Efecto de los péptidos antimicrobianos derivados del LL37 en el crecimiento bacteriano y evaluación de la formación de biopelícula en cepas clínicas y ATCC de bacilos Gram negativos

La resistencia bacteriana a antibióticos se ha convertido con el paso de los años en un problema de salud pública, esto por el uso indiscriminado de antibióticos; asimismo factores como la transferencia horizontal de genes de resistencia o la producción de biopelícula contribuyen al aumento de esta...

Full description

Autores:
Pasachova Garzón, Jennifer
Ramírez Martínez, Sara
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2019
Institución:
Colegio Mayor de Cundinamarca
Repositorio:
Repositorio Colegio Mayor de Cundinamarca
Idioma:
spa
OAI Identifier:
oai:repositorio.unicolmayor.edu.co:unicolmayor/288
Acceso en línea:
https://repositorio.unicolmayor.edu.co/handle/unicolmayor/288
Palabra clave:
Agentes antibacteriales
Microbiología
Resistencia a los medicamentos en microorganismos
Resistencia bacteriana
Bacilos Gram negativos
Biopelícula
Péptidos antimicrobianos
LL-37
Rights
openAccess
License
Derechos Reservados -Universidad Colegio Myor de Cundinamarca ,2019
id UCOLMAYOR2_ee21591953450cbdceb3d3ebc911b793
oai_identifier_str oai:repositorio.unicolmayor.edu.co:unicolmayor/288
network_acronym_str UCOLMAYOR2
network_name_str Repositorio Colegio Mayor de Cundinamarca
repository_id_str
dc.title.spa.fl_str_mv Efecto de los péptidos antimicrobianos derivados del LL37 en el crecimiento bacteriano y evaluación de la formación de biopelícula en cepas clínicas y ATCC de bacilos Gram negativos
title Efecto de los péptidos antimicrobianos derivados del LL37 en el crecimiento bacteriano y evaluación de la formación de biopelícula en cepas clínicas y ATCC de bacilos Gram negativos
spellingShingle Efecto de los péptidos antimicrobianos derivados del LL37 en el crecimiento bacteriano y evaluación de la formación de biopelícula en cepas clínicas y ATCC de bacilos Gram negativos
Agentes antibacteriales
Microbiología
Resistencia a los medicamentos en microorganismos
Resistencia bacteriana
Bacilos Gram negativos
Biopelícula
Péptidos antimicrobianos
LL-37
title_short Efecto de los péptidos antimicrobianos derivados del LL37 en el crecimiento bacteriano y evaluación de la formación de biopelícula en cepas clínicas y ATCC de bacilos Gram negativos
title_full Efecto de los péptidos antimicrobianos derivados del LL37 en el crecimiento bacteriano y evaluación de la formación de biopelícula en cepas clínicas y ATCC de bacilos Gram negativos
title_fullStr Efecto de los péptidos antimicrobianos derivados del LL37 en el crecimiento bacteriano y evaluación de la formación de biopelícula en cepas clínicas y ATCC de bacilos Gram negativos
title_full_unstemmed Efecto de los péptidos antimicrobianos derivados del LL37 en el crecimiento bacteriano y evaluación de la formación de biopelícula en cepas clínicas y ATCC de bacilos Gram negativos
title_sort Efecto de los péptidos antimicrobianos derivados del LL37 en el crecimiento bacteriano y evaluación de la formación de biopelícula en cepas clínicas y ATCC de bacilos Gram negativos
dc.creator.fl_str_mv Pasachova Garzón, Jennifer
Ramírez Martínez, Sara
dc.contributor.advisor.none.fl_str_mv Muñoz Molina, Liliana Constanza
dc.contributor.author.none.fl_str_mv Pasachova Garzón, Jennifer
Ramírez Martínez, Sara
dc.contributor.corporatename.spa.fl_str_mv Universidad Colegio Mayor de Cundinamarca
dc.contributor.researchgroup.spa.fl_str_mv Trabajo de grado
dc.subject.lemb.none.fl_str_mv Agentes antibacteriales
Microbiología
Resistencia a los medicamentos en microorganismos
topic Agentes antibacteriales
Microbiología
Resistencia a los medicamentos en microorganismos
Resistencia bacteriana
Bacilos Gram negativos
Biopelícula
Péptidos antimicrobianos
LL-37
dc.subject.proposal.spa.fl_str_mv Resistencia bacteriana
Bacilos Gram negativos
Biopelícula
Péptidos antimicrobianos
LL-37
description La resistencia bacteriana a antibióticos se ha convertido con el paso de los años en un problema de salud pública, esto por el uso indiscriminado de antibióticos; asimismo factores como la transferencia horizontal de genes de resistencia o la producción de biopelícula contribuyen al aumento de esta problemática, generando que cada vez sea más complicado dar un tratamiento para infecciones bacterianas y reduciendo el número de antibióticos efectivos para la resolución de una enfermedad y aumentando la morbimortalidad. Debido a esto se han propuesto distintos tratamientos alternativos al uso tradicional de antibióticos, uno de estos es el uso de péptidos antimicrobianos los cuales han mostrado la capacidad de inhibir el crecimiento bacteriano. Uno de los péptidos antimicrobianos más importante es el péptido LL-37 que es miembro de la familia de las catelicidinas y en el cual se ha evaluado su acción sobre bacterias Gram positivas como S. aureus mostrando resultados positivos en la inhibición de este microorganismo, es por esto que se evaluó la actividad de este péptido y sus derivados en el crecimiento y formación de biopelícula de cepas clínicas y ATCC de bacilos Gram negativos, los cuales son causantes de numerosas enfermedades a nivel mundial.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019-12
dc.date.accessioned.none.fl_str_mv 2021-06-24T17:02:47Z
dc.date.available.none.fl_str_mv 2021-06-24T17:02:47Z
dc.type.spa.fl_str_mv Trabajo de grado - Pregrado
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/TP
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_7a1f
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unicolmayor.edu.co/handle/unicolmayor/288
dc.identifier.barcode.none.fl_str_mv 60170
url https://repositorio.unicolmayor.edu.co/handle/unicolmayor/288
identifier_str_mv 60170
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.ispartof.none.fl_str_mv No objeto asociado
dc.relation.references.spa.fl_str_mv 1. Moreno M C, González E R, Beltrán C. Mecanismos de resistencia antimicrobiana en patógenos respiratorios 2009 [185-92]. Available from: http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-48162009000200014&nrm=iso.
2. Ministerio de Salud y Protección Social. PROGRAMA DE PREVENCIÓN, VIGILANCIA Y CONTROL DE INFECCIONES ASOCIADAS A LA ATENCIÓN EN SALUD-IAAS Y LA RESISTENCIA ANTIMICROBIANA Colombia2018 [Available from: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/PAI/programa-iaas-ram.pdf.
3. Lasa I, Pozo JLd, Penadés JR, Leiva J. Biofilms bacterianos e infección 2005 [163-75]. Available from: http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S1137-66272005000300002&nrm=iso.
4. Laura E. Castrillón Rivera APR, * Carmen Padilla Desgarennes**. Péptidos antimicrobianos: antibióticos naturales de la piel: Rev Mex 2007 [51:7-67]. Available from: https://www.medigraphic.com/pdfs/derrevmex/rmd-2007/rmd072d.pdf.
5. Instituto Nacional de Salud. Infecciones asociadas a dispositivos Colombia 2018 [Available from: https://www.ins.gov.co/Paginas/Inicio.aspx.
6. María Victoria O, Sandra Yamile S, María Nilse G, Andrea Melissa H, Carolina D, Mauricio B. Resultados de la vigilancia nacional de la resistencia antimicrobiana de enterobacterias y bacilos Gram negativos no fermentadores en infecciones asociadas a la atención de salud, Colombia, 2012-2014 2017 [updated 12/01. Available from: https://revistabiomedica.org/index.php/biomedica/article/view/3432.
7. Sochacki KA, Barns KJ, Bucki R, Weisshaar JC. Real-time attack on single Escherichia coli cells by the human antimicrobial peptide LL-37 2011 [updated Apr 19PMC3080975]. 2011/04/06:[E77-81]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3080975/.
8. Moffatt JH, Harper M, Mansell A, Crane B, Fitzsimons TC, Nation RL, et al. Lipopolysaccharide-deficient Acinetobacter baumannii shows altered signaling through host Toll-like receptors and increased susceptibility to the host antimicrobial peptide LL-37: American Society for Microbiology; 2013 [2012/12/17:[684-9]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/23250952 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3584870
9. Feng X, Sambanthamoorthy K, Palys T, Paranavitana C. The human antimicrobial peptide LL-37 and its fragments possess both antimicrobial and antibiofilm activities against multidrug-resistant Acinetobacter baumannii 2013 [updated Nov. 2013/09/28:[131-7]. Available from: https://doi.org/10.1016/j.peptides.2013.09.007.
10. Overhage J, Campisano A, Bains M, Torfs EC, Rehm BH, Hancock RE. Human host defense peptide LL-37 prevents bacterial biofilm formation 2008 [updated SepPMC2519444]. 2008/07/02:[4176-82]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2519444/pdf/0318-08.pdf
11. Hell E, Giske CG, Nelson A, Romling U, Marchini G. Human cathelicidin peptide LL37 inhibits both attachment capability and biofilm formation of Staphylococcus epidermidis 2010 [updated Feb. 2009/12/17:[211-5]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/20002576.
12. Fuller CA, Pellino CA, Flagler MJ, Strasser JE, Weiss AA. Shiga toxin subtypes display dramatic differences in potency: American Society for Microbiology (ASM); 2011 [2011/01/03:[1329-37]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/21199911 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3067513/ https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3067513/pdf/1182-10.pdf.
13. Dean SN, Bishop BM, van Hoek ML. Susceptibility of Pseudomonas aeruginosa Biofilm to Alpha-Helical Peptides: D-enantiomer of LL-37 2011 [PMC3131519]. 2011/07/21:[128]. Available from: https://www.frontiersin.org/articles/10.3389/fmicb.2011.00128/full.
14. Dosler S, Karaaslan E. Inhibition and destruction of Pseudomonas aeruginosa biofilms by antibiotics and antimicrobial peptides 2014 [updated Dec. 2014/10/07:[32-7]. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0196978114002903
15. Shi P, Gao Y, Lu Z, Yang L. [Effect of antibacterial peptide LL-37 on the integrity of Acinetobacter baumannii biofilm] 2014 [updated Mar. 2014/03/29:[426-9]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/24670464
16. Spencer JJ, Pitts RE, Pearson RA, King LB. The effects of antimicrobial peptides WAM-1 and LL-37 on multidrug-resistant Acinetobacter baumannii 2018 [updated Mar 1. 2018/01/26:[Available from: https://doi.org/10.1093/femspd/fty007
17. Fariñas MC, Martínez-Martínez L. Infecciones causadas por bacterias gramnegativas multirresistentes: enterobacterias, <span class="elsevierStyleItalic">Pseudomonas aeruginosa</span>, <span class="elsevierStyleItalic">Acinetobacter baumannii</span> y otros bacilos gramnegativos no fermentadores [10.1016/j.eimc.2013.03.016]. 2013 [402-9]. Available from: https://www.elsevier.es/es-revista-enfermedades-infecciosas-microbiologia-clinica-28-articulo-infecciones-causadas-por-bacterias-gramnegativas-S0213005X13000955.
18. Cristhian H-G, Víctor MB, Gabriel M, Adriana C, Juan José M, Elsa de la C, et al. Evolución de la resistencia antimicrobiana de bacilos Gram negativos en unidades de cuidados intensivos en Colombia 2014 [updated 04/01. Available from: https://revistabiomedica.org/index.php/biomedica/article/view/1667.
19. García Castellanos T, Castillo Marshal A, Salazar Rodríguez D. Mecanismos de resistencia a betalactámicos en bacterias gramnegativas 2014 [129-35]. Available from: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-34662014000100013&nrm=iso.
20. Calderón Rojas G AUL. Resistencia antimicrobiana: microorganismos más resistentes y antibióticos con menor actividad. 2016 [Available from: https://www.medigraphic.com/pdfs/revmedcoscen/rmc-2016/rmc164c.pdf
21. R. Vignoli VS. Principales mecanismos de resistencia antibiótica [Available from: http://www.higiene.edu.uy/cefa/2008/Principalesmecanismosderesistenciaantibiotica.pdf.
22. Tafur JD, Torres JA, Villegas MV. Mecanismos de resistencia a los antibióticos en bacterias Gram negativas 2008 [227-32]. Available from: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0123-93922008000300007&nrm=iso
23. SUÁREZ CJ, KATTÁN JN, GUZMÁN AM, VILLEGAS MV. Mecanismos de resistencia a carbapenems en P. aeruginosa, Acinetobacter y Enterobacteriaceae y estrategias para su prevención y control 2006 [85-93]. Available from: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0123-93922006000200006&nrm=iso.
24. Daniel AZ. E. coli BLEE, la enterobacteria que ha atravesado barreras 2015 [ 22 (2): 57-63]. Available from: .http://www.medigraphic.com/pdfs/medsur/ms-2015/ms152b.pdf
25. Farfán-García AEA-R, Sandra Catherine Vargas-Cárdenas, Fabiola Andrea Vargas-Remolina, Lizeth Viviana. Mecanismos de virulencia de Escherichia coli enteropatógena 2016 [438-50]. Available from: https://scielo.conicyt.cl/scielo.php?script=sci_arttext&pid=S0716-10182016000400009&nrm=iso.
26. Raúl Garza-Velasco MBG-S. La patogenia involucrada en las enfermedades diarreicas ocasionadas por ECET y ECEP [Available from: http://depa.fquim.unam.mx/bacteriologia/pdfs/ART%CDC-ECETyECEP.pdf.
27. Puente JL, Bieber D, Ramer SW, Murray W, Schoolnik GK. The bundle-forming pili of enteropathogenic Escherichia coli: transcriptional regulation by environmental signals 1996 [updated Apr. 1996/04/01:[87-100].
28. Vidal JE, Canizález-Román A, Gutiérrez-Jiménez J, Navarro-García F. Patogénesis molecular, epidemiología y diagnóstico de Escherichia coli enteropatógena. Salud Pública de México. 2007;49:376-86.
29. Qadri F, Svennerholm A-M, Faruque ASG, Sack RB. Enterotoxigenic <em>Escherichia coli</em> in Developing Countries: Epidemiology, Microbiology, Clinical Features, Treatment, and Prevention 2005 [465-83]. Available from: https://cmr.asm.org/content/cmr/18/3/465.full.pdf.
30. Arias B I, Huguet T JC. Detección Molecular de Toxinas Termoestable y Termolabil de Escherichia coli mediante Hibridación 2002 [193-6]. Available from: http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1726-46342002000400005&nrm=iso.
31. Rodríguez-Angeles G. Principales características y diagnóstico de los grupos patógenos de Escherichia coli 2002 [464-75]. Available from: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0036-36342002000500011&nrm=iso.
32. Pasqua M, Michelacci V, Di Martino ML, Tozzoli R, Grossi M, Colonna B, et al. The Intriguing Evolutionary Journey of Enteroinvasive E. coli (EIEC) toward Pathogenicity: Frontiers Media S.A.; 2017 [2390-]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/29259590 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5723341
33. RÍOS JCC. DETECCIÓN MOLECULAR DE FACTORES DE VIRULENCIA Y DIVERSIDAD GENÉTICA DE Escherichia coli AISLADA DE CONCHA DE ABANICO (Argopecten purpuratus) PROCEDENTES DEL DEPARTAMENTO DE ANCASH- PERÚ” 2018 [Available from: http://repositorio.upch.edu.pe/bitstream/handle/upch/3863/Deteccion_CarbajalRios_Joysi.pdf?sequence=1&isAllowed=y.
34. Bai X, Mernelius S, Jernberg C, Einemo I-M, Monecke S, Ehricht R, et al. Shiga Toxin-Producing Escherichia coli Infection in Jönköping County, Sweden: Occurrence and Molecular Characteristics in Correlation With Clinical Symptoms and Duration of stx Shedding: Frontiers Media S.A.; 2018 [125-]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/29765909 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5939558
35. Vila J, Vargas M, Henderson IR, Gascón J, Nataro JP. Enteroaggregative Escherichia coli Virulence Factors in Traveler's Diarrhea Strains 2000 [1780-3]. Available from: https://doi.org/10.1086/317617.
36. Harrington SM, Dudley EG, Nataro JP. Pathogenesis of enteroaggregative Escherichia coli infection 2006 [updated Jan. 2006/02/03:[12-8].
37. Riveros M, Barletta F, Cabello M, Durand D, Mercado EH, Contreras C, et al. Patrones de adherencia de cepas de Escherichia coli Difusamente adherente (DAEC) provenientes de niños con y sin diarrea 2011 [21-8]. Available from: http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1726-46342011000100004&nrm=iso.
38. Le Bouguénec C, Servin AL. Diffusely adherent Escherichia coli strains expressing Afa/Dr adhesins (Afa/Dr DAEC): hitherto unrecognized pathogens 2006 [185-94]. Available from: https://doi.org/10.1111/j.1574-6968.2006.00144.x.
39. Conte MP, Longhi C, Marazzato M, Conte AL, Aleandri M, Lepanto MS, et al. Adherent-invasive Escherichia coli (AIEC) in pediatric Crohn's disease patients: phenotypic and genetic pathogenic features: BioMed Central; 2014 [748-]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/25338542 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4210564/.
40. Lee JG, Han DS, Jo SV, Lee AR, Park CH, Eun CS, et al. Characteristics and pathogenic role of adherent-invasive Escherichia coli in inflammatory bowel disease: Potential impact on clinical outcomes: Public Library of Science; 2019 [e0216165-e]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/31034508 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6488085/.
41. Cristina Seral, Gude MJ, Castillo FJ. Emergencia de β-lactamasas AmpC plasmídicas (pAmpC ó cefamicinasas): origen, importancia, detección y alternativas terapéuticas 2012 [25(2):89-99 ].
endógena asociada a absceso hepático por Klebsiella pneumoniae. Descripción de tres casos y revisión de la literatura 2016 [228-36]. Available from: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0121-07932016000200011&nrm=iso.
43. López Vargas JA, Echeverri Toro LM. K. pneumoniae: &iquest;la nueva ''superbacteria''? Patogenicidad, epidemiología y mecanismos de resistencia 2010 [157-65]. Available from: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0121-07932010000200007&nrm=iso.
44. Rapp RP, Urban C. Klebsiella pneumoniae carbapenemases in Enterobacteriaceae: history, evolution, and microbiology concerns 2012 [updated May. 2012/04/11:[399-407].
45. Tzouvelekis LS, Markogiannakis A, Psichogiou M, Tassios PT, Daikos GL. Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: an evolving crisis of global dimensions: American Society for Microbiology; 2012 [682-707]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/23034326 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3485753/.
46. Pitout JDD, Nordmann P, Poirel L. Carbapenemase-Producing Klebsiella pneumoniae, a Key Pathogen Set for Global Nosocomial Dominance: American Society for Microbiology; 2015 [2015/07/13:[5873-84]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/26169401 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4576115/.
47. Merino MF. Diseño y mecanismos de acción molecular de nuevos inhibidores de β-lactamasa [Available from: https://eprints.ucm.es/49194/1/MARIA%20FRESCO%20MERINO%20%281%29.pdf.
48. Calvo J, Cantón R, Cuenca FF, Mirelis B, Navarro F. Detección fenotípica de mecanismos de resistencia en gramnegativos [Available from: https://www.seimc.org/contenidos/documentoscientificos/procedimientosmicrobiologia/seimc-procedimientomicrobiologia38.pdf
49. Liu L-H, Wang N-Y, Wu AY-J, Lin C-C, Lee C-M, Liu C-P. Citrobacter freundii bacteremia: Risk factors of mortality and prevalence of resistance genes 2018 [565-72]. Available from: https://app.dimensions.ai/details/publication/pub.1086121430 https://doi.org/10.1016/j.jmii.2016.08.016.
50. Liu L, Lan R, Liu L, Wang Y, Zhang Y, Wang Y, et al. Antimicrobial Resistance and Cytotoxicity of Citrobacter spp. in Maanshan Anhui Province, China: Frontiers Media S.A.; 2017 [1357-]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/28775715 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5518651/.
51. Shao Y, Xiong Z, Li X, Hu L, Shen J, Li T, et al. Prevalence of plasmid-mediated quinolone resistance determinants in Citrobacter freundii isolates from Anhui province, PR China 2011 [updated Dec. 2011/08/06:[1801-5].
52. Liu L, Chen D, Liu L, Lan R, Hao S, Jin W, et al. Genetic Diversity, Multidrug Resistance, and Virulence of Citrobacter freundii From Diarrheal Patients and Healthy Individuals: Frontiers Media S.A.; 2018 [233-]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/30050870 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6052900/.
53. Eftekhar FP, Seyedpour SMM. Prevalence of qnr and aac(6')-Ib-cr Genes in Clinical Isolates of Klebsiella Pneumoniae from Imam Hussein Hospital in Tehran: Iranian Journal of Medical Sciences; 2015 [515-21]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/26538780 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4628142/.
54. Trivedi M, Branton A, Trivedi D, Nayak G, Mondal S, Jana S. Phenotyping and Genotyping Characterization of Proteus vulgaris After Biofield Treatment 2015 [updated 11/09. 66-73].
55. Hamilton AL, Kamm MA, Ng SC, Morrison M. Proteus spp. as Putative Gastrointestinal Pathogens 2018 [updated JulPMC6056842]. 2018/06/15:[
56. Ishida H, Fuziwara H, Kaibori Y, Horiuchi T, Sato K, Osada Y. Cloning of multidrug resistance gene pqrA from Proteus vulgaris 1995 [453-7]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/7726514 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC162559/.
57. Wang Y, Wang Y, Wu C-M, Schwarz S, Shen Z, Zhang W, et al. Detection of the staphylococcal multiresistance gene cfr in Proteus vulgaris of food animal origin 2011 [2521-6]. Available from: https://doi.org/10.1093/jac/dkr322.
58. Zhang Y, Lei C-W, Wang H-N. Identification of a novel conjugative plasmid carrying the multiresistance gene cfr in Proteus vulgaris isolated from swine origin in China 2019 [updated 2019/09/06/. 102440]. Available from: http://www.sciencedirect.com/science/article/pii/S0147619X19300630
59. Gonzalez Pedraza J, Pereira Sanandres N, Soto Varela Z, Hernández Aguirre E, Villarreal Camacho J. Aislamiento microbiológico de Salmonella spp. y herramientas moleculares para su detección 2014 [73-94]. Available from: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-55522014000100009&nrm=iso.
60. Siriken B. [Salmonella pathogenicity islands] 2013 [updated Jan. Salmonella Patojenite Adalari; 2013/02/09:[181-8].
61. Inda Marcela Figueroa Ochoa AVR. Mecanismos moleculares de patogenicidad de Salmonella sp 2005 [Vol. 47, No. 1-2 pp. 25 - 42 ]. Available from: medigraphic.com/pdfs/lamicro/mi-2005/mi05-1_2e.pdf.
62. Zhang S, Yin Y, Jones MB, Zhang Z, Deatherage Kaiser BL, Dinsmore BA, et al. Salmonella serotype determination utilizing high-throughput genome sequencing data: American Society for Microbiology; 2015 [2015/03/11:[1685-92]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/25762776 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4400759/.
63. Quesada A, Reginatto GA, Ruiz Español A, Colantonio LD, Burrone MS. Resistencia antimicrobiana de Salmonella spp aislada de alimentos de origen animal para consumo humano 2016 [32-44]. Available from: http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1726-46342016000100005&nrm=iso.
64. Tan SY, Tan IKP, Tan MF, Dutta A, Choo SW. Evolutionary study of Yersinia genomes deciphers emergence of human pathogenic species: Nature Publishing Group; 2016 [36116-]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/27796355 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5086877/.
65. Fàbrega A, Ballesté-Delpierre C, Vila J. Antimicrobial Resistance in Yersinia enterocolitica 2015 [updated 12/31. 77-104].
66. Gaspa HR. Infección en quemadurasGaspa HR. Infección en quemaduras
66. Gaspa HR. Infección en quemaduras 2005 [ 111 - 7]. Available from: https://www.medigraphic.com/pdfs/cplast/cp-2005/cp052h.pdf
67. Ochoa SA, López-Montiel F, Escalona G, Cruz-Córdova A, Dávila LB, López-Martínez B, et al. Características patogénicas de cepas de Pseudomonas aeruginosa resistentes a carbapenémicos, asociadas con la formación de biopelículas 2013 [136-50]. Available from: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1665-11462013000200010&nrm=iso.
68. Pang Z, Raudonis R, Glick BR, Lin TJ, Cheng Z. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies 2019 [updated Jan - Feb. 2018/12/01:[177-92].
69. Püntener-Simmen S, Zurfluh K, Schmitt S, Stephan R, Nüesch-Inderbinen M. Phenotypic and Genotypic Characterization of Clinical Isolates Belonging to the Acinetobacter calcoaceticus-Acinetobacter baumannii (ACB) Complex Isolated From Animals Treated at a Veterinary Hospital in Switzerland: Frontiers Media S.A.; 2019 [17-]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/30805352 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6370676/.
70. Vanegas-MÚNera JM, Roncancio-Villamil G, JimÉNez-Quiceno JN. Acinetobacter baumannii: importancia clínica, mecanismos de resistencia y diagnóstico 2014 [233-46]. Available from: https://www.redalyc.org/articulo.oa?id=261132654008
71. Villalón P, Ortega M, Sáez-Nieto JA, Carrasco G, Medina-Pascual MJ, Garrido N, et al. Dynamics of a Sporadic Nosocomial Acinetobacter calcoaceticus - Acinetobacter baumannii Complex Population: Frontiers Media S.A.; 2019 [593-]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/30967856 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6440288/.
72. Pestaña MÍ, del Pozo JL. Infecciones por bacilos Gram negativos no fermentadores: Pseudomonas aeruginosa, Acinetobacter spp. y Stenotrophomonas maltophilia 2018 [updated 2018/03/01/. 2931-40]. Available from: http://www.sciencedirect.com/science/article/pii/S0304541218300337.
73. Viñas AM. aspectos microbiológicos de Burkholderia cepacia complex en pacientes con fibrosis quística: Universidad Autonoma De Barcelona. ; 2015 [Available from: https://ddd.uab.cat/pub/tesis/2015/hdl_10803_329293/amv1de1.pdf.
74. Sánchez Hernández G. Confirmación de un brote de bacteriemia por Burkholderia cepacia en una unidad de cuidados intensivos pediátricos mediante biología molecular Universidad Nacional Autonoma de Mexico 2011.
Universidad Nacional Autonoma de Mexico 2011. 75. Rojas-Rojas FU, López-Sánchez D, Meza-Radilla G, Méndez-Canarios A, Ibarra JA, Estrada-de los Santos P. El controvertido complejo Burkholderia cepacia, un grupo de especies promotoras del crecimiento vegetal y patógenas de plantas, animales y humanos 2019 [updated 2019/01/01/. 84-92]. Available from: http://www.sciencedirect.com/science/article/pii/S0325754118300038.
76. Butt AT, Thomas MS. Iron Acquisition Mechanisms and Their Role in the Virulence of Burkholderia Species: Frontiers Media S.A.; 2017 [460-]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/29164069 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5681537/
77. Rhodes KA, Schweizer HP. Antibiotic resistance in Burkholderia species 2016 [2016/07/30:[82-90]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/27620956 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5022785/.
78. Díaz Caballero AJ, Vivas Reyes R, Puerta L, Ahumedo Monterrosa M, Arévalo Tovar L, Cabrales Salgado R, et al. Biopelículas como expresión del mecanismo de quorum sensing: Una revisión 2011 [195-201]. Available from: http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S1699-65852011000300005&nrm=iso
79. Nazar C J. Biofilms bacterianos 2007 [161-72]. Available from: https://scielo.conicyt.cl/scielo.php?script=sci_arttext&pid=S0718-48162007000100011&nrm=iso.
80. Jamal M, Ahmad W, Andleeb S, Jalil F, Imran M, Nawaz MA, et al. Bacterial biofilm and associated infections 2018 [updated Jan. 2017/10/19:[7-11].
81. Gupta P, Sarkar S, Das B, Bhattacharjee S, Tribedi P. Biofilm, pathogenesis and prevention--a journey to break the wall: a review 2016 [updated Jan. 2015/09/18:[1-15]
82. Loera Muro A, Ramírez Castillo FY, Avelar González FJ, Guerrero Barrera AL. Biopelículas multi-especie: asociarse para sobrevivir 2012 [49-56]. Available from: https://www.redalyc.org/articulo.oa?id=67424408007.
83. Rabin N, Zheng Y, Opoku-Temeng C, Du Y, Bonsu E, Sintim HO. Biofilm formation mechanisms and targets for developing antibiofilm agents 2015 [2015/04/16:[493-512].
84. Cooper S. Bacterial Growth and Division: Biochemistry and Regulation of Prokaryotic and Eukaryotic Division Cycles: Elsevier Science; 2012.
85. Jurtshuk P, Jr. Bacterial Metabolism. In: th, Baron S, editors. Medical Microbiology. Galveston (TX): University of Texas Medical Branch at Galveston The University of Texas Medical Branch at Galveston.; 1996.
86. Varela G. FISIOLOGIA Y METABOLISMO BACTERIANO [Available from: http://www.higiene.edu.uy/cefa/Libro2002/Cap%2011.pdf.
87. Merino LA. Fisiología bacteriana Universidad Nacional del Nordeste [Available from: http://isft194.edu.ar/wp-content/uploads/2013/03/APUNTE-Metabolismo-bacteriano.pdf.
88. Jesús Ramírez Santos GCF, ** M. Carmen Gómez Eichelmann*. La fase estacionaria en la bacteria Escherichia coli 2005 [Vol. 47, No. 3-4]. Available from: https://www.medigraphic.com/pdfs/lamicro/mi-2005/mi05-3_4f.pdf.
89. Lakshmaiah Narayana J, Chen JY. Antimicrobial peptides: Possible anti-infective agents 2015 [updated Oct. 2015/06/07:[88-94].
90. Zhang L-j, Gallo RL. Antimicrobial peptides: Elsevier; 2016 [R14-R9]. Available from: https://doi.org/10.1016/j.cub.2015.11.017.
91. Mangoni ML, McDermott AM, Zasloff M. Antimicrobial peptides and wound healing: biological and therapeutic considerations 2016 [2016/02/10:[167-73]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/26738772 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4789108/.
92. Agier J, Efenberger M, Brzezińska-Błaszczyk E. Cathelicidin impact on inflammatory cells. Cent Eur J Immunol. 2015;40(2):225-35.
93. Zeth K, Sancho-Vaello E. The Human Antimicrobial Peptides Dermcidin and LL-37 Show Novel Distinct Pathways in Membrane Interactions. Frontiers in Chemistry. 2017;5(86
94. Frohm M, Agerberth B, Ahangari G, Stahle-Backdahl M, Liden S, Wigzell H, et al. The expression of the gene coding for the antibacterial peptide LL-37 is induced in human keratinocytes during inflammatory disorders 1997 [updated Jun 13. 1997/06/13:[15258-63].
95. Yang SC, Hwang TL. The potential impacts of formyl peptide receptor 1 in inflammatory diseases. Front Biosci (Elite Ed). 2016;8:436-49.
96. Scott MG, Davidson DJ, Gold MR, Bowdish D, Hancock REW. The Human Antimicrobial Peptide LL-37 Is a Multifunctional Modulator of Innate Immune Responses 2002 [3883-91]. Available from: https://www.jimmunol.org/content/jimmunol/169/7/3883.full.pdf.
97. Levast B, Hogan D, van Kessel J, Strom S, Walker S, Zhu J, et al. Synthetic Cationic Peptide IDR-1002 and Human Cathelicidin LL37 Modulate the Cell Innate Response but Differentially Impact PRRSV Replication in vitro: Frontiers Media S.A.; 2019 [233-]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/31355218 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6640542/.
98. Jiang Z, Higgins MP, Whitehurst J, Kisich KO, Voskuil MI, Hodges RS. Anti-tuberculosis activity of α-helical antimicrobial peptides: de novo designed L- and D-enantiomers versus L- and D-LL-37 2011 [241-52]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/20858205 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3263701/.
99. Dean SN, Bishop BM, van Hoek ML. Susceptibility of Pseudomonas aeruginosa Biofilm to Alpha-Helical Peptides: D-enantiomer of LL-37: Frontiers Research Foundation; 2011 [128-]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/21772832 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3131519/.
00. Aghazadeh H, Memariani H, Ranjbar R, Bagheri KP. The activity and action mechanism of novel short selective LL‐37‐derived anticancer peptides against clinical isolates of Escherichia coli: Wiley Online Library; 2019 [75-83]. Available from: https://doi.org/10.1111/cbdd.13381.
101. Schultz D, Kishony R. Optimization and control in bacterial Lag phase 2013 [updated 12/16. 120].
102. Schmidtchen A, Frick IM, Andersson E, Tapper H, Björck L. Proteinases of common pathogenic bacteria degrade and inactivate the antibacterial peptide LL‐37. Molecular Microbiology. 2002;46(1):157-68.
103. Strömstedt AA, Pasupuleti M, Schmidtchen A, Malmsten M. Evaluation of strategies for improving proteolytic resistance of antimicrobial peptides by using variants of EFK17, an internal segment of LL-37. Antimicrob Agents Chemother. 2009;53(2):593-602.
104. Chu D, Barnes DJ. The lag-phase during diauxic growth is a trade-off between fast adaptation and high growth rate. Sci Rep. 2016;6(1):25191.
105. Park S-C, Park Y, Hahm K-S. The Role of Antimicrobial Peptides in Preventing Multidrug-Resistant Bacterial Infections and Biofilm Formation. International Journal of Molecular Sciences. 2011;12(9):5971-92.
106. Torlak E, Korkut E, Uncu AT, Şener Y. Biofilm formation by Staphylococcus aureus isolates from a dental clinic in Konya, Turkey. Journal of Infection and Public Health. 2017;10(6):809-13.
107. Muñoz L, Guevara F, Salazar F, Navarrete J, Pinilla G. Péptidos antimicrobianos análogos a la catelicidina humana ll-37. Diario de campo. 2018;3:190-206
108. Liu W, Chen Y, Ming X, Kong Y. Design and Synthesis of a Novel Cationic Peptide with Potent and Broad-Spectrum Antimicrobial Activity. BioMed Research International. 2015;1-6.
109. Ortega S, Ceron G. Producción de biopelículas y Resistencia antimicrobiana en uropatógenos aislados de catéteres urinarios en un hospital de rehabilitación física. Investigación en discapacidad. 2017;6(3):116-121.
dc.rights.eng.fl_str_mv Derechos Reservados -Universidad Colegio Myor de Cundinamarca ,2019
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Derechos Reservados -Universidad Colegio Myor de Cundinamarca ,2019
https://creativecommons.org/licenses/by-nc-sa/4.0/
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 90p.
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.country.none.fl_str_mv Colombia
dc.publisher.spa.fl_str_mv Universidad Colegio Mayor de Cundinamarca
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias de la Salud
dc.publisher.place.spa.fl_str_mv Bogotá, Distrito Capital
dc.publisher.program.spa.fl_str_mv Bacteriología y Laboratorio Clínico
institution Colegio Mayor de Cundinamarca
bitstream.url.fl_str_mv https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/288/1/tesis%20final.pdf
https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/288/2/1%20PARA%20SUBIR%20%20trabajo%20de%20grado%20final%20%281%29.pdf
https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/288/3/2%20PARA%20SUBIR%20trabajo%20de%20grado%20final.pdf
https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/288/4/license.txt
https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/288/5/tesis%20final.pdf.txt
https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/288/7/1%20PARA%20SUBIR%20%20trabajo%20de%20grado%20final%20%281%29.pdf.txt
https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/288/9/2%20PARA%20SUBIR%20trabajo%20de%20grado%20final.pdf.txt
https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/288/6/tesis%20final.pdf.jpg
https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/288/8/1%20PARA%20SUBIR%20%20trabajo%20de%20grado%20final%20%281%29.pdf.jpg
https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/288/10/2%20PARA%20SUBIR%20trabajo%20de%20grado%20final.pdf.jpg
bitstream.checksum.fl_str_mv 3d3eaaf10579fc0b062aba9f3636c262
4e8cd53ecfd5cec11434d7f3f6ffbfc6
f1ae50255a9cdaa049077df03cd63d72
2f9959eaf5b71fae44bbf9ec84150c7a
40bd08a2b9f3a215dac744c42e593c0d
afe75144a719cc066776c313ce1d5c77
e1c06d85ae7b8b032bef47e42e4c08f9
be69df775238adbb7ca0d3997c7b9c68
d9305a0a2a29d8537026213228a175a0
8e36723958c77ea83d414f5bd66d86bd
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital Unicolmayor
repository.mail.fl_str_mv repositorio@unicolmayor.edu.co
_version_ 1812210021780422656
spelling Muñoz Molina, Liliana Constanza3c245a61ea61f171a41545b5f8c6ae43600Pasachova Garzón, Jenniferef946cbd58f02a0f3a34a7af6f2d2d13Ramírez Martínez, Sara4a38a333c112287bb8bf37389d6f9a6aUniversidad Colegio Mayor de CundinamarcaTrabajo de grado2021-06-24T17:02:47Z2021-06-24T17:02:47Z2019-12https://repositorio.unicolmayor.edu.co/handle/unicolmayor/28860170La resistencia bacteriana a antibióticos se ha convertido con el paso de los años en un problema de salud pública, esto por el uso indiscriminado de antibióticos; asimismo factores como la transferencia horizontal de genes de resistencia o la producción de biopelícula contribuyen al aumento de esta problemática, generando que cada vez sea más complicado dar un tratamiento para infecciones bacterianas y reduciendo el número de antibióticos efectivos para la resolución de una enfermedad y aumentando la morbimortalidad. Debido a esto se han propuesto distintos tratamientos alternativos al uso tradicional de antibióticos, uno de estos es el uso de péptidos antimicrobianos los cuales han mostrado la capacidad de inhibir el crecimiento bacteriano. Uno de los péptidos antimicrobianos más importante es el péptido LL-37 que es miembro de la familia de las catelicidinas y en el cual se ha evaluado su acción sobre bacterias Gram positivas como S. aureus mostrando resultados positivos en la inhibición de este microorganismo, es por esto que se evaluó la actividad de este péptido y sus derivados en el crecimiento y formación de biopelícula de cepas clínicas y ATCC de bacilos Gram negativos, los cuales son causantes de numerosas enfermedades a nivel mundial.Bacterial resistance to antibiotics has become a public health problem over the years, due to the indiscriminate use of antibiotics; Likewise, factors such as horizontal transfer of resistance genes or biofilm production contribute to the increase of this problem, making it increasingly difficult to treat bacterial infections and reducing the number of effective antibiotics for the resolution of a disease and increasing morbidity and mortality. Due to this, different alternative treatments to the traditional use of antibiotics have been proposed, one of these is the use of antimicrobial peptides which have shown the ability to inhibit bacterial growth. One of the most important antimicrobial peptides is the LL-37 peptide that is a member of the cathelicidin family and in which its action on Gram positive bacteria such as S. aureus has been evaluated showing positive results in the inhibition of this microorganism, for this reason the activity of this peptide and its derivatives in the growth and biofilm formation of clinical and ATCC strains of Gram-negative bacilli were evaluated, which are the cause of numerous diseases worldwide.Resumen 10 Introducción 11 Objetivos 12 Objetivo general 12 Objetivos específicos 12 Justificación 13 1.Antecedentes 14 2. Marco Referencial 18 2.1 Generalidades 18 2.1.1 E. coli 19 2.1.2 Klebsiella pneumoniae 21 2.1.3 Citrobacter freundii 21 2.1.4 Proteus 22 2.1.5 Salmonella 22 2.1.6 Yersinia 23 2.1.7 Pseudomonas 23 2.1.8 Acinetobacter 24 2.1.9 Burkholderia 24 2.2. Biopelícula 25 2.2.1 Etapas de formación de la biopelícula 25 2.2.2 Resistencia bacteriana mediada por biopelícula 26 2.3 Curvas de crecimiento bacteriano 27 2.4 Péptidos antimicrobianos 28 2.4.1 Péptido LL-37 28 3. Materiales y métodos 30 3.1 Cultivo de las bacterias 31 3.2 Escalas McFarland 31 6 3.3 Reconstitución de los péptidos 31 3.4 Curvas de crecimiento 32 3.5 Cristal violeta 33 3.6 Análisis estadístico 34 4. Resultados 34 4.1 Curvas de crecimiento 34 4.1.1 Comparación por genero bacteriano de las horas significativas de cada péptido (LL37-AC1, LL37-AC2, D-LL37 y LL37) a todas las concentraciones 35 4.1.3 Alargamiento de la fase lag 48 4.1.4 Inhibición del crecimiento 49 4.1.5 Comparación de las curvas de crecimiento por péptido 50 4.2 Cristal violeta 67 5. Discusión 69 6.Conclusiones 74 7.Referencias 76PregradoBacteriólogo(a) y Laboratorista ClínicoTrabajo de grado90p.application/pdfspaUniversidad Colegio Mayor de CundinamarcaFacultad de Ciencias de la SaludBogotá, Distrito CapitalBacteriología y Laboratorio ClínicoNo objeto asociado1. Moreno M C, González E R, Beltrán C. Mecanismos de resistencia antimicrobiana en patógenos respiratorios 2009 [185-92]. Available from: http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-48162009000200014&nrm=iso.2. Ministerio de Salud y Protección Social. PROGRAMA DE PREVENCIÓN, VIGILANCIA Y CONTROL DE INFECCIONES ASOCIADAS A LA ATENCIÓN EN SALUD-IAAS Y LA RESISTENCIA ANTIMICROBIANA Colombia2018 [Available from: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/PAI/programa-iaas-ram.pdf.3. Lasa I, Pozo JLd, Penadés JR, Leiva J. Biofilms bacterianos e infección 2005 [163-75]. Available from: http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S1137-66272005000300002&nrm=iso.4. Laura E. Castrillón Rivera APR, * Carmen Padilla Desgarennes**. Péptidos antimicrobianos: antibióticos naturales de la piel: Rev Mex 2007 [51:7-67]. Available from: https://www.medigraphic.com/pdfs/derrevmex/rmd-2007/rmd072d.pdf.5. Instituto Nacional de Salud. Infecciones asociadas a dispositivos Colombia 2018 [Available from: https://www.ins.gov.co/Paginas/Inicio.aspx.6. María Victoria O, Sandra Yamile S, María Nilse G, Andrea Melissa H, Carolina D, Mauricio B. Resultados de la vigilancia nacional de la resistencia antimicrobiana de enterobacterias y bacilos Gram negativos no fermentadores en infecciones asociadas a la atención de salud, Colombia, 2012-2014 2017 [updated 12/01. Available from: https://revistabiomedica.org/index.php/biomedica/article/view/3432.7. Sochacki KA, Barns KJ, Bucki R, Weisshaar JC. Real-time attack on single Escherichia coli cells by the human antimicrobial peptide LL-37 2011 [updated Apr 19PMC3080975]. 2011/04/06:[E77-81]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3080975/.8. Moffatt JH, Harper M, Mansell A, Crane B, Fitzsimons TC, Nation RL, et al. Lipopolysaccharide-deficient Acinetobacter baumannii shows altered signaling through host Toll-like receptors and increased susceptibility to the host antimicrobial peptide LL-37: American Society for Microbiology; 2013 [2012/12/17:[684-9]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/23250952 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC35848709. Feng X, Sambanthamoorthy K, Palys T, Paranavitana C. The human antimicrobial peptide LL-37 and its fragments possess both antimicrobial and antibiofilm activities against multidrug-resistant Acinetobacter baumannii 2013 [updated Nov. 2013/09/28:[131-7]. Available from: https://doi.org/10.1016/j.peptides.2013.09.007.10. Overhage J, Campisano A, Bains M, Torfs EC, Rehm BH, Hancock RE. Human host defense peptide LL-37 prevents bacterial biofilm formation 2008 [updated SepPMC2519444]. 2008/07/02:[4176-82]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2519444/pdf/0318-08.pdf11. Hell E, Giske CG, Nelson A, Romling U, Marchini G. Human cathelicidin peptide LL37 inhibits both attachment capability and biofilm formation of Staphylococcus epidermidis 2010 [updated Feb. 2009/12/17:[211-5]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/20002576.12. Fuller CA, Pellino CA, Flagler MJ, Strasser JE, Weiss AA. Shiga toxin subtypes display dramatic differences in potency: American Society for Microbiology (ASM); 2011 [2011/01/03:[1329-37]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/21199911 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3067513/ https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3067513/pdf/1182-10.pdf.13. Dean SN, Bishop BM, van Hoek ML. Susceptibility of Pseudomonas aeruginosa Biofilm to Alpha-Helical Peptides: D-enantiomer of LL-37 2011 [PMC3131519]. 2011/07/21:[128]. Available from: https://www.frontiersin.org/articles/10.3389/fmicb.2011.00128/full.14. Dosler S, Karaaslan E. Inhibition and destruction of Pseudomonas aeruginosa biofilms by antibiotics and antimicrobial peptides 2014 [updated Dec. 2014/10/07:[32-7]. Available from: https://www.sciencedirect.com/science/article/abs/pii/S019697811400290315. Shi P, Gao Y, Lu Z, Yang L. [Effect of antibacterial peptide LL-37 on the integrity of Acinetobacter baumannii biofilm] 2014 [updated Mar. 2014/03/29:[426-9]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/2467046416. Spencer JJ, Pitts RE, Pearson RA, King LB. The effects of antimicrobial peptides WAM-1 and LL-37 on multidrug-resistant Acinetobacter baumannii 2018 [updated Mar 1. 2018/01/26:[Available from: https://doi.org/10.1093/femspd/fty00717. Fariñas MC, Martínez-Martínez L. Infecciones causadas por bacterias gramnegativas multirresistentes: enterobacterias, <span class="elsevierStyleItalic">Pseudomonas aeruginosa</span>, <span class="elsevierStyleItalic">Acinetobacter baumannii</span> y otros bacilos gramnegativos no fermentadores [10.1016/j.eimc.2013.03.016]. 2013 [402-9]. Available from: https://www.elsevier.es/es-revista-enfermedades-infecciosas-microbiologia-clinica-28-articulo-infecciones-causadas-por-bacterias-gramnegativas-S0213005X13000955.18. Cristhian H-G, Víctor MB, Gabriel M, Adriana C, Juan José M, Elsa de la C, et al. Evolución de la resistencia antimicrobiana de bacilos Gram negativos en unidades de cuidados intensivos en Colombia 2014 [updated 04/01. Available from: https://revistabiomedica.org/index.php/biomedica/article/view/1667.19. García Castellanos T, Castillo Marshal A, Salazar Rodríguez D. Mecanismos de resistencia a betalactámicos en bacterias gramnegativas 2014 [129-35]. Available from: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-34662014000100013&nrm=iso.20. Calderón Rojas G AUL. Resistencia antimicrobiana: microorganismos más resistentes y antibióticos con menor actividad. 2016 [Available from: https://www.medigraphic.com/pdfs/revmedcoscen/rmc-2016/rmc164c.pdf21. R. Vignoli VS. Principales mecanismos de resistencia antibiótica [Available from: http://www.higiene.edu.uy/cefa/2008/Principalesmecanismosderesistenciaantibiotica.pdf.22. Tafur JD, Torres JA, Villegas MV. Mecanismos de resistencia a los antibióticos en bacterias Gram negativas 2008 [227-32]. Available from: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0123-93922008000300007&nrm=iso23. SUÁREZ CJ, KATTÁN JN, GUZMÁN AM, VILLEGAS MV. Mecanismos de resistencia a carbapenems en P. aeruginosa, Acinetobacter y Enterobacteriaceae y estrategias para su prevención y control 2006 [85-93]. Available from: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0123-93922006000200006&nrm=iso.24. Daniel AZ. E. coli BLEE, la enterobacteria que ha atravesado barreras 2015 [ 22 (2): 57-63]. Available from: .http://www.medigraphic.com/pdfs/medsur/ms-2015/ms152b.pdf25. Farfán-García AEA-R, Sandra Catherine Vargas-Cárdenas, Fabiola Andrea Vargas-Remolina, Lizeth Viviana. Mecanismos de virulencia de Escherichia coli enteropatógena 2016 [438-50]. Available from: https://scielo.conicyt.cl/scielo.php?script=sci_arttext&pid=S0716-10182016000400009&nrm=iso.26. Raúl Garza-Velasco MBG-S. La patogenia involucrada en las enfermedades diarreicas ocasionadas por ECET y ECEP [Available from: http://depa.fquim.unam.mx/bacteriologia/pdfs/ART%CDC-ECETyECEP.pdf.27. Puente JL, Bieber D, Ramer SW, Murray W, Schoolnik GK. The bundle-forming pili of enteropathogenic Escherichia coli: transcriptional regulation by environmental signals 1996 [updated Apr. 1996/04/01:[87-100].28. Vidal JE, Canizález-Román A, Gutiérrez-Jiménez J, Navarro-García F. Patogénesis molecular, epidemiología y diagnóstico de Escherichia coli enteropatógena. Salud Pública de México. 2007;49:376-86.29. Qadri F, Svennerholm A-M, Faruque ASG, Sack RB. Enterotoxigenic <em>Escherichia coli</em> in Developing Countries: Epidemiology, Microbiology, Clinical Features, Treatment, and Prevention 2005 [465-83]. Available from: https://cmr.asm.org/content/cmr/18/3/465.full.pdf.30. Arias B I, Huguet T JC. Detección Molecular de Toxinas Termoestable y Termolabil de Escherichia coli mediante Hibridación 2002 [193-6]. Available from: http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1726-46342002000400005&nrm=iso.31. Rodríguez-Angeles G. Principales características y diagnóstico de los grupos patógenos de Escherichia coli 2002 [464-75]. Available from: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0036-36342002000500011&nrm=iso.32. Pasqua M, Michelacci V, Di Martino ML, Tozzoli R, Grossi M, Colonna B, et al. The Intriguing Evolutionary Journey of Enteroinvasive E. coli (EIEC) toward Pathogenicity: Frontiers Media S.A.; 2017 [2390-]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/29259590 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC572334133. RÍOS JCC. DETECCIÓN MOLECULAR DE FACTORES DE VIRULENCIA Y DIVERSIDAD GENÉTICA DE Escherichia coli AISLADA DE CONCHA DE ABANICO (Argopecten purpuratus) PROCEDENTES DEL DEPARTAMENTO DE ANCASH- PERÚ” 2018 [Available from: http://repositorio.upch.edu.pe/bitstream/handle/upch/3863/Deteccion_CarbajalRios_Joysi.pdf?sequence=1&isAllowed=y.34. Bai X, Mernelius S, Jernberg C, Einemo I-M, Monecke S, Ehricht R, et al. Shiga Toxin-Producing Escherichia coli Infection in Jönköping County, Sweden: Occurrence and Molecular Characteristics in Correlation With Clinical Symptoms and Duration of stx Shedding: Frontiers Media S.A.; 2018 [125-]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/29765909 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC593955835. Vila J, Vargas M, Henderson IR, Gascón J, Nataro JP. Enteroaggregative Escherichia coli Virulence Factors in Traveler's Diarrhea Strains 2000 [1780-3]. Available from: https://doi.org/10.1086/317617.36. Harrington SM, Dudley EG, Nataro JP. Pathogenesis of enteroaggregative Escherichia coli infection 2006 [updated Jan. 2006/02/03:[12-8].37. Riveros M, Barletta F, Cabello M, Durand D, Mercado EH, Contreras C, et al. Patrones de adherencia de cepas de Escherichia coli Difusamente adherente (DAEC) provenientes de niños con y sin diarrea 2011 [21-8]. Available from: http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1726-46342011000100004&nrm=iso.38. Le Bouguénec C, Servin AL. Diffusely adherent Escherichia coli strains expressing Afa/Dr adhesins (Afa/Dr DAEC): hitherto unrecognized pathogens 2006 [185-94]. Available from: https://doi.org/10.1111/j.1574-6968.2006.00144.x.39. Conte MP, Longhi C, Marazzato M, Conte AL, Aleandri M, Lepanto MS, et al. Adherent-invasive Escherichia coli (AIEC) in pediatric Crohn's disease patients: phenotypic and genetic pathogenic features: BioMed Central; 2014 [748-]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/25338542 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4210564/.40. Lee JG, Han DS, Jo SV, Lee AR, Park CH, Eun CS, et al. Characteristics and pathogenic role of adherent-invasive Escherichia coli in inflammatory bowel disease: Potential impact on clinical outcomes: Public Library of Science; 2019 [e0216165-e]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/31034508 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6488085/.41. Cristina Seral, Gude MJ, Castillo FJ. Emergencia de β-lactamasas AmpC plasmídicas (pAmpC ó cefamicinasas): origen, importancia, detección y alternativas terapéuticas 2012 [25(2):89-99 ].endógena asociada a absceso hepático por Klebsiella pneumoniae. Descripción de tres casos y revisión de la literatura 2016 [228-36]. Available from: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0121-07932016000200011&nrm=iso.43. López Vargas JA, Echeverri Toro LM. K. pneumoniae: &iquest;la nueva ''superbacteria''? Patogenicidad, epidemiología y mecanismos de resistencia 2010 [157-65]. Available from: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0121-07932010000200007&nrm=iso.44. Rapp RP, Urban C. Klebsiella pneumoniae carbapenemases in Enterobacteriaceae: history, evolution, and microbiology concerns 2012 [updated May. 2012/04/11:[399-407].45. Tzouvelekis LS, Markogiannakis A, Psichogiou M, Tassios PT, Daikos GL. Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: an evolving crisis of global dimensions: American Society for Microbiology; 2012 [682-707]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/23034326 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3485753/.46. Pitout JDD, Nordmann P, Poirel L. Carbapenemase-Producing Klebsiella pneumoniae, a Key Pathogen Set for Global Nosocomial Dominance: American Society for Microbiology; 2015 [2015/07/13:[5873-84]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/26169401 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4576115/.47. Merino MF. Diseño y mecanismos de acción molecular de nuevos inhibidores de β-lactamasa [Available from: https://eprints.ucm.es/49194/1/MARIA%20FRESCO%20MERINO%20%281%29.pdf.48. Calvo J, Cantón R, Cuenca FF, Mirelis B, Navarro F. Detección fenotípica de mecanismos de resistencia en gramnegativos [Available from: https://www.seimc.org/contenidos/documentoscientificos/procedimientosmicrobiologia/seimc-procedimientomicrobiologia38.pdf49. Liu L-H, Wang N-Y, Wu AY-J, Lin C-C, Lee C-M, Liu C-P. Citrobacter freundii bacteremia: Risk factors of mortality and prevalence of resistance genes 2018 [565-72]. Available from: https://app.dimensions.ai/details/publication/pub.1086121430 https://doi.org/10.1016/j.jmii.2016.08.016.50. Liu L, Lan R, Liu L, Wang Y, Zhang Y, Wang Y, et al. Antimicrobial Resistance and Cytotoxicity of Citrobacter spp. in Maanshan Anhui Province, China: Frontiers Media S.A.; 2017 [1357-]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/28775715 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5518651/.51. Shao Y, Xiong Z, Li X, Hu L, Shen J, Li T, et al. Prevalence of plasmid-mediated quinolone resistance determinants in Citrobacter freundii isolates from Anhui province, PR China 2011 [updated Dec. 2011/08/06:[1801-5].52. Liu L, Chen D, Liu L, Lan R, Hao S, Jin W, et al. Genetic Diversity, Multidrug Resistance, and Virulence of Citrobacter freundii From Diarrheal Patients and Healthy Individuals: Frontiers Media S.A.; 2018 [233-]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/30050870 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6052900/.53. Eftekhar FP, Seyedpour SMM. Prevalence of qnr and aac(6')-Ib-cr Genes in Clinical Isolates of Klebsiella Pneumoniae from Imam Hussein Hospital in Tehran: Iranian Journal of Medical Sciences; 2015 [515-21]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/26538780 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4628142/.54. Trivedi M, Branton A, Trivedi D, Nayak G, Mondal S, Jana S. Phenotyping and Genotyping Characterization of Proteus vulgaris After Biofield Treatment 2015 [updated 11/09. 66-73].55. Hamilton AL, Kamm MA, Ng SC, Morrison M. Proteus spp. as Putative Gastrointestinal Pathogens 2018 [updated JulPMC6056842]. 2018/06/15:[56. Ishida H, Fuziwara H, Kaibori Y, Horiuchi T, Sato K, Osada Y. Cloning of multidrug resistance gene pqrA from Proteus vulgaris 1995 [453-7]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/7726514 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC162559/.57. Wang Y, Wang Y, Wu C-M, Schwarz S, Shen Z, Zhang W, et al. Detection of the staphylococcal multiresistance gene cfr in Proteus vulgaris of food animal origin 2011 [2521-6]. Available from: https://doi.org/10.1093/jac/dkr322.58. Zhang Y, Lei C-W, Wang H-N. Identification of a novel conjugative plasmid carrying the multiresistance gene cfr in Proteus vulgaris isolated from swine origin in China 2019 [updated 2019/09/06/. 102440]. Available from: http://www.sciencedirect.com/science/article/pii/S0147619X1930063059. Gonzalez Pedraza J, Pereira Sanandres N, Soto Varela Z, Hernández Aguirre E, Villarreal Camacho J. Aislamiento microbiológico de Salmonella spp. y herramientas moleculares para su detección 2014 [73-94]. Available from: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-55522014000100009&nrm=iso.60. Siriken B. [Salmonella pathogenicity islands] 2013 [updated Jan. Salmonella Patojenite Adalari; 2013/02/09:[181-8].61. Inda Marcela Figueroa Ochoa AVR. Mecanismos moleculares de patogenicidad de Salmonella sp 2005 [Vol. 47, No. 1-2 pp. 25 - 42 ]. Available from: medigraphic.com/pdfs/lamicro/mi-2005/mi05-1_2e.pdf.62. Zhang S, Yin Y, Jones MB, Zhang Z, Deatherage Kaiser BL, Dinsmore BA, et al. Salmonella serotype determination utilizing high-throughput genome sequencing data: American Society for Microbiology; 2015 [2015/03/11:[1685-92]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/25762776 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4400759/.63. Quesada A, Reginatto GA, Ruiz Español A, Colantonio LD, Burrone MS. Resistencia antimicrobiana de Salmonella spp aislada de alimentos de origen animal para consumo humano 2016 [32-44]. Available from: http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1726-46342016000100005&nrm=iso.64. Tan SY, Tan IKP, Tan MF, Dutta A, Choo SW. Evolutionary study of Yersinia genomes deciphers emergence of human pathogenic species: Nature Publishing Group; 2016 [36116-]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/27796355 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5086877/.65. Fàbrega A, Ballesté-Delpierre C, Vila J. Antimicrobial Resistance in Yersinia enterocolitica 2015 [updated 12/31. 77-104].66. Gaspa HR. Infección en quemadurasGaspa HR. Infección en quemaduras66. Gaspa HR. Infección en quemaduras 2005 [ 111 - 7]. Available from: https://www.medigraphic.com/pdfs/cplast/cp-2005/cp052h.pdf67. Ochoa SA, López-Montiel F, Escalona G, Cruz-Córdova A, Dávila LB, López-Martínez B, et al. Características patogénicas de cepas de Pseudomonas aeruginosa resistentes a carbapenémicos, asociadas con la formación de biopelículas 2013 [136-50]. Available from: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1665-11462013000200010&nrm=iso.68. Pang Z, Raudonis R, Glick BR, Lin TJ, Cheng Z. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies 2019 [updated Jan - Feb. 2018/12/01:[177-92].69. Püntener-Simmen S, Zurfluh K, Schmitt S, Stephan R, Nüesch-Inderbinen M. Phenotypic and Genotypic Characterization of Clinical Isolates Belonging to the Acinetobacter calcoaceticus-Acinetobacter baumannii (ACB) Complex Isolated From Animals Treated at a Veterinary Hospital in Switzerland: Frontiers Media S.A.; 2019 [17-]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/30805352 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6370676/.70. Vanegas-MÚNera JM, Roncancio-Villamil G, JimÉNez-Quiceno JN. Acinetobacter baumannii: importancia clínica, mecanismos de resistencia y diagnóstico 2014 [233-46]. Available from: https://www.redalyc.org/articulo.oa?id=26113265400871. Villalón P, Ortega M, Sáez-Nieto JA, Carrasco G, Medina-Pascual MJ, Garrido N, et al. Dynamics of a Sporadic Nosocomial Acinetobacter calcoaceticus - Acinetobacter baumannii Complex Population: Frontiers Media S.A.; 2019 [593-]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/30967856 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6440288/.72. Pestaña MÍ, del Pozo JL. Infecciones por bacilos Gram negativos no fermentadores: Pseudomonas aeruginosa, Acinetobacter spp. y Stenotrophomonas maltophilia 2018 [updated 2018/03/01/. 2931-40]. Available from: http://www.sciencedirect.com/science/article/pii/S0304541218300337.73. Viñas AM. aspectos microbiológicos de Burkholderia cepacia complex en pacientes con fibrosis quística: Universidad Autonoma De Barcelona. ; 2015 [Available from: https://ddd.uab.cat/pub/tesis/2015/hdl_10803_329293/amv1de1.pdf.74. Sánchez Hernández G. Confirmación de un brote de bacteriemia por Burkholderia cepacia en una unidad de cuidados intensivos pediátricos mediante biología molecular Universidad Nacional Autonoma de Mexico 2011.Universidad Nacional Autonoma de Mexico 2011. 75. Rojas-Rojas FU, López-Sánchez D, Meza-Radilla G, Méndez-Canarios A, Ibarra JA, Estrada-de los Santos P. El controvertido complejo Burkholderia cepacia, un grupo de especies promotoras del crecimiento vegetal y patógenas de plantas, animales y humanos 2019 [updated 2019/01/01/. 84-92]. Available from: http://www.sciencedirect.com/science/article/pii/S0325754118300038.76. Butt AT, Thomas MS. Iron Acquisition Mechanisms and Their Role in the Virulence of Burkholderia Species: Frontiers Media S.A.; 2017 [460-]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/29164069 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5681537/77. Rhodes KA, Schweizer HP. Antibiotic resistance in Burkholderia species 2016 [2016/07/30:[82-90]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/27620956 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5022785/.78. Díaz Caballero AJ, Vivas Reyes R, Puerta L, Ahumedo Monterrosa M, Arévalo Tovar L, Cabrales Salgado R, et al. Biopelículas como expresión del mecanismo de quorum sensing: Una revisión 2011 [195-201]. Available from: http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S1699-65852011000300005&nrm=iso79. Nazar C J. Biofilms bacterianos 2007 [161-72]. Available from: https://scielo.conicyt.cl/scielo.php?script=sci_arttext&pid=S0718-48162007000100011&nrm=iso.80. Jamal M, Ahmad W, Andleeb S, Jalil F, Imran M, Nawaz MA, et al. Bacterial biofilm and associated infections 2018 [updated Jan. 2017/10/19:[7-11].81. Gupta P, Sarkar S, Das B, Bhattacharjee S, Tribedi P. Biofilm, pathogenesis and prevention--a journey to break the wall: a review 2016 [updated Jan. 2015/09/18:[1-15]82. Loera Muro A, Ramírez Castillo FY, Avelar González FJ, Guerrero Barrera AL. Biopelículas multi-especie: asociarse para sobrevivir 2012 [49-56]. Available from: https://www.redalyc.org/articulo.oa?id=67424408007.83. Rabin N, Zheng Y, Opoku-Temeng C, Du Y, Bonsu E, Sintim HO. Biofilm formation mechanisms and targets for developing antibiofilm agents 2015 [2015/04/16:[493-512].84. Cooper S. Bacterial Growth and Division: Biochemistry and Regulation of Prokaryotic and Eukaryotic Division Cycles: Elsevier Science; 2012.85. Jurtshuk P, Jr. Bacterial Metabolism. In: th, Baron S, editors. Medical Microbiology. Galveston (TX): University of Texas Medical Branch at Galveston The University of Texas Medical Branch at Galveston.; 1996.86. Varela G. FISIOLOGIA Y METABOLISMO BACTERIANO [Available from: http://www.higiene.edu.uy/cefa/Libro2002/Cap%2011.pdf.87. Merino LA. Fisiología bacteriana Universidad Nacional del Nordeste [Available from: http://isft194.edu.ar/wp-content/uploads/2013/03/APUNTE-Metabolismo-bacteriano.pdf.88. Jesús Ramírez Santos GCF, ** M. Carmen Gómez Eichelmann*. La fase estacionaria en la bacteria Escherichia coli 2005 [Vol. 47, No. 3-4]. Available from: https://www.medigraphic.com/pdfs/lamicro/mi-2005/mi05-3_4f.pdf.89. Lakshmaiah Narayana J, Chen JY. Antimicrobial peptides: Possible anti-infective agents 2015 [updated Oct. 2015/06/07:[88-94].90. Zhang L-j, Gallo RL. Antimicrobial peptides: Elsevier; 2016 [R14-R9]. Available from: https://doi.org/10.1016/j.cub.2015.11.017.91. Mangoni ML, McDermott AM, Zasloff M. Antimicrobial peptides and wound healing: biological and therapeutic considerations 2016 [2016/02/10:[167-73]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/26738772 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4789108/.92. Agier J, Efenberger M, Brzezińska-Błaszczyk E. Cathelicidin impact on inflammatory cells. Cent Eur J Immunol. 2015;40(2):225-35.93. Zeth K, Sancho-Vaello E. The Human Antimicrobial Peptides Dermcidin and LL-37 Show Novel Distinct Pathways in Membrane Interactions. Frontiers in Chemistry. 2017;5(8694. Frohm M, Agerberth B, Ahangari G, Stahle-Backdahl M, Liden S, Wigzell H, et al. The expression of the gene coding for the antibacterial peptide LL-37 is induced in human keratinocytes during inflammatory disorders 1997 [updated Jun 13. 1997/06/13:[15258-63].95. Yang SC, Hwang TL. The potential impacts of formyl peptide receptor 1 in inflammatory diseases. Front Biosci (Elite Ed). 2016;8:436-49.96. Scott MG, Davidson DJ, Gold MR, Bowdish D, Hancock REW. The Human Antimicrobial Peptide LL-37 Is a Multifunctional Modulator of Innate Immune Responses 2002 [3883-91]. Available from: https://www.jimmunol.org/content/jimmunol/169/7/3883.full.pdf.97. Levast B, Hogan D, van Kessel J, Strom S, Walker S, Zhu J, et al. Synthetic Cationic Peptide IDR-1002 and Human Cathelicidin LL37 Modulate the Cell Innate Response but Differentially Impact PRRSV Replication in vitro: Frontiers Media S.A.; 2019 [233-]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/31355218 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6640542/.98. Jiang Z, Higgins MP, Whitehurst J, Kisich KO, Voskuil MI, Hodges RS. Anti-tuberculosis activity of α-helical antimicrobial peptides: de novo designed L- and D-enantiomers versus L- and D-LL-37 2011 [241-52]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/20858205 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3263701/.99. Dean SN, Bishop BM, van Hoek ML. Susceptibility of Pseudomonas aeruginosa Biofilm to Alpha-Helical Peptides: D-enantiomer of LL-37: Frontiers Research Foundation; 2011 [128-]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/21772832 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3131519/.00. Aghazadeh H, Memariani H, Ranjbar R, Bagheri KP. The activity and action mechanism of novel short selective LL‐37‐derived anticancer peptides against clinical isolates of Escherichia coli: Wiley Online Library; 2019 [75-83]. Available from: https://doi.org/10.1111/cbdd.13381.101. Schultz D, Kishony R. Optimization and control in bacterial Lag phase 2013 [updated 12/16. 120].102. Schmidtchen A, Frick IM, Andersson E, Tapper H, Björck L. Proteinases of common pathogenic bacteria degrade and inactivate the antibacterial peptide LL‐37. Molecular Microbiology. 2002;46(1):157-68.103. Strömstedt AA, Pasupuleti M, Schmidtchen A, Malmsten M. Evaluation of strategies for improving proteolytic resistance of antimicrobial peptides by using variants of EFK17, an internal segment of LL-37. Antimicrob Agents Chemother. 2009;53(2):593-602.104. Chu D, Barnes DJ. The lag-phase during diauxic growth is a trade-off between fast adaptation and high growth rate. Sci Rep. 2016;6(1):25191.105. Park S-C, Park Y, Hahm K-S. The Role of Antimicrobial Peptides in Preventing Multidrug-Resistant Bacterial Infections and Biofilm Formation. International Journal of Molecular Sciences. 2011;12(9):5971-92.106. Torlak E, Korkut E, Uncu AT, Şener Y. Biofilm formation by Staphylococcus aureus isolates from a dental clinic in Konya, Turkey. Journal of Infection and Public Health. 2017;10(6):809-13.107. Muñoz L, Guevara F, Salazar F, Navarrete J, Pinilla G. Péptidos antimicrobianos análogos a la catelicidina humana ll-37. Diario de campo. 2018;3:190-206108. Liu W, Chen Y, Ming X, Kong Y. Design and Synthesis of a Novel Cationic Peptide with Potent and Broad-Spectrum Antimicrobial Activity. BioMed Research International. 2015;1-6.109. Ortega S, Ceron G. Producción de biopelículas y Resistencia antimicrobiana en uropatógenos aislados de catéteres urinarios en un hospital de rehabilitación física. Investigación en discapacidad. 2017;6(3):116-121.Derechos Reservados -Universidad Colegio Myor de Cundinamarca ,2019https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)http://purl.org/coar/access_right/c_abf2Efecto de los péptidos antimicrobianos derivados del LL37 en el crecimiento bacteriano y evaluación de la formación de biopelícula en cepas clínicas y ATCC de bacilos Gram negativosTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/bachelorThesishttps://purl.org/redcol/resource_type/TPinfo:eu-repo/semantics/publishedVersionColombiaAgentes antibacterialesMicrobiologíaResistencia a los medicamentos en microorganismosResistencia bacterianaBacilos Gram negativosBiopelículaPéptidos antimicrobianosLL-37ORIGINALtesis final.pdftesis final.pdfapplication/pdf2191287https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/288/1/tesis%20final.pdf3d3eaaf10579fc0b062aba9f3636c262MD51open access1 PARA SUBIR trabajo de grado final (1).pdf1 PARA SUBIR trabajo de grado final (1).pdfapplication/pdf3654333https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/288/2/1%20PARA%20SUBIR%20%20trabajo%20de%20grado%20final%20%281%29.pdf4e8cd53ecfd5cec11434d7f3f6ffbfc6MD52open access2 PARA SUBIR trabajo de grado final.pdf2 PARA SUBIR trabajo de grado final.pdfapplication/pdf55573https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/288/3/2%20PARA%20SUBIR%20trabajo%20de%20grado%20final.pdff1ae50255a9cdaa049077df03cd63d72MD53metadata only accessLICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/288/4/license.txt2f9959eaf5b71fae44bbf9ec84150c7aMD54open accessTEXTtesis final.pdf.txttesis final.pdf.txtExtracted texttext/plain8149https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/288/5/tesis%20final.pdf.txt40bd08a2b9f3a215dac744c42e593c0dMD55open access1 PARA SUBIR trabajo de grado final (1).pdf.txt1 PARA SUBIR trabajo de grado final (1).pdf.txtExtracted texttext/plain182342https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/288/7/1%20PARA%20SUBIR%20%20trabajo%20de%20grado%20final%20%281%29.pdf.txtafe75144a719cc066776c313ce1d5c77MD57open access2 PARA SUBIR trabajo de grado final.pdf.txt2 PARA SUBIR trabajo de grado final.pdf.txtExtracted texttext/plain2https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/288/9/2%20PARA%20SUBIR%20trabajo%20de%20grado%20final.pdf.txte1c06d85ae7b8b032bef47e42e4c08f9MD59metadata only accessTHUMBNAILtesis final.pdf.jpgtesis final.pdf.jpgGenerated Thumbnailimage/jpeg6367https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/288/6/tesis%20final.pdf.jpgbe69df775238adbb7ca0d3997c7b9c68MD56open access1 PARA SUBIR trabajo de grado final (1).pdf.jpg1 PARA SUBIR trabajo de grado final (1).pdf.jpgGenerated Thumbnailimage/jpeg6209https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/288/8/1%20PARA%20SUBIR%20%20trabajo%20de%20grado%20final%20%281%29.pdf.jpgd9305a0a2a29d8537026213228a175a0MD58open access2 PARA SUBIR trabajo de grado final.pdf.jpg2 PARA SUBIR trabajo de grado final.pdf.jpgGenerated Thumbnailimage/jpeg7190https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/288/10/2%20PARA%20SUBIR%20trabajo%20de%20grado%20final.pdf.jpg8e36723958c77ea83d414f5bd66d86bdMD510metadata only accessunicolmayor/288oai:repositorio.unicolmayor.edu.co:unicolmayor/2882021-06-25 03:00:08.36An error occurred on the license name.|||https://creativecommons.org/licenses/by-nc-sa/4.0/open accessBiblioteca Digital Unicolmayorrepositorio@unicolmayor.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=