Diseño y modelamiento de la geometría del perfil alar de un aerogenerador, basado en las condiciones de viento presente en el departamento de Córdoba para la generación de potencia
Actualmente, la implementación de las energías renovables como lo son la eólica, solar, mareomotriz entre otras, se viene llevando a cabo en todo el mundo, debido a la preocupación por la contaminación que producen los combustibles fósiles a nuestro planeta, y la posibilidad de implementación en cua...
- Autores:
-
Geovo Coronado, Leonardo José
González Díaz, Alan Javier
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2018
- Institución:
- Universidad de Córdoba
- Repositorio:
- Repositorio Institucional Unicórdoba
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unicordoba.edu.co:ucordoba/702
- Acceso en línea:
- https://repositorio.unicordoba.edu.co/handle/ucordoba/702
- Palabra clave:
- Energías renovables, combustibles, solver, rotor
- Rights
- openAccess
- License
- Copyright Universidad de Córdoba, 2020
id |
UCORDOBA2_048d5ce4da0115e80f32d929dfa0da04 |
---|---|
oai_identifier_str |
oai:repositorio.unicordoba.edu.co:ucordoba/702 |
network_acronym_str |
UCORDOBA2 |
network_name_str |
Repositorio Institucional Unicórdoba |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Diseño y modelamiento de la geometría del perfil alar de un aerogenerador, basado en las condiciones de viento presente en el departamento de Córdoba para la generación de potencia |
title |
Diseño y modelamiento de la geometría del perfil alar de un aerogenerador, basado en las condiciones de viento presente en el departamento de Córdoba para la generación de potencia |
spellingShingle |
Diseño y modelamiento de la geometría del perfil alar de un aerogenerador, basado en las condiciones de viento presente en el departamento de Córdoba para la generación de potencia Energías renovables, combustibles, solver, rotor |
title_short |
Diseño y modelamiento de la geometría del perfil alar de un aerogenerador, basado en las condiciones de viento presente en el departamento de Córdoba para la generación de potencia |
title_full |
Diseño y modelamiento de la geometría del perfil alar de un aerogenerador, basado en las condiciones de viento presente en el departamento de Córdoba para la generación de potencia |
title_fullStr |
Diseño y modelamiento de la geometría del perfil alar de un aerogenerador, basado en las condiciones de viento presente en el departamento de Córdoba para la generación de potencia |
title_full_unstemmed |
Diseño y modelamiento de la geometría del perfil alar de un aerogenerador, basado en las condiciones de viento presente en el departamento de Córdoba para la generación de potencia |
title_sort |
Diseño y modelamiento de la geometría del perfil alar de un aerogenerador, basado en las condiciones de viento presente en el departamento de Córdoba para la generación de potencia |
dc.creator.fl_str_mv |
Geovo Coronado, Leonardo José González Díaz, Alan Javier |
dc.contributor.author.spa.fl_str_mv |
Geovo Coronado, Leonardo José González Díaz, Alan Javier |
dc.subject.spa.fl_str_mv |
Energías renovables, combustibles, solver, rotor |
topic |
Energías renovables, combustibles, solver, rotor |
description |
Actualmente, la implementación de las energías renovables como lo son la eólica, solar, mareomotriz entre otras, se viene llevando a cabo en todo el mundo, debido a la preocupación por la contaminación que producen los combustibles fósiles a nuestro planeta, y la posibilidad de implementación en cualquier parte del mundo, haciendo más económico la producción en lugares de difícil acceso, una de las fuentes renovables que más auge ha tenido es la eólica, que por su gran número de investigaciones y economía en la producción de energía en comparación con las demás fue el principal enfoque para el desarrollo del presente proyecto enfatizado en la simulación y modelamiento de la una turbina para pequeña escala. En este trabajo, utilizando el software comercial ANSYS 14.0, se evaluaron los perfiles NACA 0015, NACA 0018, NACA 0021 y NACA 0025 para el álabe, seleccionando el perfil que presentó la mayor relación de los coeficientes de arrastre-sustentación y una variación suave del coeficiente de sustentación con respecto al ángulo de ataque. Se eligió el rotor Darrieus tipo H de baja potencia, justificando la selección debido a las ventajas y desempeño que presenta para las condiciones que se presentan en las zonas costeras del departamento, realizando a este una estimación inicial de tamaño rendimiento requerida para el proceso de diseño a través de consultas de los datos de las marcas comerciales de aerogeneradores tipo H, seguido se procedió con el Diseño del perfil a través del modelado del rotor usando el método (DMST) y la herramienta MatLab, en el cual el proceso se realizó con el objetivo de determinar primero la longitud de cuerda optima que satisfaga la condición de autoarranque sin presentar disminución en la generación de potencia y segundo obtener el radio del rotor genere mayor potencia, haciendo uso de la herramienta Matlab que ejecuta el algoritmo con el método DMST. Una vez obtenidos la dimensión del perfil y el diámetro del aerogenerador procedemos a hacer el CAD del rotor en 2D mediante la utilización de un software (Solidwork), este CAD es exportado a ANSYS (FLUENT) donde se caracteriza el comportamiento global de la turbina en función del coeficiente de potencia y torque generado respecto a la velocidad de giro la turbina. Finalmente Los resultados obtenidos a partir del modelamiento computacional (CFD) se corroboran con los del análisis analítico (DMST). Para este proyecto se tuvo como resultado la selección del perfil idóneo para las condiciones que presentes en la región de estudio el cual fue el perfil NACA 0025 por mantener una estabilidad dinámica para el número de Reynolds y ángulo de ataque evaluado, se realizó la estimación inicial del tamaño del alabe y del rotor, seguidamente implementando el algoritmo DMST se obtuvo la longitud de cuerda optima de 0,55 m y un radio del rotor de 1,3 m que genero el autoarranque requerido con una máximo Cp=0,53 para la velocidad de trabajo, En comparación con los resultados obtenidos el DMST respecto a las simulaciones realizadas en ANSYS se tuvo como resultados una discrepancia del 15% para el máximo momento a la velocidad de giro nominal. |
publishDate |
2018 |
dc.date.accessioned.spa.fl_str_mv |
2018-04-24T16:08:57Z |
dc.date.available.spa.fl_str_mv |
2018-04-24T16:08:57Z |
dc.date.issued.spa.fl_str_mv |
2018-04-24 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
publishedVersion |
dc.identifier.uri.spa.fl_str_mv |
https://repositorio.unicordoba.edu.co/handle/ucordoba/702 |
url |
https://repositorio.unicordoba.edu.co/handle/ucordoba/702 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.rights.spa.fl_str_mv |
Copyright Universidad de Córdoba, 2020 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) |
rights_invalid_str_mv |
Copyright Universidad de Córdoba, 2020 https://creativecommons.org/licenses/by/4.0/ Atribución 4.0 Internacional (CC BY 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
institution |
Universidad de Córdoba |
bitstream.url.fl_str_mv |
https://repositorio.unicordoba.edu.co/bitstreams/ced2f827-e4ad-4b93-9847-ab331de847ee/download https://repositorio.unicordoba.edu.co/bitstreams/4b82845e-6b62-4956-aa03-7b222afb41d7/download https://repositorio.unicordoba.edu.co/bitstreams/58839945-9e9c-48f3-befc-33704310f25f/download https://repositorio.unicordoba.edu.co/bitstreams/83b78114-e925-4f4e-9555-30852b732b80/download |
bitstream.checksum.fl_str_mv |
c9e9ea00b97bed7c77a690906e880703 e7c88a319c7c080533646c84f53c0f85 37f56c9af519b51bdb6e1f7387f25d66 8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Universidad de Córdoba |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1839636139064950784 |
spelling |
Geovo Coronado, Leonardo Joséa2f38cff-9897-4164-936f-8da861644227-1González Díaz, Alan Javierb37c42e3-7b99-436c-a85c-dfd3cb1937b7-12018-04-24T16:08:57Z2018-04-24T16:08:57Z2018-04-24https://repositorio.unicordoba.edu.co/handle/ucordoba/702Actualmente, la implementación de las energías renovables como lo son la eólica, solar, mareomotriz entre otras, se viene llevando a cabo en todo el mundo, debido a la preocupación por la contaminación que producen los combustibles fósiles a nuestro planeta, y la posibilidad de implementación en cualquier parte del mundo, haciendo más económico la producción en lugares de difícil acceso, una de las fuentes renovables que más auge ha tenido es la eólica, que por su gran número de investigaciones y economía en la producción de energía en comparación con las demás fue el principal enfoque para el desarrollo del presente proyecto enfatizado en la simulación y modelamiento de la una turbina para pequeña escala. En este trabajo, utilizando el software comercial ANSYS 14.0, se evaluaron los perfiles NACA 0015, NACA 0018, NACA 0021 y NACA 0025 para el álabe, seleccionando el perfil que presentó la mayor relación de los coeficientes de arrastre-sustentación y una variación suave del coeficiente de sustentación con respecto al ángulo de ataque. Se eligió el rotor Darrieus tipo H de baja potencia, justificando la selección debido a las ventajas y desempeño que presenta para las condiciones que se presentan en las zonas costeras del departamento, realizando a este una estimación inicial de tamaño rendimiento requerida para el proceso de diseño a través de consultas de los datos de las marcas comerciales de aerogeneradores tipo H, seguido se procedió con el Diseño del perfil a través del modelado del rotor usando el método (DMST) y la herramienta MatLab, en el cual el proceso se realizó con el objetivo de determinar primero la longitud de cuerda optima que satisfaga la condición de autoarranque sin presentar disminución en la generación de potencia y segundo obtener el radio del rotor genere mayor potencia, haciendo uso de la herramienta Matlab que ejecuta el algoritmo con el método DMST. Una vez obtenidos la dimensión del perfil y el diámetro del aerogenerador procedemos a hacer el CAD del rotor en 2D mediante la utilización de un software (Solidwork), este CAD es exportado a ANSYS (FLUENT) donde se caracteriza el comportamiento global de la turbina en función del coeficiente de potencia y torque generado respecto a la velocidad de giro la turbina. Finalmente Los resultados obtenidos a partir del modelamiento computacional (CFD) se corroboran con los del análisis analítico (DMST). Para este proyecto se tuvo como resultado la selección del perfil idóneo para las condiciones que presentes en la región de estudio el cual fue el perfil NACA 0025 por mantener una estabilidad dinámica para el número de Reynolds y ángulo de ataque evaluado, se realizó la estimación inicial del tamaño del alabe y del rotor, seguidamente implementando el algoritmo DMST se obtuvo la longitud de cuerda optima de 0,55 m y un radio del rotor de 1,3 m que genero el autoarranque requerido con una máximo Cp=0,53 para la velocidad de trabajo, En comparación con los resultados obtenidos el DMST respecto a las simulaciones realizadas en ANSYS se tuvo como resultados una discrepancia del 15% para el máximo momento a la velocidad de giro nominal.PregradospaCopyright Universidad de Córdoba, 2020https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessAtribución 4.0 Internacional (CC BY 4.0)http://purl.org/coar/access_right/c_abf2Energías renovables, combustibles, solver, rotorDiseño y modelamiento de la geometría del perfil alar de un aerogenerador, basado en las condiciones de viento presente en el departamento de Córdoba para la generación de potenciaTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/publishedVersionTexthttps://purl.org/redcol/resource_type/TPhttp://purl.org/coar/version/c_970fb48d4fbd8a85Facultad de IngenieríaPublicationTEXTDISEÑO Y MODELAMIENTO DE LA GEOMETRÍA DEL PERFIL ALAR DE UN AEROGENERADOR, BASADO EN LAS CONDICIO.pdf.txtDISEÑO Y MODELAMIENTO DE LA GEOMETRÍA DEL PERFIL ALAR DE UN AEROGENERADOR, BASADO EN LAS CONDICIO.pdf.txtExtracted texttext/plain110831https://repositorio.unicordoba.edu.co/bitstreams/ced2f827-e4ad-4b93-9847-ab331de847ee/downloadc9e9ea00b97bed7c77a690906e880703MD55THUMBNAILDISEÑO Y MODELAMIENTO DE LA GEOMETRÍA DEL PERFIL ALAR DE UN AEROGENERADOR, BASADO EN LAS CONDICIO.pdf.jpgDISEÑO Y MODELAMIENTO DE LA GEOMETRÍA DEL PERFIL ALAR DE UN AEROGENERADOR, BASADO EN LAS CONDICIO.pdf.jpgGenerated Thumbnailimage/jpeg4968https://repositorio.unicordoba.edu.co/bitstreams/4b82845e-6b62-4956-aa03-7b222afb41d7/downloade7c88a319c7c080533646c84f53c0f85MD56ORIGINALDISEÑO Y MODELAMIENTO DE LA GEOMETRÍA DEL PERFIL ALAR DE UN AEROGENERADOR, BASADO EN LAS CONDICIO.pdfDISEÑO Y MODELAMIENTO DE LA GEOMETRÍA DEL PERFIL ALAR DE UN AEROGENERADOR, BASADO EN LAS CONDICIO.pdfapplication/pdf2074515https://repositorio.unicordoba.edu.co/bitstreams/58839945-9e9c-48f3-befc-33704310f25f/download37f56c9af519b51bdb6e1f7387f25d66MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.unicordoba.edu.co/bitstreams/83b78114-e925-4f4e-9555-30852b732b80/download8a4605be74aa9ea9d79846c1fba20a33MD52ucordoba/702oai:repositorio.unicordoba.edu.co:ucordoba/7022023-10-06 00:46:35.112https://creativecommons.org/licenses/by/4.0/Copyright Universidad de Córdoba, 2020open.accesshttps://repositorio.unicordoba.edu.coRepositorio Universidad de Córdobabdigital@metabiblioteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |