetros termoluminiscente de baja dosis.
Pagonis.V, Kitis.G, & Furetta.C. (2006). Numerrical and practical exercises in thermoluminescence. Springer.
Pagonis.V., & Kitis.G. (2001). Fit of second order thermoluminescence glow peaks using the logistic distribution function. Radiation Protection Dosimetry, 95, 225-229.
Pagonis.V., & kitis.G. (2002). Fit of first order thermoluminescence glow peaks using the weibull distribution function. Radiation Protection Dosimetry, 101, 93-98.
Papin.E, Grosseau.P, & et.al. (1996). Influence of the calcination conditions on the thermoluminescence of pure and doped a alumina powders. Padiat Prot Dosimetry, p.243- 246.ISN 1742-3406.
Perez.M. (2011). Estudio de las propiedades termoluminiscentes de pastillas delgadas de al2o3. Monteria: tesis de pregrado. Universidad de Córdoba.
Petro, A. (2013). Determinación de los parámetros cinéticos en matrices de alúmina sinterizadas bajo diferentes condiciones de calcinacion. Monteria : Universidad de Córdoba.
Randall, J. y. (1945). Phosphorescence and electron traps I. The study of trap distributions. En:Proc.R.Soc.No184, 366-389.ISSN:1471-2946.
Rocha.F, & Caldas.L. (1999). Charactterization of AL2O3 sintered pellets for dosimetric applications in radiotherapy. Radiol.Prot, 19,51-55.
Rocha.F, Oliveira.M, & Caldas.L. (2003). Thin sintered Al2O3 pellets as thermoluminescent dosimeters for the therapeutic dose range. . Applied Radiation and Isotopes, 58,719-722.
Rojas.J. (2013). Análisis de la curva de brillo termoluminiscente de matrices de alúmina obtenidas bajo diferentes condiciones de sinterización y dopaje con cerio. Revista politécnica ISSN 19002351.
Rojas.J. (2019). Cerium and manganese doped alumina matrices: Preparation, characterization and kinetic analysis of their glow curves. Journal of Luminescence.
Sun.T, & Tang.K. (2019). Thermoluminescence of newly developed highly sensitive α- Al2O3:C by the vertical gradient freezing method. Radiation protection dosimetry.
Sunta.C, Ayta.W, Chubaci.J, & Watanabe.S. (2002). General order and mixed order - fits of thermoluminescence glow curves - a comparison. Radiat.Meas, 35(1), 47-57.
Watanabe et al. (2014). High- and very-high-dose dosimetry using silicate minerals. Radiation Measurements, 66-69.
Youcefi.Z, G. ,. (2020). Extraction of some trapping parameters from experimental thermoluminescence (TL) signal of alumina (α-Al2O3) using analytical models. Chinese Journal of Physics.
dc.rights.none.fl_str_mv Copyright Universidad de Córdoba, 2023
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.license.none.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Copyright Universidad de Córdoba, 2023
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidad de Córdoba
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias Básicas
dc.publisher.place.none.fl_str_mv Montería, Córdoba - Colombia
dc.publisher.program.none.fl_str_mv Física
publisher.none.fl_str_mv Universidad de Córdoba
institution Universidad de Córdoba
bitstream.url.fl_str_mv https://repositorio.unicordoba.edu.co/bitstreams/52da8a28-88e6-48a9-8de6-0c4285fde082/download
https://repositorio.unicordoba.edu.co/bitstreams/6951ad00-f029-4a6b-827d-b16eff7b84fc/download
https://repositorio.unicordoba.edu.co/bitstreams/2897c45e-09a9-485c-9fcc-eac3fd233156/download
https://repositorio.unicordoba.edu.co/bitstreams/d678d791-7619-4df5-a85c-9a5f8107cb6c/download
https://repositorio.unicordoba.edu.co/bitstreams/47439358-3641-4caf-bf9c-84339b313613/download
https://repositorio.unicordoba.edu.co/bitstreams/2584a2ba-5bdb-4d46-a097-a45a30349f81/download
https://repositorio.unicordoba.edu.co/bitstreams/457b63f7-3176-40c0-b1f1-2c7f9cc890b0/download
bitstream.checksum.fl_str_mv b1d7319ffb0da8e65237d4d46b1faa59
3d5681dea6bddf6b1019b7d5ff20e1a0
73a5432e0b76442b22b026844140d683
ef46f11d827b39a21b985c185ad30213
d99a5cd31700cd4f91f39cfebc8c57c7
9bdc3f92c9e646eaf4ceaff5e4fed5bd
c5c68560475bffab2a5c1b01e52bac81
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de Córdoba
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1839636061200842752
spelling Cogollo Pitalúa, Rafael Ricardo169474ca-0c4c-4567-9c75-ef604cfe8c9d-1Vertel Ramos Orlando Enrique775c32ca-6822-4fbb-bb06-b2c48e742310-1Maya Taboada Héctor RogerOviedo Cueter Juan Manuele02d4ae1-3ef7-415a-b62e-266d5a5c2a38-1Sánchez, Luis Carlosa78be1bb-a887-407d-bb04-03c90329f712-12023-11-16T16:26:04Z2023-11-16T16:26:04Z2023-11-15https://repositorio.unicordoba.edu.co/handle/ucordoba/7905Universidad de CórdobaRepositorio Universidad de Córdobahttps://repositorio.unicordoba.edu.co/En este trabajo se reporta la respuesta termoluminiscente de berilo en su variedad conocida como aguamarina (Be3Al2(SiO3)6:Fe). Muestras comerciales de aguamarina fueron irradiadas a temperatura ambiente utilizando una fuente de radiación β (90Sr/90Y) a una tasa de dosis de 0.10 °Gy−1. Las medidas se registraron en un lector RISØ TL / OSL DA-20, desde 1 hasta 400°C, a una tasa de calentamiento de 1°C−1 después de la exposición a dosis de radiación beta de 10 Gy. Antes de cada lectura la aguamarina fue sometida a diferentes temperaturas de precalentamiento postirradiación desde los 20°C hasta los 52°C. La aguamarina exhibe un pico de brillo de alta intensidad alrededor de los 77°C y dos picos secundarios alrededor de los 115°C, 190°C y 300°C respectivamente. La posición del pico principal (TM) es independiente de la temperatura de precalentamiento evidenciándose una ligera disminución en la intensidad máxima () a medida que aumenta la temperatura de precalentamiento. El análisis cinético de la curva completa se llevó a cabo utilizando la técnica de ajuste de curva de Kitis et al. [1], los picos secundarios siguen en general una cinética de orden mixto, estos resultados concuerdan con los obtenidos por medio del software de análisis Peakfit el cual permite hacer la deconvolución de la curva de brillo de la aguamarina, encontrándose una tendencia hacia el primer orden. Los resultados muestran que el pico principal sigue una cinética de primer orden, su energía de activación está alrededor de 1eV y tiene un factor de frecuencia alrededor de 1014 −1, independientemente de la temperatura de precalentamiento. El análisis cinético del pico principal realizado utilizando los métodos de ajuste de curvas, pico de brillo completo y el ascenso inicial muestran que el pico sigue una cinética de primer orden, que su energía de activación es del orden de 1 eV y que tiene un factor de frecuencia de ~1012 s− 1.Introducción ................................................................................................................................ 7Planteamiento de problema ..................................................................................................... 8Justificación ................................................................................................................................. 9Objetivos .................................................................................................................................... 10Objetivo general .................................................................................................................... 10Objetivos específicos ............................................................................................................. 10Estado del arte ........................................................................................................................... 11PARTE I ..................................................................................................................................... 13ASPECTOS TEÓRICOS ........................................................................................................... 131. LUMINISCENCIA ........................................................................................................... 142. MODELOS DE TERMOLUMINISCENCIA ................................................................. 183. FUNCIONES DE DECONVOLUCIÓN PARA CURVAS DE BRILLO TL. .............. 314. MÉTODOS DE ANALISIS DE CURVAS DE BRILLO TL .............................................. 35PARTE II ................................................................................................................................... 38ASPECTOS EXPERIMENTALES Y RESULTADOS ............................................................ 386. RESULTADOS Y ANÁLISIS ................................................................................................ 436.1 Características de la Curva de brillo ............................................................................ 436.2 Dependencia de la posición del pico con la temperatura de precalentamiento...... 446.5.1 Método de ascenso inicial (IR) ............................................................................... 476.5.2 Método del pico de brillo completo ...................................................................... 496.6.1 Técnica de ajuste de curvas .................................................................................... 516.6.2 Deconvolución de la curva de brillo usando la función asimétrica logística. .. 54Anexo A ..................................................................................................................................... 62Anexo A. Deducción de las ecuaciones cinéticas de primer, segundo y orden general .................. 62A.1 CINÉTICA DE PRIMER ORDEN .............................................................................. 62A.2 CINÉTICA DE SEGUNDO ORDEN .......................................................................... 63A.3 CINÉTICA DE ORDEN GENERAL ........................................................................... 64Anexo B. Deducción de las funciones de deconvolución de curvas TL para cinéticas de primer, segundo y orden general. ............................................................................................................. 65B.1 ECUACIONES CINÉTICAS ...................................................................................... 65B.2 FUNCIÓN DE UN PICO DE BRILLO PARA CINÉTICA DE PRIMER ORDEN ...... 66B.3 FUNCIÓN DE UN PICO DE BRILLO PARA CINÉTICA DE SEGUNDO ORDEN .. 67B.4 FUNCIÓN DE UN PICO DE BRILLO PARA CINÉTICA DE ORDEN GENERAL... 69Anexo C: Visión general de la respuesta a la dosis no lineal de los materiales TL .......................... 70PregradoFísico(a)Trabajos de Investigación y/o ExtensiónspaUniversidad de CórdobaFacultad de Ciencias BásicasMontería, Córdoba - ColombiaFísicaCopyright Universidad de Córdoba, 2023https://creativecommons.org/licenses/by-nc-nd/4.0/Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Influencia de la temperatura de precalentamiento en los parámetros cinéticos de la Aguamarina (Be3Al2(SiO3)6:Fe)Trabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/acceptedVersionTextAzorin, J. (1979). Termoluminiscencia del SiO2, del (Al2(F,OH)2)SiO4 y del Na2OAl2O36SiO2 para la dosimetría de la radiación ionizante. (Tesis de maestría). Universidad Nacional Autónoma de México-Facultad de ciencias, México.Azorín.N. (1993). Estudio de las propiedades termoluminiscentes y ópticas de los principales materiales dosimétricos. Univeersidad Autónoma Metropolitana.Bortolussi.C. (2013). Dosimetric dating techniques applied to desert prehistoric pottery. Padova.Bos.A. (2001). High sensitivity thermoluminescence. Dosimetry.En: Nucl. Instr.Meth.Phys.Res, No 184,1 p.3-28. ISSN 0168-9002.Bos.A. (2007). Radiation Measurements. Radiation Measurements 41, S45-S56.Bragg et al. (1965). Crystal Structures of Minerals. Cornell University Press.Chen.R, & Mckeever. (1997). Luminescence Models. Radiation Masurements, 27, 625- 661.Chithambo, M. (2007). The analysis of time-resolved optically stimulated luminescence: II. Computer simulations and experimental results. Journal of Physics D: Applied Physics, 1880–1889.Cuevas, E. (2016). Thermoluminescence, Optical Absorption and Electron Paramagnetic Resonance Studies of Emerald. (Tesis de maestría). Universidade de São Paulo-Instituto de Física, São Paulo.D. Daniel et al. (2014). Thermoluminescence characteristics and dosimetric aspects of fluoroperovskites (NaMgF3:Eu2+,Ce3+). Journal of rare earths, 496-500.DTU Nutech, D. (Agosto de 2015). The Risø TL/OSL Reader. Manual del usuario.Duggan.L, & Budzanowski.M. (2000). The light sensitivity of thermoluminescent materials: LiF:Mg;Cu,P;LiF:Mg,Ti and Al2O3:C. Radiat.Meas, 32, 335-342.Garlick.G, & Gibson.A. (1948). The electron trap mechanism of luminescence in sulphide and silicate Phosphors. Radiat.Prot.Dosim, 101(1-4), 179-184.Horowitz, Y. S. (1984). Thermoluminescence and thermoluminescent dosimetry (Vol. 1). Boca Raton: CRC Press.Kalita.J, & Chithambo.M. (2016). The influence of dose on the kinetic parameters and dosimetric features of the main thermoluminescence glow peak in a-Al2O3:C,Mg. Beam interactions with materials and atoms.Kalita.J, & Chithambo.M. (2017). The influence of dose on the kinetic parameters and dosimetric features of the main thermoluminescence glow peak in a-Al2O3:C,Mg. Beam interactions with materials and atoms.Kittis.G., Gómez-Ros, J.M., & Tuyn.J. (1998). Thermoluminescence glow curve deconvolution functions for first second and general order kinetics Phys.D: Appl. Phys. 31, 2636-2641.Lee et al. (2005). On the role of the dopants in LiF:Mg,Cu,Na,Si thermoluminescent material. Radiation Protection Dosimetry, 115, 340-344.M. Moscovitch, Y. H. (2006). Thermoluminescent materials for medical application: LiF:Mg,Ti and LiF:Mg,Cu,P. Radiation measurements, 41, S71-S77.M.I. Katı et al. (2012). Luminescence behaviour of beryl (aquamarine variety) from Turkey. Journal of Luminescence, 2599-2602.M.L. Chitambo et al. (1995). Low temperature luminescence of transition metal-doped beryls. Journal of Afrcan Earth Sciences, 20, 53-60.Mahmoud, B., & Mohamed, O. (2020). Determination of Thermoluminescence Kinetic Parameters of La2O3 Doped with Dy3+ and Eu3+. Multidisciplinary Digital Publishing Institute, 2-23.May.C, & Partridge.J. (1964). Thermoluminescence kinetics of alpha irradiated alkali halides. J.Chem.Phys, 40,1401-1415.McKeever et al. (1995). Thermoluminescence Dosimetry Materials:Properties and Uses. United Kingdom: Nuclear Technology Publishing.McKeever, S. (1985). Thermoluminescence of solids. Cambridge University Press, Cambridge.McKinlay, A. (1981). Thermoluminescence Dosimetry. Medical Phisics Handbook 5.Oberhofer, M. y. (1981). Applied Thermoluminescence Dosimetry . Adam hilger, Bristol.Osorio.A. (2008). Pastillas delgadas de AL2O3 como dosímetros termoluminiscente de baja dosis.Pagonis.V, Kitis.G, & Furetta.C. (2006). Numerrical and practical exercises in thermoluminescence. Springer.Pagonis.V., & Kitis.G. (2001). Fit of second order thermoluminescence glow peaks using the logistic distribution function. Radiation Protection Dosimetry, 95, 225-229.Pagonis.V., & kitis.G. (2002). Fit of first order thermoluminescence glow peaks using the weibull distribution function. Radiation Protection Dosimetry, 101, 93-98.Papin.E, Grosseau.P, & et.al. (1996). Influence of the calcination conditions on the thermoluminescence of pure and doped a alumina powders. Padiat Prot Dosimetry, p.243- 246.ISN 1742-3406.Perez.M. (2011). Estudio de las propiedades termoluminiscentes de pastillas delgadas de al2o3. Monteria: tesis de pregrado. Universidad de Córdoba.Petro, A. (2013). Determinación de los parámetros cinéticos en matrices de alúmina sinterizadas bajo diferentes condiciones de calcinacion. Monteria : Universidad de Córdoba.Randall, J. y. (1945). Phosphorescence and electron traps I. The study of trap distributions. En:Proc.R.Soc.No184, 366-389.ISSN:1471-2946.Rocha.F, & Caldas.L. (1999). Charactterization of AL2O3 sintered pellets for dosimetric applications in radiotherapy. Radiol.Prot, 19,51-55.Rocha.F, Oliveira.M, & Caldas.L. (2003). Thin sintered Al2O3 pellets as thermoluminescent dosimeters for the therapeutic dose range. . Applied Radiation and Isotopes, 58,719-722.Rojas.J. (2013). Análisis de la curva de brillo termoluminiscente de matrices de alúmina obtenidas bajo diferentes condiciones de sinterización y dopaje con cerio. Revista politécnica ISSN 19002351.Rojas.J. (2019). Cerium and manganese doped alumina matrices: Preparation, characterization and kinetic analysis of their glow curves. Journal of Luminescence.Sun.T, & Tang.K. (2019). Thermoluminescence of newly developed highly sensitive α- Al2O3:C by the vertical gradient freezing method. Radiation protection dosimetry.Sunta.C, Ayta.W, Chubaci.J, & Watanabe.S. (2002). General order and mixed order - fits of thermoluminescence glow curves - a comparison. Radiat.Meas, 35(1), 47-57.Watanabe et al. (2014). High- and very-high-dose dosimetry using silicate minerals. Radiation Measurements, 66-69.Youcefi.Z, G. ,. (2020). Extraction of some trapping parameters from experimental thermoluminescence (TL) signal of alumina (α-Al2O3) using analytical models. Chinese Journal of Physics.TermoluminiscenciaAguamarinaParámetros cinéticosTemperatura de precalentamientoDosisThermoluminescenceAquamarineKinetic parametersTemperature warm-upDosePublicationORIGINALvertelramosorlandoenrique.pdfvertelramosorlandoenrique.pdfapplication/pdf2963876https://repositorio.unicordoba.edu.co/bitstreams/52da8a28-88e6-48a9-8de6-0c4285fde082/downloadb1d7319ffb0da8e65237d4d46b1faa59MD52Formato de autorización.pdfFormato de autorización.pdfapplication/pdf769214https://repositorio.unicordoba.edu.co/bitstreams/6951ad00-f029-4a6b-827d-b16eff7b84fc/download3d5681dea6bddf6b1019b7d5ff20e1a0MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://repositorio.unicordoba.edu.co/bitstreams/2897c45e-09a9-485c-9fcc-eac3fd233156/download73a5432e0b76442b22b026844140d683MD55TEXTvertelramosorlandoenrique.pdf.txtvertelramosorlandoenrique.pdf.txtExtracted texttext/plain104682https://repositorio.unicordoba.edu.co/bitstreams/d678d791-7619-4df5-a85c-9a5f8107cb6c/downloadef46f11d827b39a21b985c185ad30213MD56Formato de autorización.pdf.txtFormato de autorización.pdf.txtExtracted texttext/plain126https://repositorio.unicordoba.edu.co/bitstreams/47439358-3641-4caf-bf9c-84339b313613/downloadd99a5cd31700cd4f91f39cfebc8c57c7MD58THUMBNAILvertelramosorlandoenrique.pdf.jpgvertelramosorlandoenrique.pdf.jpgGenerated Thumbnailimage/jpeg6715https://repositorio.unicordoba.edu.co/bitstreams/2584a2ba-5bdb-4d46-a097-a45a30349f81/download9bdc3f92c9e646eaf4ceaff5e4fed5bdMD57Formato de autorización.pdf.jpgFormato de autorización.pdf.jpgGenerated Thumbnailimage/jpeg13602https://repositorio.unicordoba.edu.co/bitstreams/457b63f7-3176-40c0-b1f1-2c7f9cc890b0/downloadc5c68560475bffab2a5c1b01e52bac81MD59ucordoba/7905oai:repositorio.unicordoba.edu.co:ucordoba/79052023-11-17 03:00:39.347https://creativecommons.org/licenses/by-nc-nd/4.0/Copyright Universidad de Córdoba, 2023open.accesshttps://repositorio.unicordoba.edu.coRepositorio Universidad de Córdobabdigital@metabiblioteca.comPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K