Comparación de estimadores no paramétricos de la función de sobrevivencia usando ECM: un estudio de simulación
En el análisis de sobrevivencia, se dispone de diversas metodologías para estimar la función de sobrevivencia, que incluyen enfoques paramétricos, semiparamétricos y no paramétricos. Esta investigación se enfoca específicamente en el análisis no paramétrico, con especial atención al estimador de Kap...
- Autores:
-
Velásquez Roy, María Paola
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2025
- Institución:
- Universidad de Córdoba
- Repositorio:
- Repositorio Institucional Unicórdoba
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unicordoba.edu.co:ucordoba/9237
- Acceso en línea:
- https://repositorio.unicordoba.edu.co/handle/ucordoba/9237
https://repositorio.unicordoba.edu.co/
- Palabra clave:
- Análisis de sobrevivencia
Estimadores no paramétricos
Simulaciones
Error cuadrático medio
Boostrap
Survival analysis
Non-parametric estimators
Simulations
Mean squared error
Booststrap
- Rights
- embargoedAccess
- License
- Copyright Universidad de Córdoba, 2025
Summary: | En el análisis de sobrevivencia, se dispone de diversas metodologías para estimar la función de sobrevivencia, que incluyen enfoques paramétricos, semiparamétricos y no paramétricos. Esta investigación se enfoca específicamente en el análisis no paramétrico, con especial atención al estimador de Kaplan-Meier, ampliamente difundido en la literatura por su simplicidad y utilidad práctica. El propósito de este trabajo es comparar el desempeño de varios estimadores no paramétricos de la función de sobrevivencia incluyendo los de Kaplan-Meier, Nelson-Aalen, Prentice, Andersen, Harris-Albert, Moreau y Hosmer-Lemeshow a través de un diseño de simulación. Para ello, se evaluarán sus respectivos errores cuadráticos medios bajo diferentes escenarios definidos por variaciones en el tamaño muestral y el porcentaje de censura. Además, se implementará un algoritmo en R que automatice el proceso de generación de datos, estimación y comparación, incorporando la técnica de remuestreo Bootstrap con el fin de obtener distribuciones empíricas de los estimadores y cuantificar su desempeño. |
---|