Development of cognitive models for the metacognitive architecture CARINA

Cognitive modeling is a methodology of cognitive sciences that allows the simulation of human cognitive processes in a variety forms, commonly in a computational and mathematical way. The cognitive modeling aims at understanding cognition basis by designing cognitive models based on mathematical or...

Full description

Autores:
Jerónimo Montiel, Alba Judith
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2020
Institución:
Universidad de Córdoba
Repositorio:
Repositorio Institucional Unicórdoba
Idioma:
eng
OAI Identifier:
oai:repositorio.unicordoba.edu.co:ucordoba/2888
Acceso en línea:
https://repositorio.unicordoba.edu.co/handle/ucordoba/2888
Palabra clave:
Modelado cognitivo
Modelos cognitivos
Arquitecturas Cognitivas
Arquitecturas metacognitivas
CARINA
Cognitive Modeling
Cognitive Models
Cognitive Architectures
Metacognitive Architectures
CARINA
Rights
closedAccess
License
Copyright Universidad de Córdoba, 2020
id UCORDOBA2_058314a923a9b8f0a46cc13ace75d51f
oai_identifier_str oai:repositorio.unicordoba.edu.co:ucordoba/2888
network_acronym_str UCORDOBA2
network_name_str Repositorio Institucional Unicórdoba
repository_id_str
dc.title.spa.fl_str_mv Development of cognitive models for the metacognitive architecture CARINA
title Development of cognitive models for the metacognitive architecture CARINA
spellingShingle Development of cognitive models for the metacognitive architecture CARINA
Modelado cognitivo
Modelos cognitivos
Arquitecturas Cognitivas
Arquitecturas metacognitivas
CARINA
Cognitive Modeling
Cognitive Models
Cognitive Architectures
Metacognitive Architectures
CARINA
title_short Development of cognitive models for the metacognitive architecture CARINA
title_full Development of cognitive models for the metacognitive architecture CARINA
title_fullStr Development of cognitive models for the metacognitive architecture CARINA
title_full_unstemmed Development of cognitive models for the metacognitive architecture CARINA
title_sort Development of cognitive models for the metacognitive architecture CARINA
dc.creator.fl_str_mv Jerónimo Montiel, Alba Judith
dc.contributor.advisor.spa.fl_str_mv Gómez Salgado, Adán Alberto
dc.contributor.author.spa.fl_str_mv Jerónimo Montiel, Alba Judith
dc.subject.proposal.spa.fl_str_mv Modelado cognitivo
Modelos cognitivos
Arquitecturas Cognitivas
Arquitecturas metacognitivas
CARINA
topic Modelado cognitivo
Modelos cognitivos
Arquitecturas Cognitivas
Arquitecturas metacognitivas
CARINA
Cognitive Modeling
Cognitive Models
Cognitive Architectures
Metacognitive Architectures
CARINA
dc.subject.keywords.eng.fl_str_mv Cognitive Modeling
Cognitive Models
Cognitive Architectures
Metacognitive Architectures
CARINA
description Cognitive modeling is a methodology of cognitive sciences that allows the simulation of human cognitive processes in a variety forms, commonly in a computational and mathematical way. The cognitive modeling aims at understanding cognition basis by designing cognitive models based on mathematical or computational processes, mechanisms and representations. A cognitive model is a verbal-conceptual computational and mathematical description of some mental processes, whose main purpose is to understand and/or predict human or animal behavior. Cognitive models developed for a cognitive architecture are characterized by being executables and producing a set of specific behaviors. CARINA is a metacognitive architecture to create artificial intelligent agents derived from Metacognitive Metamodel MISM. CARINA is a metacognitive architecture structured by two cognitive levels called object-level and meta-level. The object-level has the model of the world to solve problems. The meta-level represents the reasoning of an artificial intelligent agent. Furthermore, the meta-level has the components, the knowledge and the mechanisms for an intelligent system to monitor and control its own learning and reasoning processes. The main objective of this research project is to develop cognitive models as knowledge acquisition mechanisms for the metacognitive architecture CARINA, through the following specific objectives: i) to represent formal, semantic and computationally cognitive models for the CARINA metacognitive architecture, ii) to build a functional prototype of a framework for the creation of cognitive models in the metacognitive architecture CARINA and iii) to create cognitive models in several knowledge domains using CARINA based intelligent systems. The methodology used for this research project was part of the research methods (R+D) used in computer science, called modeling, structured by five steps: i) Formal representation, ii) Semantic representation, iii) Computational representation of a cognitive model, iv) Creation of a functional prototype for build cognitive models and v) Prototype testing and maintenance. The developed research project allows simplifying the developing intelligent agents process and the easiness to enable any programmer to uses CARINA to solve cognitive tasks, focusing only on descriptions of cognition and relationships with algorithms and programs based on computer science and technology, using a functional prototype (MetaThink version 2.0). As a result, an open standard file format, simplifying the complexities of detailed descriptions of cognitive mechanisms of brain functioning was created.
publishDate 2020
dc.date.accessioned.spa.fl_str_mv 2020-06-11T21:05:59Z
dc.date.available.spa.fl_str_mv 2020-06-11T21:05:59Z
dc.date.issued.spa.fl_str_mv 2020
dc.type.spa.fl_str_mv Trabajo de grado - Pregrado
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str publishedVersion
dc.identifier.uri.spa.fl_str_mv https://repositorio.unicordoba.edu.co/handle/ucordoba/2888
url https://repositorio.unicordoba.edu.co/handle/ucordoba/2888
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Aamodt, A. (1995). Knowledge acquisition and learning by experience--the role of case-specific knowledge. Machine Learning and Knowledge Acquisition, 197–245.
Anderson, J. R. (1996). ACT: A simple theory of complex cognition. American Psychologist, 51(4), 355.
Apt, K. R., Blair, H. A., & Walker, A. (1988). Towards a theory of declarative knowledge. In Foundations of deductive databases and logic programming (pp. 89–148). Elsevier.
Arevalillo-Herráez, M., Arnau, D., & Marco-Giménez, L. (2013). Domain-specific knowledge representation and inference engine for an intelligent tutoring system. Knowledge-Based Systems, 49, 97–105.
Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its control processes.
Avery, E., Kelley, T. D., & Davani, D. (2006). Using cognitive architectures to improve robot control: Integrating production systems, semantic networks, and sub-symbolic processing. 15th Annual Conference on Behavioral Representation in Modeling and Simulation (BRIMS).
Barchini, G. E., Sosa, M., & Herrera, S. (2004). La informática como disciplina científica. Ensayo de mapeo disciplinar. Revista de Informática Educativa y Medios Audiovisuales, 1(2), 1-11.
Bechtel, W. (2012). Mental mechanisms: Philosophical perspectives on cognitive neuroscience. Psychology Press.
Boley, H., Paschke, A., & Shafiq, O. (2010). RuleML 1.0: the overarching specification of web rules. International Workshop on Rules and Rule Markup Languages for the Semantic Web, 162–178.
Borst, J. P., & Anderson, J. R. (2015). Using the ACT-R Cognitive Architecture in combination with fMRI data. In An introduction to model-based cognitive neuroscience (pp. 339–352). Springer.
Caro, Manuel F., Josvula, D. P., Gomez, A. A., & Kennedy, C. M. (2018). Introduction to the CARINA Metacognitive Architecture. Proceedings of 2018 IEEE 17th International Conference on Cognitive Informatics and Cognitive Computing, ICCI*CC 2018, 530–540. https://doi.org/10.1109/ICCI-CC.2018.8482051
Caro, Manuel F, & Jiménez, J. A. (2014). MOF-based metamodel for pedagogical strategy modeling in Intelligent Tutoring Systems. 2014 9th Computing Colombian Conference (9CCC), 1–6.
Caro, Manuel F, Josyula, D. P., Cox, M. T., & Jiménez, J. A. (2014). Design and validation of a metamodel for metacognition support in artificial intelligent systems. Biologically Inspired Cognitive Architectures, 9, 82–104.
Caro, Manuel F, Josyula, D. P., Jiménez, J. A., Kennedy, C. M., & Cox, M. T. (2015). A domain-specific visual language for modeling metacognition in intelligent systems. Biologically Inspired Cognitive Architectures, 13, 75–90.
Caro, Manuel Fernando, Josyula, D. P., Madera, D. P., Kennedy, C. M., & Gómez, A. A. (2019). The CARINA Metacognitive Architecture. International Journal of Cognitive Informatics and Natural Intelligence (IJCINI), 13(4), 71–90.
Cox, M. T. (2005). Field review: Metacognition in computation: A selected research review. Artificial Intelligence, 169(2), 104–141.
Cox, M. T., Oates, T., & Perlis, D. (2011). Toward an Integrated Metacognitive Architecture. AAAI Fall Symposium: Advances in Cognitive Systems.
Flórez, Y. P., Jerónimo, A. J., Castillo, M. E., & Gómez, A. A. (2019). User-Based Cognitive Model in NGOMS-L for the Towers of Hanoi Algorithm in the Metacognitive Architecture CARINA. The International Conference on Advances in Emerging Trends and Technologies, 473–484.
Ford, K. M., & Bradshaw, J. M. (1993). Introduction: Knowledge acquisition as modeling. International Journal of Intelligent Systems, 8(1), 1–7.
Georgeff, M. (1988). A theory of action for multiagent planning. In Readings in Distributed Artificial Intelligence (pp. 205–209). Elsevier.
Gerasimou, S., Vogel, T., & Diaconescu, A. (2019). Software Engineering for Intelligent and Autonomous Systems: Report from the GI Dagstuhl Seminar 18343. ArXiv Preprint ArXiv:1904.01518.
Ghasemzadeh, M. (2010). Constructing Semantic Knowledge Model based on Children Dictionary.
Glass, J. M. (2008). Fibromyalgia and cognition. The Journal of Clinical Psychiatry, 69, 20–24.
Gobet, F., Lane, P. C. R., Croker, S., Cheng, P. C. H., Jones, G., Oliver, I., & Pine, J. M. (2001). Chunking mechanisms in human learning. Trends in Cognitive Sciences, 5(6), 236–243.
Goela, V., Pullara, D., & Grafman, J. (2001). A computational model of frontal lobe dysfunction: Working memory and the Tower of Hanoi task. Cognitive Science, 25(2), 287–313.
Gonzalez, C., & Gonzalez, C. (2002). The Role of Cognitive Modeling in Enhancing Dynamic Decisions. Retrieved April 2, 2018, from http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.712.5953
Hatzilygeroudis, I., & Prentzas, J. (2006). Knowledge representation in intelligent educational systems. In Web-based intelligent e-learning systems: Technologies and applications (pp. 175–192). IGI Global.
Hatzilygeroudis, I., & Prentzas, J. (2004). Knowledge representation requirements for intelligent tutoring systems. International Conference on Intelligent Tutoring Systems, 87–97.
Isern, D., Gómez-Alonso, C., & Moreno, A. (2008). Methodological development of a multi-agent system in the healthcare domain. Communications of SIWN, 3, 65–68.
Jensen, R., de Moraes Lopes, M. H. B., Silveira, P. S. P., Ortega, N. R. S., & others. (2012). The development and evaluation of software to verify diagnostic accuracy. Revista Da Escola de Enfermagem Da USP.
Jerónimo, A. J., Acosta, K., Caro, M. F., & Rodríguez, R. (2017). Protocolos verbales para el análisis del uso de estrategias metacognitivas en la elaboración de algoritmos por estudiantes de grado sexto de la institución educativa Mercedes Ábrego. In V congreso Internacional y XIII encuentro nacional de educación en tecnología e informática.
Jerónimo, A. J., Caro, M. F., & Gómez, A. A. (2018). Formal Specification of cognitive models in CARINA. 2018 IEEE 17th International Conference on Cognitive Informatics & Cognitive Computing (ICCI* CC), 614–619.
John, B. E., & Kieras, D. E. (1996). The GOMS family of user interface analysis techniques: Comparison and contrast. ACM Transactions on Computer-Human Interaction (TOCHI), 3(4), 320–351.
Johns, B. T., Taler, V., Pisoni, D. B., Farlow, M. R., Hake, A. M., Kareken, D. A., Unverzagt, F. W., & Jones, M. N. (2018). Cognitive modeling as an interface between brain and behavior: Measuring the semantic decline in mild cognitive impairment. Canadian Journal of Experimental Psychology/Revue Canadienne de Psychologie Expérimentale, 72(2), 117.
Kieras, D. E. (1999). A guide to GOMS model usability evaluation using GOMSL and GLEAN3. University of Michigan, 313.
Kopp, S., & Bergmann, K. (2017). Using cognitive models to understand multimodal processes: The case for speech and gesture production. The Handbook of Multimodal-Multisensor Interfaces, 239–276.
Kotseruba, I., Gonzalez, O. J. A., & Tsotsos, J. K. (2016). A review of 40 years of cognitive architecture research: focus on perception, attention, learning and applications. CoRR Abs/1610.08602.
Kronenfeld, D. B. (1978). Scripts, plans, goals, and understanding: an inquiry into human knowledge structures By Roger C. Schank and Robert P. Abelson. Language, 54(3), 779.
Kwasnik, B. H. (1999). The role of classification in knowledge representation and discovery.
Lebiere, C. (1999). The dynamics of cognition: An ACT-R model of cognitive arithmetic. Kognitionswissenschaft, 8(1), 5–19.
Levesque, H. J. (1986). Knowledge Representation and Reasoning. Annual Review of Computer Science, 1(1), 255–287. https://doi.org/10.1146/annurev.cs.01.060186.001351
Lieder, F., & Griffiths, T. L. (2019). Resource-rational analysis: understanding human cognition as the optimal use of limited computational resources. Behavioral and Brain Sciences, 1–85.
Lieto, A., Bhatt, M., Oltramari, A., & Vernon, D. (2018, May 1). The role of cognitive architectures in general artificial intelligence. Cognitive Systems Research, 48, 1–3. https://doi.org/10.1016/j.cogsys.2017.08.003
López, A. L. E., Calao, Y. M. V., Salgado, A. A. G., & Piñeres, M. F. C. (2018). Validación de un modelo cognitivo basado en M++ para la generación de preguntas Factoid-Wh. Teknos Revista Científica, 18(2), 11–20.
Madera-Doval, D. P., Caro-Piñeres, M. F., Gómez-Salgado, A. A., Cardozo-Soto, A. M., & Jiménez-Builes, J. A. (2018). Design of metacognitive expectations of cognitive functions through ontological representations. Dyna, 85(206), 194–201.
Matta, N., Corby, O., & Prasad, B. (1998). A generic library of knowledge components to manage conflicts in CE tasks. Concurrent Engineering, 6(4), 274–287.
Miller, G. A. (1995). WordNet: a lexical database for English. Communications of the ACM, 38(11), 39–41.
Minsky, M. (1974). A Framework for Representing Knowledge.
Muller, T. J., & Heuvelink, A. (2008). Implementing a Cognitive Model in Soar and ACT - R : A Comparison. Retrieved April 2, 2018, from https://www.researchgate.net/profile/Annerieke_Heuvelink/publication/228415515_Implementing_a_Cognitive_Model_in_Soar_and_ACT-R_A_Comparison/links/0fcfd50885793794e5000000.pdf
Murray, D. (1985). Review of Elements of episodic memory.
Newell, A., & Simon, H. A. (2007). Computer science as empirical inquiry: Symbols and search. In ACM Turing award lectures (p. 1975).
Nwana, H. S., & Ndumu, D. T. (1999). Perspective on software agents research. Knowledge Engineering Review, 14(2), 125–142. https://doi.org/10.1017/S0269888999142012
O’Leary, D. E. (1998). Using AI in knowledge management: Knowledge bases and ontologies. IEEE Intelligent Systems and Their Applications, 13(3), 34–39.
Olier, A. J., Gómez, A. A., & Caro, M. F. (2018). Cognitive Modeling Process in Metacognitive Architecture CARINA. 2018 IEEE 17th International Conference on Cognitive Informatics & Cognitive Computing (ICCI* CC), 579–585.
Paisner, M., Cox, M., Maynord, M., & Perlis, D. (2014). Goal-driven autonomy for cognitive systems. Proceedings of the Annual Meeting of the Cognitive Science Society, 36(36).
Peters, S., & Shrobe, H. E. (2003). Using semantic networks for knowledge representation in an intelligent environment. Proceedings of the First IEEE International Conference on Pervasive Computing and Communications, 2003.(PerCom 2003)., 323–329.
Pew, R. W., & Mavor, A. S. (1998). Modeling Human and Organizational Behavior-Application to Military Simulations.
Pezzulo, G., & Calvi, G. (2004). A Pandemonium Can Have Goals. ICCM, 237–242.
Polk, T. A., & Seifert, C. M. (2002). Cognitive modeling. MIT Press.
Prezenski, S., Brechmann, A., Wolff, S., & Russwinkel, N. (2017). A cognitive modeling approach to strategy formation in dynamic decision making. Frontiers in Psychology, 8(AUG). DOI://doi.org/10.3389/fpsyg.2017.01335
Proctor, R. W., & Capaldi, E. J. (2012). Psychology of science: Implicit and explicit processes. Oxford University Press.
Rao, A. S., & Georgeff, M. P. (1991). Modeling rational agents within a BDI-architecture. KR, 91, 473–484.
Ritter, F. E., Tehranchi, F., & Oury, J. D. (2019). ACT-R: A cognitive architecture for modeling cognition. Wiley Interdisciplinary Reviews: Cognitive Science, 10(3), e1488.
Rus, V., Wyse, B., Piwek, P., Lintean, M., Stoyanchev, S., & Moldovan, C. (2012). A detailed account of the first question generation shared task evaluation challenge. Dialogue & Discourse, 3(2), 177–204.
Russell, S., & Norvig, P. (2002). Artificial intelligence: a modern approach.
Scheutz, M. (2001). Computational versus causal complexity. Minds and Machines, 11(4), 543–566.
Schmid, U., Ragni, M., Gonzalez, C., & Funke, J. (2011). The challenge of complexity for cognitive systems. Elsevier.
Shi, Z., Zhou, H., & Wang, J. (1997). Applying case-based reasoning to engine oil design. Artificial Intelligence in Engineering, 11(2), 167–172. https://doi.org/10.1016/S0954-1810(96)00029-5
Strube, G. (2000). Generative theories in cognitive psychology. Theory & Psychology, 10(1), 117–125.
Sun, R. (2007). The motivational and metacognitive control in CLARION. Modeling Integrated Cognitive Systems, 63–75.
Sun, R. (2008a). Introduction to computational cognitive modeling. Cambridge Handbook of Computational Psychology, 3–19.
Sun, R. (2008b). The Cambridge handbook of computational psychology. Cambridge University Press.
Sun, R. (2009). Theoretical status of computational cognitive modeling. Cognitive Systems Research, 10(2), 124–140.
Sun, R., & Helie, S. (2015). Accounting for creativity within a psychologically realistic cognitive architecture. In Computational Creativity Research: Towards Creative Machines (pp. 151–165). Springer.
Sun, R., & Naveh, I. (2004). Simulating organizational decision-making using a cognitively realistic agent model. Journal of Artificial Societies and Social Simulation, 7(3).
Sun, R., Zhang, X., & Mathews, R. (2006). Modeling meta-cognition in a cognitive architecture. Cognitive Systems Research, 7(4), 327–338.
Tanaka, M., Aoyama, N., Sugiura, A., & Koseki, Y. (1995). Integration of multiple knowledge representation for classification problems. Artificial Intelligence in Engineering, 9(4), 243–251. https://doi.org/10.1016/0954-1810(95)00006-5
Tulving, E., & others. (1972). Episodic and semantic memory. Organization of Memory, 1, 381–403.
Turing, I. B. Y. A. M. (1950). Computing machinery and intelligence-AM Turing. Mind, 59(236), 433.
Unsworth, N. (2010). On the division of working memory and long-term memory and their relation to intelligence: A latent variable approach. Acta Psychologica, 134(1), 16–28.
Van Lamsweerde, A. (n.d.). Goal-Oriented Requirements Engineering: A Guided Tour. Retrieved April 2, 2018, from http://www.panda.sys.t.u-tokyo.ac.jp/kushiro/ReferencePaper/Requirements engineering/00948567.pdf
VanPatten, B., & Williams, J. (2014). Introduction: The nature of theories. In Theories in second language acquisition (pp. 13–28). Routledge.
Wang, Y. (2008a). On concept algebra: A denotational mathematical structure for knowledge and software modeling. International Journal of Cognitive Informatics and Natural Intelligence (IJCINI), 2(2), 1–19.
Wang, Y. (2008b). On contemporary denotational mathematics for computational intelligence. In Transactions on computational science II (pp. 6–29). Springer.
Wong, J. H., Kirschenbaum, S. S., & Peters, S. (2010). Developing a cognitive model of expert performance for ship navigation maneuvers in an intelligent tutoring system.
Zhou, G., Zhou, Y., He, T., & Wu, W. (2016). Learning semantic representation with neural networks for community question answering retrieval. Knowledge-Based Systems, 93, 75–83.
dc.rights.spa.fl_str_mv Copyright Universidad de Córdoba, 2020
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_14cb
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/closedAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
rights_invalid_str_mv Copyright Universidad de Córdoba, 2020
https://creativecommons.org/licenses/by-nc/4.0/
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
http://purl.org/coar/access_right/c_14cb
eu_rights_str_mv closedAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.spatial.spa.fl_str_mv Montería, Córdoba
dc.publisher.faculty.spa.fl_str_mv Facultad de Educación y Ciencias Humanas
dc.publisher.program.spa.fl_str_mv Licenciatura en Informática
institution Universidad de Córdoba
bitstream.url.fl_str_mv https://repositorio.unicordoba.edu.co/bitstreams/758756fd-bf7b-4c9b-91fd-80c01713c58b/download
https://repositorio.unicordoba.edu.co/bitstreams/4eb47def-03fd-4c74-adcc-09b6b61210b7/download
https://repositorio.unicordoba.edu.co/bitstreams/229717d7-c9bf-4807-8b69-9444a14cced0/download
https://repositorio.unicordoba.edu.co/bitstreams/9c18d0a1-ab1f-40f3-9c2b-110692ac5b0d/download
https://repositorio.unicordoba.edu.co/bitstreams/6351c48b-7c73-43ae-8be7-fbc6927bf6f8/download
https://repositorio.unicordoba.edu.co/bitstreams/3d1442a0-ddbb-4ef8-8f17-1f3408dc2c40/download
https://repositorio.unicordoba.edu.co/bitstreams/346aa99e-c521-4806-b2a7-3c6226a1dfd1/download
bitstream.checksum.fl_str_mv ee4de8a59cbf6cc10cb82be8e8e8c743
ab19a37fecd7a06f51f1b2d2d8c784ad
2f9959eaf5b71fae44bbf9ec84150c7a
e05b9a06152652f9efe4858f9cd1f0d4
be08e258e823fcd67d07e2ea4783ee0f
4491cfe15b2ac78e4579ef533b09c4b6
18e370d3b785685d368ba5947884555f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de Córdoba
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1839636146153324544
spelling Gómez Salgado, Adán Alberto545ea436-ab32-4223-942f-3a4df258418e-1Jerónimo Montiel, Alba Judithf3766481-aeca-4144-a003-1c07cdac7a44-1Montería, Córdoba2020-06-11T21:05:59Z2020-06-11T21:05:59Z2020https://repositorio.unicordoba.edu.co/handle/ucordoba/2888Cognitive modeling is a methodology of cognitive sciences that allows the simulation of human cognitive processes in a variety forms, commonly in a computational and mathematical way. The cognitive modeling aims at understanding cognition basis by designing cognitive models based on mathematical or computational processes, mechanisms and representations. A cognitive model is a verbal-conceptual computational and mathematical description of some mental processes, whose main purpose is to understand and/or predict human or animal behavior. Cognitive models developed for a cognitive architecture are characterized by being executables and producing a set of specific behaviors. CARINA is a metacognitive architecture to create artificial intelligent agents derived from Metacognitive Metamodel MISM. CARINA is a metacognitive architecture structured by two cognitive levels called object-level and meta-level. The object-level has the model of the world to solve problems. The meta-level represents the reasoning of an artificial intelligent agent. Furthermore, the meta-level has the components, the knowledge and the mechanisms for an intelligent system to monitor and control its own learning and reasoning processes. The main objective of this research project is to develop cognitive models as knowledge acquisition mechanisms for the metacognitive architecture CARINA, through the following specific objectives: i) to represent formal, semantic and computationally cognitive models for the CARINA metacognitive architecture, ii) to build a functional prototype of a framework for the creation of cognitive models in the metacognitive architecture CARINA and iii) to create cognitive models in several knowledge domains using CARINA based intelligent systems. The methodology used for this research project was part of the research methods (R+D) used in computer science, called modeling, structured by five steps: i) Formal representation, ii) Semantic representation, iii) Computational representation of a cognitive model, iv) Creation of a functional prototype for build cognitive models and v) Prototype testing and maintenance. The developed research project allows simplifying the developing intelligent agents process and the easiness to enable any programmer to uses CARINA to solve cognitive tasks, focusing only on descriptions of cognition and relationships with algorithms and programs based on computer science and technology, using a functional prototype (MetaThink version 2.0). As a result, an open standard file format, simplifying the complexities of detailed descriptions of cognitive mechanisms of brain functioning was created.1. Chapter I Introduction 161.1. Motivation 191.2. Thesis Project 201.2.1. Research Project 201.2.2. Research Problem 201.3. Research Question 221.4. Objectives 231.4.1. General Objective 231.4.2. Specific Objectives 231.5. Methodology 231.6. Document Organization 252. Chapter II Theoretical Background 273. Chapter III Theoretical Framework 513.1. Cognitive Modeling 513.2. Cognitive Models 533.3. Cognitive Architectures 563.4. Metacognitive Architectures 573.5. Knowledge Representation 593.6. Denotational Mathematics 604. Chapter IV The Metacognitive Architecture CARINA 615. Chapter V Cognitive Models for the Metacognitive Architecture CARINA 665.1. Formal Representation of Cognitive Models in CARINA 665.1.1. Comparison with other Cognitive Architectures 735.1.2. Similarities 745.1.3. Differences 745.2. Semantic Representation of Cognitive Models in CARINA 755.2.1. Semantic Knowledge Representation of a Cognitive Model in CARINA 765.2.2. Formal Specification of Semantic Memory Units (SMU) in CARINA 785.3. Computational Representation of Cognitive Models for the CARINA Metacognitive Architecture. 805.4. MetaThink Version 2.0 835.4.1. MetaThink Version 2.0 Validation 885.5. Illustrative Examples of Cognitive Models in CARINA 936. Chapter VI Conclusions 1056.1. Recommendations 1067. Chapter VII References 108PregradoLicenciado(a) en Informáticaapplication/pdfengCopyright Universidad de Córdoba, 2020https://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/closedAccessAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)http://purl.org/coar/access_right/c_14cbDevelopment of cognitive models for the metacognitive architecture CARINATrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/publishedVersionTexthttps://purl.org/redcol/resource_type/TPhttp://purl.org/coar/version/c_970fb48d4fbd8a85Aamodt, A. (1995). Knowledge acquisition and learning by experience--the role of case-specific knowledge. Machine Learning and Knowledge Acquisition, 197–245.Anderson, J. R. (1996). ACT: A simple theory of complex cognition. American Psychologist, 51(4), 355.Apt, K. R., Blair, H. A., & Walker, A. (1988). Towards a theory of declarative knowledge. In Foundations of deductive databases and logic programming (pp. 89–148). Elsevier.Arevalillo-Herráez, M., Arnau, D., & Marco-Giménez, L. (2013). Domain-specific knowledge representation and inference engine for an intelligent tutoring system. Knowledge-Based Systems, 49, 97–105.Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its control processes.Avery, E., Kelley, T. D., & Davani, D. (2006). Using cognitive architectures to improve robot control: Integrating production systems, semantic networks, and sub-symbolic processing. 15th Annual Conference on Behavioral Representation in Modeling and Simulation (BRIMS).Barchini, G. E., Sosa, M., & Herrera, S. (2004). La informática como disciplina científica. Ensayo de mapeo disciplinar. Revista de Informática Educativa y Medios Audiovisuales, 1(2), 1-11.Bechtel, W. (2012). Mental mechanisms: Philosophical perspectives on cognitive neuroscience. Psychology Press.Boley, H., Paschke, A., & Shafiq, O. (2010). RuleML 1.0: the overarching specification of web rules. International Workshop on Rules and Rule Markup Languages for the Semantic Web, 162–178.Borst, J. P., & Anderson, J. R. (2015). Using the ACT-R Cognitive Architecture in combination with fMRI data. In An introduction to model-based cognitive neuroscience (pp. 339–352). Springer.Caro, Manuel F., Josvula, D. P., Gomez, A. A., & Kennedy, C. M. (2018). Introduction to the CARINA Metacognitive Architecture. Proceedings of 2018 IEEE 17th International Conference on Cognitive Informatics and Cognitive Computing, ICCI*CC 2018, 530–540. https://doi.org/10.1109/ICCI-CC.2018.8482051Caro, Manuel F, & Jiménez, J. A. (2014). MOF-based metamodel for pedagogical strategy modeling in Intelligent Tutoring Systems. 2014 9th Computing Colombian Conference (9CCC), 1–6.Caro, Manuel F, Josyula, D. P., Cox, M. T., & Jiménez, J. A. (2014). Design and validation of a metamodel for metacognition support in artificial intelligent systems. Biologically Inspired Cognitive Architectures, 9, 82–104.Caro, Manuel F, Josyula, D. P., Jiménez, J. A., Kennedy, C. M., & Cox, M. T. (2015). A domain-specific visual language for modeling metacognition in intelligent systems. Biologically Inspired Cognitive Architectures, 13, 75–90.Caro, Manuel Fernando, Josyula, D. P., Madera, D. P., Kennedy, C. M., & Gómez, A. A. (2019). The CARINA Metacognitive Architecture. International Journal of Cognitive Informatics and Natural Intelligence (IJCINI), 13(4), 71–90.Cox, M. T. (2005). Field review: Metacognition in computation: A selected research review. Artificial Intelligence, 169(2), 104–141.Cox, M. T., Oates, T., & Perlis, D. (2011). Toward an Integrated Metacognitive Architecture. AAAI Fall Symposium: Advances in Cognitive Systems.Flórez, Y. P., Jerónimo, A. J., Castillo, M. E., & Gómez, A. A. (2019). User-Based Cognitive Model in NGOMS-L for the Towers of Hanoi Algorithm in the Metacognitive Architecture CARINA. The International Conference on Advances in Emerging Trends and Technologies, 473–484.Ford, K. M., & Bradshaw, J. M. (1993). Introduction: Knowledge acquisition as modeling. International Journal of Intelligent Systems, 8(1), 1–7.Georgeff, M. (1988). A theory of action for multiagent planning. In Readings in Distributed Artificial Intelligence (pp. 205–209). Elsevier.Gerasimou, S., Vogel, T., & Diaconescu, A. (2019). Software Engineering for Intelligent and Autonomous Systems: Report from the GI Dagstuhl Seminar 18343. ArXiv Preprint ArXiv:1904.01518.Ghasemzadeh, M. (2010). Constructing Semantic Knowledge Model based on Children Dictionary.Glass, J. M. (2008). Fibromyalgia and cognition. The Journal of Clinical Psychiatry, 69, 20–24.Gobet, F., Lane, P. C. R., Croker, S., Cheng, P. C. H., Jones, G., Oliver, I., & Pine, J. M. (2001). Chunking mechanisms in human learning. Trends in Cognitive Sciences, 5(6), 236–243.Goela, V., Pullara, D., & Grafman, J. (2001). A computational model of frontal lobe dysfunction: Working memory and the Tower of Hanoi task. Cognitive Science, 25(2), 287–313.Gonzalez, C., & Gonzalez, C. (2002). The Role of Cognitive Modeling in Enhancing Dynamic Decisions. Retrieved April 2, 2018, from http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.712.5953Hatzilygeroudis, I., & Prentzas, J. (2006). Knowledge representation in intelligent educational systems. In Web-based intelligent e-learning systems: Technologies and applications (pp. 175–192). IGI Global.Hatzilygeroudis, I., & Prentzas, J. (2004). Knowledge representation requirements for intelligent tutoring systems. International Conference on Intelligent Tutoring Systems, 87–97.Isern, D., Gómez-Alonso, C., & Moreno, A. (2008). Methodological development of a multi-agent system in the healthcare domain. Communications of SIWN, 3, 65–68.Jensen, R., de Moraes Lopes, M. H. B., Silveira, P. S. P., Ortega, N. R. S., & others. (2012). The development and evaluation of software to verify diagnostic accuracy. Revista Da Escola de Enfermagem Da USP.Jerónimo, A. J., Acosta, K., Caro, M. F., & Rodríguez, R. (2017). Protocolos verbales para el análisis del uso de estrategias metacognitivas en la elaboración de algoritmos por estudiantes de grado sexto de la institución educativa Mercedes Ábrego. In V congreso Internacional y XIII encuentro nacional de educación en tecnología e informática.Jerónimo, A. J., Caro, M. F., & Gómez, A. A. (2018). Formal Specification of cognitive models in CARINA. 2018 IEEE 17th International Conference on Cognitive Informatics & Cognitive Computing (ICCI* CC), 614–619.John, B. E., & Kieras, D. E. (1996). The GOMS family of user interface analysis techniques: Comparison and contrast. ACM Transactions on Computer-Human Interaction (TOCHI), 3(4), 320–351.Johns, B. T., Taler, V., Pisoni, D. B., Farlow, M. R., Hake, A. M., Kareken, D. A., Unverzagt, F. W., & Jones, M. N. (2018). Cognitive modeling as an interface between brain and behavior: Measuring the semantic decline in mild cognitive impairment. Canadian Journal of Experimental Psychology/Revue Canadienne de Psychologie Expérimentale, 72(2), 117.Kieras, D. E. (1999). A guide to GOMS model usability evaluation using GOMSL and GLEAN3. University of Michigan, 313.Kopp, S., & Bergmann, K. (2017). Using cognitive models to understand multimodal processes: The case for speech and gesture production. The Handbook of Multimodal-Multisensor Interfaces, 239–276.Kotseruba, I., Gonzalez, O. J. A., & Tsotsos, J. K. (2016). A review of 40 years of cognitive architecture research: focus on perception, attention, learning and applications. CoRR Abs/1610.08602.Kronenfeld, D. B. (1978). Scripts, plans, goals, and understanding: an inquiry into human knowledge structures By Roger C. Schank and Robert P. Abelson. Language, 54(3), 779.Kwasnik, B. H. (1999). The role of classification in knowledge representation and discovery.Lebiere, C. (1999). The dynamics of cognition: An ACT-R model of cognitive arithmetic. Kognitionswissenschaft, 8(1), 5–19.Levesque, H. J. (1986). Knowledge Representation and Reasoning. Annual Review of Computer Science, 1(1), 255–287. https://doi.org/10.1146/annurev.cs.01.060186.001351Lieder, F., & Griffiths, T. L. (2019). Resource-rational analysis: understanding human cognition as the optimal use of limited computational resources. Behavioral and Brain Sciences, 1–85.Lieto, A., Bhatt, M., Oltramari, A., & Vernon, D. (2018, May 1). The role of cognitive architectures in general artificial intelligence. Cognitive Systems Research, 48, 1–3. https://doi.org/10.1016/j.cogsys.2017.08.003López, A. L. E., Calao, Y. M. V., Salgado, A. A. G., & Piñeres, M. F. C. (2018). Validación de un modelo cognitivo basado en M++ para la generación de preguntas Factoid-Wh. Teknos Revista Científica, 18(2), 11–20.Madera-Doval, D. P., Caro-Piñeres, M. F., Gómez-Salgado, A. A., Cardozo-Soto, A. M., & Jiménez-Builes, J. A. (2018). Design of metacognitive expectations of cognitive functions through ontological representations. Dyna, 85(206), 194–201.Matta, N., Corby, O., & Prasad, B. (1998). A generic library of knowledge components to manage conflicts in CE tasks. Concurrent Engineering, 6(4), 274–287.Miller, G. A. (1995). WordNet: a lexical database for English. Communications of the ACM, 38(11), 39–41.Minsky, M. (1974). A Framework for Representing Knowledge.Muller, T. J., & Heuvelink, A. (2008). Implementing a Cognitive Model in Soar and ACT - R : A Comparison. Retrieved April 2, 2018, from https://www.researchgate.net/profile/Annerieke_Heuvelink/publication/228415515_Implementing_a_Cognitive_Model_in_Soar_and_ACT-R_A_Comparison/links/0fcfd50885793794e5000000.pdfMurray, D. (1985). Review of Elements of episodic memory.Newell, A., & Simon, H. A. (2007). Computer science as empirical inquiry: Symbols and search. In ACM Turing award lectures (p. 1975).Nwana, H. S., & Ndumu, D. T. (1999). Perspective on software agents research. Knowledge Engineering Review, 14(2), 125–142. https://doi.org/10.1017/S0269888999142012O’Leary, D. E. (1998). Using AI in knowledge management: Knowledge bases and ontologies. IEEE Intelligent Systems and Their Applications, 13(3), 34–39.Olier, A. J., Gómez, A. A., & Caro, M. F. (2018). Cognitive Modeling Process in Metacognitive Architecture CARINA. 2018 IEEE 17th International Conference on Cognitive Informatics & Cognitive Computing (ICCI* CC), 579–585.Paisner, M., Cox, M., Maynord, M., & Perlis, D. (2014). Goal-driven autonomy for cognitive systems. Proceedings of the Annual Meeting of the Cognitive Science Society, 36(36).Peters, S., & Shrobe, H. E. (2003). Using semantic networks for knowledge representation in an intelligent environment. Proceedings of the First IEEE International Conference on Pervasive Computing and Communications, 2003.(PerCom 2003)., 323–329.Pew, R. W., & Mavor, A. S. (1998). Modeling Human and Organizational Behavior-Application to Military Simulations.Pezzulo, G., & Calvi, G. (2004). A Pandemonium Can Have Goals. ICCM, 237–242.Polk, T. A., & Seifert, C. M. (2002). Cognitive modeling. MIT Press.Prezenski, S., Brechmann, A., Wolff, S., & Russwinkel, N. (2017). A cognitive modeling approach to strategy formation in dynamic decision making. Frontiers in Psychology, 8(AUG). DOI://doi.org/10.3389/fpsyg.2017.01335Proctor, R. W., & Capaldi, E. J. (2012). Psychology of science: Implicit and explicit processes. Oxford University Press.Rao, A. S., & Georgeff, M. P. (1991). Modeling rational agents within a BDI-architecture. KR, 91, 473–484.Ritter, F. E., Tehranchi, F., & Oury, J. D. (2019). ACT-R: A cognitive architecture for modeling cognition. Wiley Interdisciplinary Reviews: Cognitive Science, 10(3), e1488.Rus, V., Wyse, B., Piwek, P., Lintean, M., Stoyanchev, S., & Moldovan, C. (2012). A detailed account of the first question generation shared task evaluation challenge. Dialogue & Discourse, 3(2), 177–204.Russell, S., & Norvig, P. (2002). Artificial intelligence: a modern approach.Scheutz, M. (2001). Computational versus causal complexity. Minds and Machines, 11(4), 543–566.Schmid, U., Ragni, M., Gonzalez, C., & Funke, J. (2011). The challenge of complexity for cognitive systems. Elsevier.Shi, Z., Zhou, H., & Wang, J. (1997). Applying case-based reasoning to engine oil design. Artificial Intelligence in Engineering, 11(2), 167–172. https://doi.org/10.1016/S0954-1810(96)00029-5Strube, G. (2000). Generative theories in cognitive psychology. Theory & Psychology, 10(1), 117–125.Sun, R. (2007). The motivational and metacognitive control in CLARION. Modeling Integrated Cognitive Systems, 63–75.Sun, R. (2008a). Introduction to computational cognitive modeling. Cambridge Handbook of Computational Psychology, 3–19.Sun, R. (2008b). The Cambridge handbook of computational psychology. Cambridge University Press.Sun, R. (2009). Theoretical status of computational cognitive modeling. Cognitive Systems Research, 10(2), 124–140.Sun, R., & Helie, S. (2015). Accounting for creativity within a psychologically realistic cognitive architecture. In Computational Creativity Research: Towards Creative Machines (pp. 151–165). Springer.Sun, R., & Naveh, I. (2004). Simulating organizational decision-making using a cognitively realistic agent model. Journal of Artificial Societies and Social Simulation, 7(3).Sun, R., Zhang, X., & Mathews, R. (2006). Modeling meta-cognition in a cognitive architecture. Cognitive Systems Research, 7(4), 327–338.Tanaka, M., Aoyama, N., Sugiura, A., & Koseki, Y. (1995). Integration of multiple knowledge representation for classification problems. Artificial Intelligence in Engineering, 9(4), 243–251. https://doi.org/10.1016/0954-1810(95)00006-5Tulving, E., & others. (1972). Episodic and semantic memory. Organization of Memory, 1, 381–403.Turing, I. B. Y. A. M. (1950). Computing machinery and intelligence-AM Turing. Mind, 59(236), 433.Unsworth, N. (2010). On the division of working memory and long-term memory and their relation to intelligence: A latent variable approach. Acta Psychologica, 134(1), 16–28.Van Lamsweerde, A. (n.d.). Goal-Oriented Requirements Engineering: A Guided Tour. Retrieved April 2, 2018, from http://www.panda.sys.t.u-tokyo.ac.jp/kushiro/ReferencePaper/Requirements engineering/00948567.pdfVanPatten, B., & Williams, J. (2014). Introduction: The nature of theories. In Theories in second language acquisition (pp. 13–28). Routledge.Wang, Y. (2008a). On concept algebra: A denotational mathematical structure for knowledge and software modeling. International Journal of Cognitive Informatics and Natural Intelligence (IJCINI), 2(2), 1–19.Wang, Y. (2008b). On contemporary denotational mathematics for computational intelligence. In Transactions on computational science II (pp. 6–29). Springer.Wong, J. H., Kirschenbaum, S. S., & Peters, S. (2010). Developing a cognitive model of expert performance for ship navigation maneuvers in an intelligent tutoring system.Zhou, G., Zhou, Y., He, T., & Wu, W. (2016). Learning semantic representation with neural networks for community question answering retrieval. Knowledge-Based Systems, 93, 75–83.Modelado cognitivoModelos cognitivosArquitecturas CognitivasArquitecturas metacognitivasCARINACognitive ModelingCognitive ModelsCognitive ArchitecturesMetacognitive ArchitecturesCARINAFacultad de Educación y Ciencias HumanasLicenciatura en InformáticaPublicationORIGINALjeronimomontielalbajudith.pdfjeronimomontielalbajudith.pdfapplication/pdf4559814https://repositorio.unicordoba.edu.co/bitstreams/758756fd-bf7b-4c9b-91fd-80c01713c58b/downloadee4de8a59cbf6cc10cb82be8e8e8c743MD51Thesis_AutorizaciónPublicación colecciones digitales UNICOR.pdfThesis_AutorizaciónPublicación colecciones digitales UNICOR.pdfapplication/pdf256440https://repositorio.unicordoba.edu.co/bitstreams/4eb47def-03fd-4c74-adcc-09b6b61210b7/downloadab19a37fecd7a06f51f1b2d2d8c784adMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://repositorio.unicordoba.edu.co/bitstreams/229717d7-c9bf-4807-8b69-9444a14cced0/download2f9959eaf5b71fae44bbf9ec84150c7aMD53TEXTjeronimomontielalbajudith.pdf.txtjeronimomontielalbajudith.pdf.txtExtracted texttext/plain160533https://repositorio.unicordoba.edu.co/bitstreams/9c18d0a1-ab1f-40f3-9c2b-110692ac5b0d/downloade05b9a06152652f9efe4858f9cd1f0d4MD54Thesis_AutorizaciónPublicación colecciones digitales UNICOR.pdf.txtThesis_AutorizaciónPublicación colecciones digitales UNICOR.pdf.txtExtracted texttext/plain4221https://repositorio.unicordoba.edu.co/bitstreams/6351c48b-7c73-43ae-8be7-fbc6927bf6f8/downloadbe08e258e823fcd67d07e2ea4783ee0fMD56THUMBNAILjeronimomontielalbajudith.pdf.jpgjeronimomontielalbajudith.pdf.jpgGenerated Thumbnailimage/jpeg5040https://repositorio.unicordoba.edu.co/bitstreams/3d1442a0-ddbb-4ef8-8f17-1f3408dc2c40/download4491cfe15b2ac78e4579ef533b09c4b6MD55Thesis_AutorizaciónPublicación colecciones digitales UNICOR.pdf.jpgThesis_AutorizaciónPublicación colecciones digitales UNICOR.pdf.jpgGenerated Thumbnailimage/jpeg10188https://repositorio.unicordoba.edu.co/bitstreams/346aa99e-c521-4806-b2a7-3c6226a1dfd1/download18e370d3b785685d368ba5947884555fMD57ucordoba/2888oai:repositorio.unicordoba.edu.co:ucordoba/28882023-10-06 00:46:38.484https://creativecommons.org/licenses/by-nc/4.0/Copyright Universidad de Córdoba, 2020open.accesshttps://repositorio.unicordoba.edu.coRepositorio Universidad de Córdobabdigital@metabiblioteca.comTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=