Diseño y modelamiento de la geometría del perfil alar de un aerogenerador, basado en las condiciones de viento presente en el departamento de Córdoba para la generación de potencia

Actualmente, la implementación de las energías renovables como lo son la eólica, solar, mareomotriz entre otras, se viene llevando a cabo en todo el mundo, debido a la preocupación por la contaminación que producen los combustibles fósiles a nuestro planeta, y la posibilidad de implementación en cua...

Full description

Autores:
Geovo Coronado, Leonardo José
González Díaz, Alan Javier
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2018
Institución:
Universidad de Córdoba
Repositorio:
Repositorio Institucional Unicórdoba
Idioma:
spa
OAI Identifier:
oai:repositorio.unicordoba.edu.co:ucordoba/702
Acceso en línea:
https://repositorio.unicordoba.edu.co/handle/ucordoba/702
Palabra clave:
Energías renovables, combustibles, solver, rotor
Rights
openAccess
License
Copyright Universidad de Córdoba, 2020
id UCORDOBA2_048d5ce4da0115e80f32d929dfa0da04
oai_identifier_str oai:repositorio.unicordoba.edu.co:ucordoba/702
network_acronym_str UCORDOBA2
network_name_str Repositorio Institucional Unicórdoba
repository_id_str
dc.title.spa.fl_str_mv Diseño y modelamiento de la geometría del perfil alar de un aerogenerador, basado en las condiciones de viento presente en el departamento de Córdoba para la generación de potencia
title Diseño y modelamiento de la geometría del perfil alar de un aerogenerador, basado en las condiciones de viento presente en el departamento de Córdoba para la generación de potencia
spellingShingle Diseño y modelamiento de la geometría del perfil alar de un aerogenerador, basado en las condiciones de viento presente en el departamento de Córdoba para la generación de potencia
Energías renovables, combustibles, solver, rotor
title_short Diseño y modelamiento de la geometría del perfil alar de un aerogenerador, basado en las condiciones de viento presente en el departamento de Córdoba para la generación de potencia
title_full Diseño y modelamiento de la geometría del perfil alar de un aerogenerador, basado en las condiciones de viento presente en el departamento de Córdoba para la generación de potencia
title_fullStr Diseño y modelamiento de la geometría del perfil alar de un aerogenerador, basado en las condiciones de viento presente en el departamento de Córdoba para la generación de potencia
title_full_unstemmed Diseño y modelamiento de la geometría del perfil alar de un aerogenerador, basado en las condiciones de viento presente en el departamento de Córdoba para la generación de potencia
title_sort Diseño y modelamiento de la geometría del perfil alar de un aerogenerador, basado en las condiciones de viento presente en el departamento de Córdoba para la generación de potencia
dc.creator.fl_str_mv Geovo Coronado, Leonardo José
González Díaz, Alan Javier
dc.contributor.author.spa.fl_str_mv Geovo Coronado, Leonardo José
González Díaz, Alan Javier
dc.subject.spa.fl_str_mv Energías renovables, combustibles, solver, rotor
topic Energías renovables, combustibles, solver, rotor
description Actualmente, la implementación de las energías renovables como lo son la eólica, solar, mareomotriz entre otras, se viene llevando a cabo en todo el mundo, debido a la preocupación por la contaminación que producen los combustibles fósiles a nuestro planeta, y la posibilidad de implementación en cualquier parte del mundo, haciendo más económico la producción en lugares de difícil acceso, una de las fuentes renovables que más auge ha tenido es la eólica, que por su gran número de investigaciones y economía en la producción de energía en comparación con las demás fue el principal enfoque para el desarrollo del presente proyecto enfatizado en la simulación y modelamiento de la una turbina para pequeña escala. En este trabajo, utilizando el software comercial ANSYS 14.0, se evaluaron los perfiles NACA 0015, NACA 0018, NACA 0021 y NACA 0025 para el álabe, seleccionando el perfil que presentó la mayor relación de los coeficientes de arrastre-sustentación y una variación suave del coeficiente de sustentación con respecto al ángulo de ataque. Se eligió el rotor Darrieus tipo H de baja potencia, justificando la selección debido a las ventajas y desempeño que presenta para las condiciones que se presentan en las zonas costeras del departamento, realizando a este una estimación inicial de tamaño rendimiento requerida para el proceso de diseño a través de consultas de los datos de las marcas comerciales de aerogeneradores tipo H, seguido se procedió con el Diseño del perfil a través del modelado del rotor usando el método (DMST) y la herramienta MatLab, en el cual el proceso se realizó con el objetivo de determinar primero la longitud de cuerda optima que satisfaga la condición de autoarranque sin presentar disminución en la generación de potencia y segundo obtener el radio del rotor genere mayor potencia, haciendo uso de la herramienta Matlab que ejecuta el algoritmo con el método DMST. Una vez obtenidos la dimensión del perfil y el diámetro del aerogenerador procedemos a hacer el CAD del rotor en 2D mediante la utilización de un software (Solidwork), este CAD es exportado a ANSYS (FLUENT) donde se caracteriza el comportamiento global de la turbina en función del coeficiente de potencia y torque generado respecto a la velocidad de giro la turbina. Finalmente Los resultados obtenidos a partir del modelamiento computacional (CFD) se corroboran con los del análisis analítico (DMST). Para este proyecto se tuvo como resultado la selección del perfil idóneo para las condiciones que presentes en la región de estudio el cual fue el perfil NACA 0025 por mantener una estabilidad dinámica para el número de Reynolds y ángulo de ataque evaluado, se realizó la estimación inicial del tamaño del alabe y del rotor, seguidamente implementando el algoritmo DMST se obtuvo la longitud de cuerda optima de 0,55 m y un radio del rotor de 1,3 m que genero el autoarranque requerido con una máximo Cp=0,53 para la velocidad de trabajo, En comparación con los resultados obtenidos el DMST respecto a las simulaciones realizadas en ANSYS se tuvo como resultados una discrepancia del 15% para el máximo momento a la velocidad de giro nominal.
publishDate 2018
dc.date.accessioned.spa.fl_str_mv 2018-04-24T16:08:57Z
dc.date.available.spa.fl_str_mv 2018-04-24T16:08:57Z
dc.date.issued.spa.fl_str_mv 2018-04-24
dc.type.spa.fl_str_mv Trabajo de grado - Pregrado
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str publishedVersion
dc.identifier.uri.spa.fl_str_mv https://repositorio.unicordoba.edu.co/handle/ucordoba/702
url https://repositorio.unicordoba.edu.co/handle/ucordoba/702
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.spa.fl_str_mv Copyright Universidad de Córdoba, 2020
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución 4.0 Internacional (CC BY 4.0)
rights_invalid_str_mv Copyright Universidad de Córdoba, 2020
https://creativecommons.org/licenses/by/4.0/
Atribución 4.0 Internacional (CC BY 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
institution Universidad de Córdoba
bitstream.url.fl_str_mv https://repositorio.unicordoba.edu.co/bitstreams/ced2f827-e4ad-4b93-9847-ab331de847ee/download
https://repositorio.unicordoba.edu.co/bitstreams/4b82845e-6b62-4956-aa03-7b222afb41d7/download
https://repositorio.unicordoba.edu.co/bitstreams/58839945-9e9c-48f3-befc-33704310f25f/download
https://repositorio.unicordoba.edu.co/bitstreams/83b78114-e925-4f4e-9555-30852b732b80/download
bitstream.checksum.fl_str_mv c9e9ea00b97bed7c77a690906e880703
e7c88a319c7c080533646c84f53c0f85
37f56c9af519b51bdb6e1f7387f25d66
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de Córdoba
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1839636139064950784
spelling Geovo Coronado, Leonardo Joséa2f38cff-9897-4164-936f-8da861644227-1González Díaz, Alan Javierb37c42e3-7b99-436c-a85c-dfd3cb1937b7-12018-04-24T16:08:57Z2018-04-24T16:08:57Z2018-04-24https://repositorio.unicordoba.edu.co/handle/ucordoba/702Actualmente, la implementación de las energías renovables como lo son la eólica, solar, mareomotriz entre otras, se viene llevando a cabo en todo el mundo, debido a la preocupación por la contaminación que producen los combustibles fósiles a nuestro planeta, y la posibilidad de implementación en cualquier parte del mundo, haciendo más económico la producción en lugares de difícil acceso, una de las fuentes renovables que más auge ha tenido es la eólica, que por su gran número de investigaciones y economía en la producción de energía en comparación con las demás fue el principal enfoque para el desarrollo del presente proyecto enfatizado en la simulación y modelamiento de la una turbina para pequeña escala. En este trabajo, utilizando el software comercial ANSYS 14.0, se evaluaron los perfiles NACA 0015, NACA 0018, NACA 0021 y NACA 0025 para el álabe, seleccionando el perfil que presentó la mayor relación de los coeficientes de arrastre-sustentación y una variación suave del coeficiente de sustentación con respecto al ángulo de ataque. Se eligió el rotor Darrieus tipo H de baja potencia, justificando la selección debido a las ventajas y desempeño que presenta para las condiciones que se presentan en las zonas costeras del departamento, realizando a este una estimación inicial de tamaño rendimiento requerida para el proceso de diseño a través de consultas de los datos de las marcas comerciales de aerogeneradores tipo H, seguido se procedió con el Diseño del perfil a través del modelado del rotor usando el método (DMST) y la herramienta MatLab, en el cual el proceso se realizó con el objetivo de determinar primero la longitud de cuerda optima que satisfaga la condición de autoarranque sin presentar disminución en la generación de potencia y segundo obtener el radio del rotor genere mayor potencia, haciendo uso de la herramienta Matlab que ejecuta el algoritmo con el método DMST. Una vez obtenidos la dimensión del perfil y el diámetro del aerogenerador procedemos a hacer el CAD del rotor en 2D mediante la utilización de un software (Solidwork), este CAD es exportado a ANSYS (FLUENT) donde se caracteriza el comportamiento global de la turbina en función del coeficiente de potencia y torque generado respecto a la velocidad de giro la turbina. Finalmente Los resultados obtenidos a partir del modelamiento computacional (CFD) se corroboran con los del análisis analítico (DMST). Para este proyecto se tuvo como resultado la selección del perfil idóneo para las condiciones que presentes en la región de estudio el cual fue el perfil NACA 0025 por mantener una estabilidad dinámica para el número de Reynolds y ángulo de ataque evaluado, se realizó la estimación inicial del tamaño del alabe y del rotor, seguidamente implementando el algoritmo DMST se obtuvo la longitud de cuerda optima de 0,55 m y un radio del rotor de 1,3 m que genero el autoarranque requerido con una máximo Cp=0,53 para la velocidad de trabajo, En comparación con los resultados obtenidos el DMST respecto a las simulaciones realizadas en ANSYS se tuvo como resultados una discrepancia del 15% para el máximo momento a la velocidad de giro nominal.PregradospaCopyright Universidad de Córdoba, 2020https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessAtribución 4.0 Internacional (CC BY 4.0)http://purl.org/coar/access_right/c_abf2Energías renovables, combustibles, solver, rotorDiseño y modelamiento de la geometría del perfil alar de un aerogenerador, basado en las condiciones de viento presente en el departamento de Córdoba para la generación de potenciaTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/publishedVersionTexthttps://purl.org/redcol/resource_type/TPhttp://purl.org/coar/version/c_970fb48d4fbd8a85Facultad de IngenieríaPublicationTEXTDISEÑO Y MODELAMIENTO DE LA GEOMETRÍA DEL PERFIL ALAR DE UN AEROGENERADOR, BASADO EN LAS CONDICIO.pdf.txtDISEÑO Y MODELAMIENTO DE LA GEOMETRÍA DEL PERFIL ALAR DE UN AEROGENERADOR, BASADO EN LAS CONDICIO.pdf.txtExtracted texttext/plain110831https://repositorio.unicordoba.edu.co/bitstreams/ced2f827-e4ad-4b93-9847-ab331de847ee/downloadc9e9ea00b97bed7c77a690906e880703MD55THUMBNAILDISEÑO Y MODELAMIENTO DE LA GEOMETRÍA DEL PERFIL ALAR DE UN AEROGENERADOR, BASADO EN LAS CONDICIO.pdf.jpgDISEÑO Y MODELAMIENTO DE LA GEOMETRÍA DEL PERFIL ALAR DE UN AEROGENERADOR, BASADO EN LAS CONDICIO.pdf.jpgGenerated Thumbnailimage/jpeg4968https://repositorio.unicordoba.edu.co/bitstreams/4b82845e-6b62-4956-aa03-7b222afb41d7/downloade7c88a319c7c080533646c84f53c0f85MD56ORIGINALDISEÑO Y MODELAMIENTO DE LA GEOMETRÍA DEL PERFIL ALAR DE UN AEROGENERADOR, BASADO EN LAS CONDICIO.pdfDISEÑO Y MODELAMIENTO DE LA GEOMETRÍA DEL PERFIL ALAR DE UN AEROGENERADOR, BASADO EN LAS CONDICIO.pdfapplication/pdf2074515https://repositorio.unicordoba.edu.co/bitstreams/58839945-9e9c-48f3-befc-33704310f25f/download37f56c9af519b51bdb6e1f7387f25d66MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.unicordoba.edu.co/bitstreams/83b78114-e925-4f4e-9555-30852b732b80/download8a4605be74aa9ea9d79846c1fba20a33MD52ucordoba/702oai:repositorio.unicordoba.edu.co:ucordoba/7022023-10-06 00:46:35.112https://creativecommons.org/licenses/by/4.0/Copyright Universidad de Córdoba, 2020open.accesshttps://repositorio.unicordoba.edu.coRepositorio Universidad de Córdobabdigital@metabiblioteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=