Influencia de la comunidad bacteriana en los ciclos biogeoquímicos del carbono y el nitrógeno en el ecosistema de manglar
Los ecosistemas de manglar son poco comunes en todo el mundo, tienen un valor tanto económico como ecológico alto, ofreciendo una amplia gama de servicios y bienes para la comunidad, además de ser el hábitat de diversas especies animales, vegetales y una gran comunidad microbiana que controla proces...
- Autores:
-
Ramírez Lozada, Danya Gabriela
Rojas Villamil, Nicolás David
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2020
- Institución:
- Colegio Mayor de Cundinamarca
- Repositorio:
- Repositorio Colegio Mayor de Cundinamarca
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unicolmayor.edu.co:unicolmayor/257
- Acceso en línea:
- https://repositorio.unicolmayor.edu.co/handle/unicolmayor/257
- Palabra clave:
- Ecosistema de manglar
Microbioma
Microorganismos
Microbioma
Microbiota
Manglar
Ciclos biogeoquímicos del carbono y nitrógeno
- Rights
- closedAccess
- License
- Derechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2020
id |
UCOLMAYOR2_797be66457e84d2841ebe21f18ebaad9 |
---|---|
oai_identifier_str |
oai:repositorio.unicolmayor.edu.co:unicolmayor/257 |
network_acronym_str |
UCOLMAYOR2 |
network_name_str |
Repositorio Colegio Mayor de Cundinamarca |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Influencia de la comunidad bacteriana en los ciclos biogeoquímicos del carbono y el nitrógeno en el ecosistema de manglar |
title |
Influencia de la comunidad bacteriana en los ciclos biogeoquímicos del carbono y el nitrógeno en el ecosistema de manglar |
spellingShingle |
Influencia de la comunidad bacteriana en los ciclos biogeoquímicos del carbono y el nitrógeno en el ecosistema de manglar Ecosistema de manglar Microbioma Microorganismos Microbioma Microbiota Manglar Ciclos biogeoquímicos del carbono y nitrógeno |
title_short |
Influencia de la comunidad bacteriana en los ciclos biogeoquímicos del carbono y el nitrógeno en el ecosistema de manglar |
title_full |
Influencia de la comunidad bacteriana en los ciclos biogeoquímicos del carbono y el nitrógeno en el ecosistema de manglar |
title_fullStr |
Influencia de la comunidad bacteriana en los ciclos biogeoquímicos del carbono y el nitrógeno en el ecosistema de manglar |
title_full_unstemmed |
Influencia de la comunidad bacteriana en los ciclos biogeoquímicos del carbono y el nitrógeno en el ecosistema de manglar |
title_sort |
Influencia de la comunidad bacteriana en los ciclos biogeoquímicos del carbono y el nitrógeno en el ecosistema de manglar |
dc.creator.fl_str_mv |
Ramírez Lozada, Danya Gabriela Rojas Villamil, Nicolás David |
dc.contributor.advisor.none.fl_str_mv |
Posada Buitrago, Martha Lucía |
dc.contributor.author.none.fl_str_mv |
Ramírez Lozada, Danya Gabriela Rojas Villamil, Nicolás David |
dc.subject.lemb.none.fl_str_mv |
Ecosistema de manglar Microbioma Microorganismos |
topic |
Ecosistema de manglar Microbioma Microorganismos Microbioma Microbiota Manglar Ciclos biogeoquímicos del carbono y nitrógeno |
dc.subject.proposal.spa.fl_str_mv |
Microbioma Microbiota Manglar Ciclos biogeoquímicos del carbono y nitrógeno |
description |
Los ecosistemas de manglar son poco comunes en todo el mundo, tienen un valor tanto económico como ecológico alto, ofreciendo una amplia gama de servicios y bienes para la comunidad, además de ser el hábitat de diversas especies animales, vegetales y una gran comunidad microbiana que controla procesos fundamentales para su mantenimiento y supervivencia. En relación con lo anterior, conocer el microbioma de estos ecosistemas ayuda a caracterizarlos, determinar su funcionalidad e influencia en los ciclos biogeoquímicos que son importantes para el sostenimiento del mismo. El objetivo de este trabajo es determinar la influencia de la comunidad procariota en los ciclos biogeoquímicos del carbono y nitrógeno en el ecosistema de manglar, mediante una revisión documental, donde se incluyó literatura científica, bases de datos bibliográficas, libros, entre otras fuentes, con información obtenida de entidades nacionales e internacionales sobre el tema objeto de estudio. Se observó que las trasformaciones energéticas relacionadas con los ciclos del carbono y nitrógeno en los ecosistemas de manglar son llevadas a cabo por microorganismos procariotas que pertenecen principalmente a los filos Proteobacteria, Firmicutes, Actinobacteria, Chloroflexi, Bacteroidetes, Cyanobacteria, Bathyarchaeota y Euryarchaeota, y se observan mayor abundancia y diversidad en los microorganismos involucrados en el ciclo del carbono que del nitrógeno. Finalmente, se resalta la importancia que tienen la biodiversidad y los ciclos biogeoquímicos en la conservación de los ecosistemas, que a su vez, son una fuente de ingreso y sostenibilidad para las poblaciones. |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020-11-11 |
dc.date.accessioned.none.fl_str_mv |
2021-06-18T15:38:48Z |
dc.date.available.none.fl_str_mv |
2021-06-18T15:38:48Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/TP |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unicolmayor.edu.co/handle/unicolmayor/257 |
url |
https://repositorio.unicolmayor.edu.co/handle/unicolmayor/257 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Sánchez H, Ulloa G, Alvarez R. Conservación y uso sostenible de los manglares del caribe colombiano. Colombia: Ministerio del Medio Ambiente; 1998. Blanco J, Álvarez R. Mangroves of Colombia revisited in an era of open data, global changes, and socio-political transition: Homage to Heliodoro Sánchez- Páez. Revista de la academia colombiana de ciencias exactas, físicas y naturales [Internet]. 2019 [consultado 2019 octubre 18]; 43(166): 84-97. Disponible en: http://www.scielo.org.co/pdf/racefn/v43n166/0370-3908-racefn- 43-166-84.pdf Álvarez R. Los manglares de Colombia y la recuperación de sus áreas degradadas: revisión bibliográfica y nuevas experiencias. Madera y Bosques [Internet]. 2003 [consultado 2019 septiembre 25]; 9(1): 3-25. Disponible en: http://www.redalyc.org/articulo.oa?id=61790101 Hernández R, Velázquez I, Orozco M, Santoyo G. Metagenómica de suelos: grandes desafíos y nuevas oportunidades biotecnológicas. Revista internacional de botánica experimental [Internet]. 2010 [consultado 2019 agosto 25]; 79: 133-139. Disponible en: http://www.revistaphyton.fund- romuloraggio.org.ar/vol79/Hernandez-Leon.pdf Andreote F, Jiménez D, Chaves D. et. al. The Microbiome of Brazilian Mangrove Sediments as Revealed by Metagenomics. PLoS ONE [Internet]. 2012 [consultado 2019 septiembre 25]; 7(6). Disponible en: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0038600 Huang J, Lu X, Yan H, Chen S, Zhang W, Huang R. Transcriptome Characterization and Sequencing-Based Identification of Salt-Responsive Genes in Millettia pinnata, a Semi-Mangrove Plant. DNA Research [Internet]. 2012 [consultado 2019 septiembre 05]; 19(2): 195-207. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/22351699 Sorokin D, Berben T, Melton E, Overmars L, Vavourakis C, Muyzer G. Microbial diversity and biogeochemical cycling in soda lakes. Extremophiles [Internet]. 2014 [consultado 2019 septiembre 25]; 18(5): 791-809. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4158274/pdf/792_2014_Article _670.pdf Ray R, Majumder N, Das S, Chowdhury C, Kumar T. Biogeochemical cycle of nitrogen in a tropical mangrove ecosystem, east coast of India. Marine Chemistry [Internet]. 2014 [consultado 2019 septiembre 05]; 167: 33-43. Disponible en: https://www.sciencedirect.com/science/article/pii/S0304420314000802 Verhoeven J, Laanbroek H, Rains M, Whigham D. Effects of increased summer flooding on nitrogen dynamics in impounded mangroves. Journal of Environmental Management [Internet]. 2014 [consultado 2019 septiembre 05]; 139: 217-226. Disponible en: https://www.sciencedirect.com/science/article/pii/S0301479714001261?via%3 Dihub Polanía J, Urrego L, Agudelo C. Recent advances in understanding Colombian mangroves. Acta Oecologica [Internet]. 2015 [consultado 2019 septiembre 05]; 63: 82-90. Disponible en: https://www.sciencedirect.com/science/article/pii/S1146609X15000120 Simoes M, Antunes A, Ottoni C, Shoaib M, Alam I, Alzubaidy H. Soil and Rhizosphere Associated Fungi in Gray Mangroves (Avicennia marina) from the Red Sea - A Metagenomic Approach. Genomics, Proteomics & Bioinformatics [Internet]. 2015 [consultado 2019 septiembre 05]; 13: 310-320. Disponible en: https://www.sciencedirect.com/science/article/pii/S1672022915001382 Dudhagara P, Bhavsar S, Bhagat C, Ghelani A, Bhatt S, Patel R. Web Resources for Metagenomics Studies. Genomics, Proteomics & Bioinformatics [Internet]. 2015 [consultado 2019 agosto 25]; 13(5): 296-303. Disponible en: https://www.sciencedirect.com/science/article/pii/S1672022915001424 Jing H, Shunyan C, Zhou Z, Wu C, Nagarajan S, Hongbin L. Spatial Variations of the Methanogenic Communities in the Sediments of Tropical Mangroves. PLoS ONE [Internet]. 2016 [consultado 2019 agosto 25]; 11(9). Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/27684479 Lisboa M, Lara R, Cuevas E, Mulero E, Da Silvieira L. Effects of sea-level rise and climatic changes on mangroves from southwestern littoral of Puerto Rico during the middle and late Holocene. Catena [Internet]. 2016 [consultado 2019 septiembre 26]; 143: 187-200. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0341816216301266 Llyina T, Friedlingstein P. Biogeochemical Cycles and Climate Change [Internet]. White Paper on WCRP Grand Challenge – Draft; 2016 [consultado 2019 septiembre 25]. Disponible en: https://www.wcrp- climate.org/JSC37/Documents/BGCGC_whitepaper_submission.pdf Reinert F, Ferreira de Pinho C, Alves M. Diagnosing the level of stress on a mangrove species (Laguncularia racemosa) contaminated with oil: A necessary step for monitoring mangrove ecosystems. Marine Pollution Bulletin [Internet]. 2016 [consultado 2019 agosto 25]; 113: 94-99. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/27600275 Dangan F, Dolorosa R, Sespeñe J, Mendoza N. Diversity and structural complexity of mangrove forest along Puerto Princesa Bay, Palawan Island, Philippines. Journal of Marine and Island Cultures [Internet]. 2016 [consultado 2019 septiembre 05]; 5: 118-125. Disponible en: https://www.sciencedirect.com/science/article/pii/S2212682115300032 Xiaorong X, Yuhui H, Wei X, Shipeng F, Xi Z, Xiumei F, Zang J. Transcriptome Analysis of Ceriops tagal in Saline Environments Using RNA- Sequencing. PLoS ONE [Internet]. 2016 [consultado 2019 septiembre 05]; 11(12). Disponible en: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0167551 Ramírez L. Marine protected areas in Colombia: Advances in conservation and barriers for effective governance. Ocean & Coastal Management [Internet]. 2016 [consultado 2019 septiembre 26]; 125: 49-62. Disponible en: https://www.sciencedirect.com/science/article/pii/S0964569116300308 Ghosh A, Bhadury P. Insights into bacterioplankton community structure from Sundarbans mangrove ecoregion using Sanger and Illumina MiSeq sequencing approaches: A comparative analysis. Genomic Data [Internet]. 2017 [consultado 2019 agosto 25]; 11: 39-42. Disponible en: https://www.sciencedirect.com/science/article/pii/S2213596016301672 Behera B, Sethi B, Mishra R, Dutta S, Thatoi H. Microbial cellulases – Diversity & biotechnology with reference to mangrove environment: A review. Journal of Genetic Engineering and Biotechnology [Internet]. 2017 [consultado 2019 agosto 25]; 15: 197-210. Disponible en: https://www.sciencedirect.com/science/article/pii/S1687157X16300555 Burgos S, Navarro A, Marrugo J, Enamorado G, Urango I. Polycyclic aromatic hydrocarbons and heavy metals in the Cispata Bay, Colombia: A marine tropical ecosystem. Marine Pollution Bulletin [Internet]. 2017 [consultado 2019 septiembre 05]; 120: 379-386. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0025326X17304034 Lamba S, Bera S, Rashid M, Medvinsky A.B, Sun GQ, Acquisti C, Chakraborty A, Li BL. Organization of biogeochemical nitrogen pathways with switch-like adjustment in fluctuating soil redox conditions. The Royal Society Publishing [Internet]. 2017 [consultado 2019 septiembre 25]; 4(1). Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5319346/ Zhou Z, Meng H, Liu Y, Gu JD, Li M. Stratified Bacterial and Archaeal Community in Mangrove and Intertidal Wetland Mudflats Revealed by High Throughput 16S rRNA Gene Sequencing. Frontiers in Microbiology [Internet]. 2017 [consultado 2019 septiembre 05]; 8. Disponible en: https://www.frontiersin.org/articles/10.3389/fmicb.2017.02148/full Xiao K, Wu J, Li H, Hong Y, Wilson A, Jiao J, Shananan M. Nitrogen fate in a subtropical mangrove swamp: Potential association with seawater- groundwater exchange. Science of The Total Environment [Internet]. 2018 [consultado 2019 septiembre 05]; 635: 586-597. Disponible en: https://www.sciencedirect.com/science/article/pii/S0048969718313044 Wang H, Gilbert J, Zhu Y, Yang X. Salinity is a key factor driving the nitrogen cycling in the mangrove sediment. Science of The Total Environment [Internet]. 2018 [consultado 2019 septiembre 05]; 631: 1342-1349. Disponible en: https://www.sciencedirect.com/science/article/pii/S0048969718308581 Abril Flórez A.L, Alfonso Moyano L.D, Arango López D.R, Bermúdez Macías M.Y. Estudio metagenómico de la diversidad procariota del ecosistema de manglar de la bahía de Cispatá, San Antero, Córdoba, Colombia. Bogotá: UCMC; 2018. Muñoz A, Mestanza O, Isaza J, Figueroa I, Vanegas J. Influence of salinity on the degradation of xenobiotic compounds in rhizospheric mangrove soil. Environmental Pollution [Internet]. 2019 [consultado 2019 septiembre 05]; 249: 750-757. Disponible en: https://www.sciencedirect.com/science/article/pii/S0269749118357609 Pugh T, Arneth A, Kautz M, Poulter B, Smith B. Important role of forest disturbances in the global biomass turnover and carbon sinks. Nat Geosci [Internet]. 2019 [consultado 2019 septiembre 05]; 12(9): 730-735. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/31478009 Jeffrey L, Reithmaier G, Sippo J, Johnston S, Tait D, Harada Y, Maher D. Are methane emissions from mangrove stems a cryptic carbon loss pathway? Insights from a catastrophic forest mortality. New Phytol [Internet]. 2019 [consultado 2019 septiembre 05]; 224(1): 146-154. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/31211874 Garcia L, Avila H, Gutierrez R. Land-use and socioeconomic changes related to armed conflicts: A Colombian regional case study. Environmental Science & Policy [Internet]. 2019 [consultado 2019 septiembre 26]; 7: 116-124. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S1462901118314114 Cabral L, Fontes M, Tarciso S, Vieira G, Júnior L , Richter L. The metagenomic landscape of xenobiotics biodegradation in mangrove sediments. Ecotoxicology and Environmental Safety [Internet]. 2019 [consultado 2019 septiembre 26]; 179: 232-240. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0147651319304774 Casas Velásquez N.A, Hurtado Pulido L.V. Estudio metagenómico de la diversidad eucariota del ecosistema del manglar de la bahía de Cispatá, San Antero, Córdoba. Bogotá: UCMC; 2019. Clüsener M, Cárdenas M. The Importance of Mangrove Ecosystems for Nature Protection and Food Productivity: Actions of UNESCO’s Man and the Biosphere Programme. Halophytes for Food Security in Dry Lands [Internet]. 2016 [consultado 2019 octubre 18]; 125-140. Disponible en: https://www.sciencedirect.com/science/article/pii/B978012801854500008X Spalding M, Blasco F, Field C. World Mangrove Atlas. The International Society for Mangrove Ecosystems. Okinawa, Japan: ISME; 1997. Spalding M, Kainuma M, Collins N. World Atlas of Mangroves. Earthscan. USA; 2010. Rodriguez J, Sierra P, Gómez M, Licero L. Mangrove Ecosystems (Colombia). The Wetland Book [Internet]. 2016 [consultado 2019 octubre 18]; 1–10. Disponible en: https://www.researchgate.net/publication/311317761_Mangroves_of_Colombi a Álvarez León R, Álvarez-Puerto J.R. Legislación colombiana relacionada con los ecosistemas de manglar. Arquivos de Ciências do Mar. [Internet]. 2016 [consultado 2020 abril 18]; 49(2): 115-131. Disponible en: https://www.researchgate.net/publication/327150279_LEGISLACION_COLO MBIANA_RELACIONADA_CON_LOS_ECOSISTEMAS_DE_MANGLAR Liu M, Huang H, Bao S, Tong Y. Microbial community structure of soils in Bamenwan mangrove wetland. Scientific Reports [Internet]. 2019 [consultado 2020 junio 29]; 9. Disponible en: https://www.nature.com/articles/s41598-019- 44788-x Holguin G, Vazquez P, Bashan Y. The role of sediment microorganisms in the productivity, conservation, and rehabilitation of mangrove ecosystems: an overview. Biol Fertil Soils [Internet]. 2001 [consultado 2020 marzo 27]; 33: 265–278. Disponible en: http://www.bashanfoundation.org/gmaweb/pdfs/therole.pdf Sahoo K, Dhal N. Potential microbial diversity in mangrove ecosystems: A review. IJMS [Internet]. 2009 [consultado 2020 marzo 27]; 38(2): 249-256. Disponible en: http://nopr.niscair.res.in/bitstream/123456789/4675/1/IJMS%2038%282%29% 20249-256.pdf Rivera M. Gómez L. Guillermo J. Efecto de ácidos húmicos sobre el crecimiento y la composición bioquímica de Arthrospira platensis. Revista colombiana de biotecnología [Internet]. 2017 [consultado 2020 abril 17]; 10(1): 71-81. Disponible en: http://www.scielo.org.co/pdf/biote/v19n1/0123- 3475-biote-19-01-00071.pdf Duarte C, Alonso S, Benito G, Dachs J, Montes C, Pardo M, Aida F. Cambio global: impacto de la actividad humana sobre el sistema Tierra. Consejo superior de investigaciones científicas. Madrid, España: Cyan, Proyectos y Producciones Editoriales, S.A; 2006. Cerón Rincón L.A, Aristizábal Gutiérrez F.A. Dinámica del ciclo del nitrógeno y fósforo en suelos. IBUN [Internet]. 2012 [consultado 2020 abril 17]; 14(1): 285-295. Disponible en: http://www.scielo.org.co/pdf/biote/v14n1/v14n1a26.pdf Shcherbakova V, Rivkina E, Pecheritsyna S, Laurinavichius K, Suzina N, Gilichinsky D. Methanobacterium arcticum sp. nov., a methanogenic archaeon from Holocene Arctic permafrost. International journal of systematic and evolutionary microbiology [Internet]. 2011 [consultado 2020 julio 17]; 61(1): 144–147. Disponible en: https://doi.org/10.1099/ijs.0.021311-0 Guyott J, Brauman A. Methane Production from Formate by Syntrophic Association of Methanobacterium bryantii and Desulfovibrio vulgaris JJ. Applied and environmental microbiology [Internet]. 1986 [consultado 2020 julio 17]; 52(6): 1436-1437. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC239251/ Weng Y, Chen S, Lai M, Wu S, Lin S, Yang T, et al. Methanoculleus taiwanensis sp. nov., a methanogen isolated from deep marine sediment at the deformation front area near Taiwan. International journal of systematic and evolutionary microbiology [Internet]. 2015 [consultado 2020 julio 17]; 65(3): 1044–1049. Disponible en: https://doi.org/10.1099/ijs.0.000062 KEGG. Methanosaeta harundinacea [Internet]. Japón. [consultado 2020 julio 17] Disponible en: https://www.genome.jp/kegg- bin/show_organism?menu_type=genome_info&org=mhi Mochimaru H, Tamaki H, Hanada S, Imachi H, Nakamura K, Sakata S, Kamagata Y. Methanolobus profundi sp. nov., a methylotrophic methanogen isolated from deep subsurface sediments in a natural gas field. International journal of systematic and evolutionary microbiology [Internet]. 2009 .[consultado 2020 julio 17]; 59(4): 714–718. Disponible en: https://doi.org/10.1099/ijs.0.001677-0 KEGG. Methanosarcina horonobensis [Internet]. Japón. [consultado 2020 julio 17] Disponible en: https://www.genome.jp/dbget-bin/www_bget?gn:T03933 KEGG. Methanosarcina siciliae [Internet]. Japón. [consultado 2020 julio 17] Disponible en: https://www.genome.jp/kegg-bin/show_organism?org=msz Kazda J, Müller H, Stackebrandt E, Daffe M, Müller K, Pitulle C. Mycobacterium madagascariense sp. nov. International journal of systematic bacteriology [Internet]. 1992 [consultado 2020 julio 17]; 42(4): 524-528. Disponible en: https://doi.org/10.1099/00207713-42-4-524 Tsukamura M, Yano I, Imaeda T. Mycobacterium moriokaense sp. nov., a Rapidly Growing, Nonphotochromogenic Mycobacterium. International journal of systematic bacteriology [Internet]. 1986 [consultado 2020 julio 17]; 36(2): 333-338. Disponible en: https://doi.org/10.1099/00207713-36-2-333 KEGG. Rhodococcus erythropolis [Internet]. Japón. [consultado 2020 julio 17] Disponible en: https://www.genome.jp/dbget-bin/www_bget?rer:RER_14730 Proteomes - Rhodococcus erythropolis (strain PR4 / NBRC 100887) [Internet]. UniProt Consortium; 2002 - 2020c [consultado 2020 julio 17] Disponible en: https://www.uniprot.org/proteomes/UP000002204 Pucci O, Acuña A, Pucci G. Biodegradación de residuos de estaciones de servicio y lavaderos industriales por la cepa Rhodococcus erythropolis ohp-al- gp. Acta biológica colombiana [Internet]. 2013 [consultado 2020 julio 17]; 18(2): 251-258. Disponible en: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120- 548X2013000200002 KEGG. Rhodococcus qingshengii [Internet]. Japón. [consultado 2020 julio 17] Disponible en: https://www.genome.jp/kegg- bin/show_organism?menu_type=pathway_maps&org=rqi Xu J, He J, Wang Z, Wang K, Li W, Tang S, Li S. Rhodococcus qingshengii sp. nov., a carbendazim-degrading bacterium. International journal of systematic and evolutionary microbiology [Internet]. 2007 [consultado 2020 julio 17]; 57(12): 2754–2757. Disponible en: https://doi.org/10.1099/ijs.0.65095-0 Hamada M, Tamura T. Yamamura H, Suzuki K, Hayakawa M. Lysinimicrobium mangrovi gen. nov., sp. nov., an actinobacterium isolated from the rhizosphere of a mangrove. International journal of systematic and evolutionary microbiology [Internet]. 2012 [consultado 2020 julio 19]; 62(8): 1731-1735 Disponible en: https://doi.org/10.1099/ijs.0.035493-0 KEGG. Pontimonas salivibrio [Internet]. Japón. [consultado 2020 julio 19] Disponible en: https://www.genome.jp/dbget-bin/www_bget?gn:T05334 Cho B, Hardies S, Jang H, Hwang C. Complete genome of streamlined marine actinobacterium Pontimonas salivibrio strain CL-TW6T adapted to coastal planktonic lifestyle. BCM genomics [Internet]. 2018 [consultado 2020 julio 19]; 19: 625-645. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6106888/ Tseng M, Liao H, Chiang W, Yuan G. Isoptericola chiayiensis sp. nov., isolated from mangrove soil. International journal of systematic and evolutionary microbiology [Internet]. 2011 [consultado 2020 julio 19]; 61(7): 1667–1670. Disponible en: https://doi.org/10.1099/ijs.0.022491-0 Dastager S, Lee J, Ju Y, Park D, Kim C. Nocardioides islandiensis sp. nov., isolated from soil in Bigeum Island Korea. Antonie van Leeuwenhoek [Internet]. 2008 [consultado 2020 julio 19]; 93: 401–406. Disponible en: https://www.researchgate.net/publication/5776321_Nocardioides_islandiensis _sp_nov_isolated_from_soil_in_Bigeum_Island_Korea Yang S, Seo H, Woo J, Oh H, Jang H, Lee J, et al. Carboxylicivirga gen. nov. in the family Marinilabiliaceae with two novel species, Carboxylicivirga mesophila sp. nov. and Carboxylicivirga taeanensis sp. nov., and reclassification of Cytophaga fermentans as Saccharicrinis fermentans gen. nov., comb. nov. International journal of systematic and evolutionary microbiology [Internet]. 2014 [consultado 2020 julio 19]; 64(4): 1351–1358. Disponible en: https://doi.org/10.1099/ijs.0.053462-0 Lino T, Sakamoto M, Ohkuma M. Prolixibacter denitrificans sp. nov., an iron- corroding, facultatively aerobic, nitrate-reducing bacterium isolated from crude oil, and emended descriptions of the genus Prolixibacter and Prolixibacter bellariivorans. International journal of systematic and evolutionary microbiology [Internet]. 2015 [consultado 2020 julio 19]; 65(9): 2865–2869. Disponible en: https://doi.org/10.1099/ijs.0.000343 Holmes D, Nevin K, Woodard T, Peacock A, Lovley D. Prolixibacter bellariivorans gen. nov., sp. nov., a sugar-fermenting, psychrotolerant anaerobe of the phylum Bacteroidetes, isolated from a marine-sediment fuel cell. International journal of systematic and evolutionary microbiology [Internet]. 2007 [consultado 2020 julio 20]; 57(4): 701–707. Disponible en: https://doi.org/10.1099/ijs.0.64296-0 Nedashkovskaya O, Vancanneyt M, Trappen S, Vandemeulebroecke K, Lysenko A, Rohde M, et al. Description of Algoriphagus aquimarinus sp. nov., Algoriphagus chordae sp. nov. and Algoriphagus winogradskyi sp. nov., from sea water and algae, transfer of Hongiella halophila Yi and Chun 2004 to the genus Algoriphagus as Algoriphagus halophilus comb. nov. and emended descriptions of the genera Algoriphagus Bowman et al. 2003 and Hongiella Yi and Chun 2004. International journal of systematic and evolutionary microbiology [Internet]. 2004 [consultado 2020 julio 20]; 54(5): 1757–1764. Disponible en: https://doi.org/10.1099/ijs.0.02915-0 Yang C, Li Y, Guo Q, Lai Q, Zheng T, Tian Y. Algoriphagus zhangzhouensis sp. nov., isolated from mangrove sediment. International journal of systematic and evolutionary microbiology [Internet]. 2013 [consultado 2020 julio 20]; 63(5): 1621–1626. Disponible en: https://doi.org/10.1099/ijs.0.044271-0 KEGG. Cyclobacterium marinum [Internet]. Japón. [consultado 2020 julio 20] Disponible en: https://www.kegg.jp/kegg-bin/show_organism?org=cmr Wang H, Li J, Zheng T, Hill R, Hu X. Imperialibacter roseus gen. nov., sp. nov., a novel bacterium of the family Flammeovirgaceae isolated from Permian groundwater. International journal of systematic and evolutionary microbiology [Internet]. 2013 [consultado 2020 julio 20]; 63(11): 4136–4140. Disponible en: https://doi.org/10.1099/ijs.0.052662-0 Chen L, Xu H, Fu S, Fan H, Zhou Y, Liu Z. Lishizhenia tianjinensis sp. nov., isolated from coastal seawater. International journal of systematic and evolutionary microbiology [Internet]. 2009 [consultado 2020 julio 20]; 59(10): 2400–2403. Disponible en: https://doi.org/10.1099/ijs.0.008524-0 KEGG. Owenweeksia hongkongensis [Internet]. Japón. [consultado 2020 julio 20] Disponible en: https://www.kegg.jp/kegg- bin/show_organism?menu_type=genome_info&org=oho Hyeon S, Su M, Mi H, Lee K, Park W, Ok C. Aestuariibaculum suncheonense gen. nov., sp. nov., a marine bacterium of the family Flavobacteriaceae isolated from a tidal flat and emended descriptions of the genera Gaetbulibacter and Tamlana. International journal of systematic and evolutionary microbiology [Internet]. 2013 [consultado 2020 julio 20]; 63(1): 332–338. Disponible en: https://doi.org/10.1099/ijs.0.037846-0 Nedashkovskaya O, Vancanneyt M, Cleenwerck I, Snauwaert C, Bum S, Lysenko A, et al. Arenibacter palladensis sp. nov., a novel marine bacterium isolated from the green alga Ulva fenestrata, and emended description of the genus Arenibacter. International journal of systematic and evolutionary microbiology [Internet]. 2006 [consultado 2020 julio 20]; 56(1): 155–160. Disponible en: https://doi.org/10.1099/ijs.0.63893-0 Nedashkovskaya O, Suzuki M, Vysotskii M, Mikhailov V. Arenibacter troitsensis sp. nov., isolated from marine bottom sediment. International journal of systematic and evolutionary microbiology [Internet]. 2003 [consultado 2020 julio 20]; 53(5): 1287–1290. Disponible en: https://doi.org/10.1099/ijs.0.02384-0 Yoon J, Adachi K, Kasai H. Citreitalea marina gen. nov., sp. nov., a novel member of the family Flavobacteriaceae isolated from a marine red alga and emended description of the genus Gangjinia. Antonie van Leeuwenhoek [Internet]. 2014 [consultado 2020 julio 23]; 106(2): 261-269. Disponible en: https://pubmed.ncbi.nlm.nih.gov/24866884/ Yi H, Oh H, Lee J, Kim S, Chun J. Flavobacterium antarcticum sp. nov., a novel psychrotolerant bacterium isolated from the Antarctic. International journal of systematic and evolutionary microbiology [Internet]. 2005 [consultado 2020 julio 20]; 55(2): 637–641. Disponible en: https://doi.org/10.1099/ijs.0.63423-0 Park S, Choe H, Baik K, Lee K, Seong C. Gaetbulibacter aestuarii sp. nov., isolated from shallow coastal seawater, and emended description of the genus Gaetbulibacter. International journal of systematic and evolutionary microbiology [Internet]. 2012 [consultado 2020 julio 23]; 62(1): 150–154. Disponible en: https://doi.org/10.1099/ijs.0.028944-0 Khan S, Nakagawa Y, Harayama S. Sediminibacter furfurosus gen. nov., sp. nov. and Gilvibacter sediminis gen. nov., sp. nov., novel members of the family Flavobacteriaceae. International journal of systematic and evolutionary microbiology [Internet]. 2007 [consultado 2020 julio 23]; 57(2): 265–269. Disponible en: https://doi.org/10.1099/ijs.0.64628-0 Hameed A, Shahina M, Lai W, Lin S, Liu Y, Hsu Y, et al. Hanstruepera neustonica gen. nov., sp. nov., a zeaxanthin-producing member of the family Flavobacteriaceae isolated from estuarine water, and emendation of Sediminibacter furfurosus Khan et al. 2007 emend. Kwon et al. 2014, Mangrovimonas yunxiaonensis Li et al. 2013, Antarcticimonas flava Yang et al. 2009 and Hoppeia youngheungensis Kwon et al. 2014. International journal of systematic and evolutionary microbiology [Internet]. 2015 [consultado 2020 julio 23]; 65(2): 336–345. Disponible en: https://doi.org/10.1099/ijs.0.066852-0 Yoon J, Kang S, Jung Y, Oh T. Aestuariicola saemankumensis gen. nov., sp. nov., a member of the family Flavobacteriaceae, isolated from tidal flat 72 sediment. International journal of systematic and evolutionary microbiology [Internet]. 2008 [consultado 2020 julio 23]; 58(9): 2126–2131. Disponible en: https://doi.org/10.1099/ijs.0.65717-0 Kim Y, Park S, Nam B,Jung Y, Kim D, Bae K, et al. Description of Lutimonas halocynthiae sp. nov., isolated from a golden sea squirt (Halocynthia aurantium), reclassification of Aestuariicola saemankumensis as Lutimonas saemankumensis comb. nov. and emended description of the genus Lutimonas. International journal of systematic and evolutionary microbiology [Internet]. 2014 [consultado 2020 julio 23]; 64(6): 1984–1990. Disponible en: https://doi.org/10.1099/ijs.0.059923-0 Hu J, Yang Q, Ren Y, Zhang W, Zheng G, Sun C, et al. Maribacter thermophilus sp. nov., isolated from an algal bloom in an intertidal zone, and emended description of the genus Maribacter. International journal of systematic and evolutionary microbiology [Internet]. 2015 [consultado 2020 julio 23]; 65(1): 36-41. Disponible en: https://doi.org/10.1099/ijs.0.064774-0 Lee S, Park S, Oh T, Yoon J. Muricauda beolgyonensis sp. nov., isolated from a tidal flat. International journal of systematic and evolutionary microbiology [Internet]. 2012 [consultado 2020 julio 23]; 62(5): 1134-1139. Disponible en: https://doi.org/10.1099/ijs.0.032581-0 Kwon K, Lee S, Park J, Ahn T, Lee H. Psychroserpens mesophilus sp. nov., a mesophilic marine bacterium belonging to the family Flavobacteriaceae isolated from a young biofilm. International journal of systematic and evolutionary microbiology [Internet]. 2006 [consultado 2020 julio 23]; 56(5): 1055–1058. Disponible en: https://doi.org/10.1099/ijs.0.64171-0 Hameed A, Shahina M, Lin S, Lai W, Liu Y, Hsu Y, et al. Robertkochia marina gen. nov., sp. nov., of the family Flavobacteriaceae, isolated from surface seawater, and emended descriptions of the genera Joostella and Galbibacter. International journal of systematic and evolutionary microbiology [Internet]. 2014 [consultado 2020 julio 26]; 64(2): 533–539. Disponible en: https://doi.org/10.1099/ijs.0.054627-0 Nedashkovskaya O, Kim S, Lysenko A, Mikhailov V, Bae K, Kim I. Salegentibacter mishustinae sp. nov., isolated from the sea urchin Strongylocentrotus intermedius. International journal of systematic and evolutionary microbiology [Internet]. 2005 [consultado 2020 julio 26]; 55(1): 235–238. Disponible en: https://doi.org/10.1099/ijs.0.63297-0 Kwon K, Lee H, Jung H, Kang J, Kim S. Yeosuana aromativorans gen. nov., sp. nov., a mesophilic marine bacterium belonging to the family Flavobacteriaceae, isolated from estuarine sediment of the South Sea, Korea. International journal of systematic and evolutionary microbiology [Internet]. 2006 [consultado 2020 julio 26]; 53(4): 727–732. Disponible en: https://doi.org/10.1099/ijs.0.64073-0 Chen Z, Lei X, Lai Q, Li Y, Zhang B, Zhang J, et al. Phaeodactylibacter xiamenensis gen. nov., sp. nov., a member of the family Saprospiraceae isolated from the marine alga Phaeodactylum tricornutum. International journal of systematic and evolutionary microbiology [Internet]. 2014 [consultado 2020 julio 26]; 64(10): 3496–3502. Disponible en: https://doi.org/10.1099/ijs.0.063909-0 Takeuchi M, Yokota A. Proposals of Sphingobacterium faecium sp. nov., Sphingobacterium piscium sp. nov., Sphingobacterium heparinum comb. nov., Sphingobacterium thalpophilum comb. nov., and two genospecies of the genus Sphingobacterium and synonymy of Flavobacterium yabuuchiae and Sphingobacterium spiritivorum. The Journal of General and Applied Microbiology [Internet]. 1992 [consultado 2020 julio 26]; 38: 465–482. Disponible en: DOI: 10.2323/jgam.38.465 KEGG. Chlorobaculum parvum [Internet]. Japón. [consultado 2020 julio 26] Disponible en: https://www.genome.jp/dbget-bin/www_bget?gn:T00725 KEGG. Chlorobium limicola [Internet]. Japón. [consultado 2020 julio 26] Disponible en: https://www.genome.jp/dbget-bin/www_bget?gn:T00766 KEGG. Chlorobium luteolum [Internet]. Japón. [consultado 2020 julio 26] Disponible en: https://www.genome.jp/dbget-bin/www_bget?gn:T00291 KEGG. Prosthecochloris aestuarii [Internet]. Japón. [consultado 2020 julio 26] Disponible en: https://www.genome.jp/dbget-bin/www_bget?gn:T00732 Petroutsos D, Katapodis P, Samiotaki M, Panayotou G, Kekos D. Detoxification of 2,4-dichlorophenol by the marine microalga Tetraselmis marina. Phytochemistry [Internet]. 2008 [consultado 2020 julio 26]; 69(3): 707-714. Disponible en: https://doi.org/10.1016/j.phytochem.2007.09.002 KEGG. Prochlorococcus marinus [Internet]. Japón. [consultado 2020 julio 26] Disponible en: https://www.genome.jp/kegg- bin/show_organism?menu_type=pathway_maps&org=pmn Fujita T, Shida O, Takagi H, Kunugita K, Pankrushina A, Matsuhashi M. Description of Bacillus carboniphilus sp. nov. International journal of systematic bacteriology [Internet]. 1996 [consultado 2020 julio 28]; 46(1): 116- 118. Disponible en: https://doi.org/10.1099/00207713-46-1-116 KEGG. Geobacillus thermodenitrificans [Internet]. Japón. [consultado 2020 julio 28] Disponible en: https://www.genome.jp/kegg- bin/show_organism?org=gtn KEGG. Halobacillus mangrovi [Internet]. Japón. [consultado 2020 julio 28] Disponible en: https://www.genome.jp/kegg- bin/show_organism?menu_type=genome_info&org=hmn Yoon J, Kang S, Oh T. Reclassification of Marinococcus albus Hao et al. 1985 as Salimicrobium album gen. nov., comb. nov. and Bacillus halophilus Ventosa et al. 1990 as Salimicrobium halophilum comb. nov., and description of Salimicrobium luteum sp. nov. International journal of systematic and evolutionary microbiology [Internet]. 2006 [consultado 2020 julio 31]; 53(4): 727-732. Disponible en: https://doi.org/10.1099/ijs.0.65003-0 Talon R, Grimont P, Gasser F, Boeufgras J. Brochothrix campestris sp. nov. International journal of systematic bacteriology [Internet]. 1988 [consultado 2020 julio 31]; 38(1): 99-102. Disponible en: https://doi.org/10.1099/00207713-38-1-99 Lee J, Pyun Y, Bae K. Transfer of Bacillus ehimensis and Bacillus chitinolyticus to the genus Paenibacillus with emended descriptions of Paenibacillus ehimensis comb. nov. and Paenibacillus chitinolyticus comb. nov. International journal of systematic and evolutionary microbiology [Internet]. 2004 [consultado 2020 julio 31]; 54(3): 929-933. Disponible en: https://doi.org/10.1099/ijs.0.02765-0 Kuroshima K, Sakane T, Takata R, Yokota A. Bacillus ehimensis sp. nov. and Bacillus chitinolyticus sp. nov., New Chitinolytic Members of the Genus Bacillus. International journal of systematic bacteriology [Internet]. 1996 [consultado 2020 julio 31]; 46(1): 76-80. Disponible en: https://doi.org/10.1099/00207713-46-1-76 KEGG. Paenibacillus sabinae [Internet]. Japón. [consultado 2020 julio 17] Disponible en: https://www.genome.jp/dbget-bin/www_bget?gn:T03064 Pereira S, Albuquerque L, Nobre M, Tiago I, Veríssimo A , Pereira A, et al. Pullulanibacillus uraniitolerans sp. nov., una especie acidófila resistente a U(VI) aislada de un efluente de relaves de molino de uranio ácido y descripción modificada del género Pullulanibacillus. International journal of systematic and evolutionary microbiology [Internet]. 2013 [consultado 2020 julio 31]; 63(1): 158-162. Disponible en: https://doi.org/10.1099/ijs.0.040923-0 KEGG. Aerococcus urinaeequi [Internet]. Japón. [consultado 2020 agosto 01] Disponible en: https://www.genome.jp/dbget- bin/www_bget?gn:T04249 KEGG. Aerococcus viridans [Internet]. Japón. [consultado 2020 agosto 01] Disponible en: https://www.genome.jp/dbget-bin/www_bget?gn:avs Franzmann P, Höpfl P, Weiss N, Tindall B. Psychrotrophic, lactic acid- producing bacteria from anoxic waters in Ace Lake, Antarctica; Carnobacterium funditum sp. nov. and Carnobacterium alterfunditum sp. nov. Archives of Microbiology [Internet]. 1991 [consultado 2020 agosto 01]; 156(4): 255-262. Disponible en: https://pubmed.ncbi.nlm.nih.gov/1793333/ KEGG. Carnobacterium inhibens [Internet]. Japón. [consultado 2020 agosto 01] Disponible en: https://www.genome.jp/kegg- bin/show_organism?menu_type=genome_info&org=caw Kim M, Roh S, Nam Y, Yoon J, Bae J. Carnobacterium jeotgali sp. nov., isolated from a Korean traditional fermented food. International journal of systematic and evolutionary microbiology [Internet]. 2009 [consultado 2020 agosto 01]; 59(12): 3168-3171. Disponible en: https://doi.org/10.1099/ijs.0.010116-0 Ravot G, Magot M, Fardeau M, Patel B, Thomas P, García J, et al. Fusibacter paucivorans gen. nov., sp. nov., an anaerobic, thiosulfate-reducing bacterium from an oil-producing well. International Journal of Systematic Bacteriology [Internet]. 1999 [consultado 2020 agosto 01]; 49(3): 1141-1147. Disponible en: https://doi.org/10.1099/00207713-49-3-1141 Hauschild A, Holdeman L. Clostridium celatum sp.nov., Isolated from Normal Human Feces. International Journal of Systematic Bacteriology [Internet]. 1974 [consultado 2020 agosto 01]; 24(4): 478-481. Disponible en: https://doi.org/10.1099/00207713-24-4-478 KEGG. Clostridium perfringens [Internet]. Japón. [consultado 2020 agosto 01] Disponible en: https://www.genome.jp/kegg- bin/show_organism?org=cpe Abraham W, Estrela A, Nikitin D, Smit J, Vancanneyt M. Brevundimonas halotolerans sp. nov., Brevundimonas poindexterae sp. nov. and Brevundimonas staleyi sp. nov., prosthecate bacteria from aquatic habitats. International journal of systematic and evolutionary microbiology [Internet]. 2010 [consultado 2020 agosto 01]; 60(8): 1837-1843. Disponible en: https://doi.org/10.1099/ijs.0.016832-0 Fritz I, Strömpl C, Nikitin D, Lysenko A, Abraham W. Brevundimonas mediterranea sp. nov., a non-stalked species from the Mediterranean Sea. International journal of systematic and evolutionary microbiology [Internet]. 2005 [consultado 2020 agosto 01]; 55(1): 479-486. Disponible en: https://doi.org/10.1099/ijs.0.02852-0 Weiner R, Melick M, O'Neill K, Quintero E. Hyphomonas adhaerens sp. nov., Hyphomonas johnsonii sp. nov. and Hyphomonas rosenbergii sp. nov., marine budding and prosthecate bacteria. International journal of systematic and evolutionary microbiology [Internet]. 2000 [consultado 2020 agosto 01]; 50(2): 459-469. Disponible en: https://doi.org/10.1099/00207713-50-2-459 Math R, Jeong S, Jin H, Park M, Kim J, Jeon C. Kordiimonas aestuarii sp. nov., a marine bacterium isolated from a tidal flat. International journal of systematic and evolutionary microbiology [Internet]. 2012 [consultado 2020 agosto 01]; 62: 3049-3054. Disponible en: https://doi.org/10.1099/ijs.0.038943-0 Denner E, Smith G, Busse H, Schumann P, Narzt T, Polson S, et al. Aurantimonas coralicida gen. nov., sp. nov., the causative agent of white plague type II on Caribbean scleractinian corals. International journal of systematic and evolutionary microbiology [Internet]. 2003 [consultado 2020 agosto 10]; 53(4): 1115-1122. Disponible en: https://doi.org/10.1099/ijs.0.02359-0 Anderson C, Dick G, Chu M, Cho J, Davis R, Bräuer S, et al. Aurantimonas manganoxydans, sp. nov. and Aurantimonas litoralis, sp. nov.: Mn(II) oxidizing representatives of a globally distributed clade of alpha- Proteobacteria from the order Rhizobiales. Geomicrobiology Journal [Internet]. 2009 [consultado 2020 agosto 10]; 26 (3): 189-198. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2746641/ KEGG. Methylovirgula ligni [Internet]. Japón. [consultado 2020 agosto 10] Disponible en: https://www.kegg.jp/kegg-bin/show_organism?org=mlg Vorob'ev A, Boer W, Folman L, Bodelier P, Doronina N, Suzina N, et al. Methylovirgula ligni gen. nov., sp. nov., an obligately acidophilic, facultatively methylotrophic bacterium with a highly divergent mxaF gene. International journal of systematic and evolutionary microbiology [Internet]. 2009 [consultado 2020 agosto 10]; 59 (10): 2538-2545. Disponible en: https://doi.org/10.1099/ijs.0.010074-0 Imhoff J. Transfer of Rhodopseudomonas acidophila to the new genus Rhodoblastus as Rhodoblastus acidophilus gen. nov., comb. nov. International journal of systematic and evolutionary microbiology [Internet]. 2001 [consultado 2020 agosto 10]; 51 (5): 1863-1866. Disponible en: https://doi.org/10.1099/00207713-51-5-1863 Bambauer A, Rainey F, Stackebrandt E, Winter J. Characterization of Aquamicrobium defluvii gen. nov. sp. nov., a thiophene-2-carboxylate- metabolizing bacterium from activated sludge. Archives of Microbiology [Internet]. 1998 [consultado 2020 agosto 10]; 169 (4): 293-302. Disponible en: https://pubmed.ncbi.nlm.nih.gov/9531630/ Wang X, Jin D, Zhou L, Zhang Z. Draft Genome Sequence of Aquamicrobium defluvii Strain W13Z1, a Psychrotolerant Halotolerant Hydrocarbon-Degrading Bacterium. Genome Announcements [Internet]. 2015 [consultado 2020 agosto 10]; 3(4). Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4551884/ Jung M, Shin K, Kim S, Kim S, Park S, Kim J, et al. Hoeflea halophila sp. nov., a novel bacterium isolated from marine sediment of the East Sea, Korea. Antonie van Leeuwenhoek [Internet]. 2013 [consultado 2020 agosto 23]; 103(5): 971-978. Disponible en: https://pubmed.ncbi.nlm.nih.gov/23314912/ Martínez P, Ramírez M, Flores J, Rivas R, Igual J, Mateos P, et al. Revision of the taxonomic status of type strains of Mesorhizobium loti and reclassification of strain USDA 3471T as the type strain of Mesorhizobium erdmanii sp. nov. and ATCC 33669T as the type strain of Mesorhizobium jarvisii sp. nov. International journal of systematic and evolutionary microbiology [Internet]. 2015 [consultado 2020 agosto 10]; 65(6): 1703-1708. Disponible en: https://doi.org/10.1099/ijs.0.000164 KEGG. Mesorhizobium loti [Internet]. Japón. [consultado 2020 agosto 11] Disponible en: https://www.genome.jp/dbget-bin/www_bget?gn:T04711 KEGG. Mesorhizobium ciceri [Internet]. Japón. [consultado 2020 agosto 11] Disponible en: https://www.genome.jp/dbget-bin/get_linkdb?- t+pathway+gn:T04711 Yoon J, Hedlund, B. P. Pelagicoccus. Bergey’s Manual of Systematics of Archaea and Bacteria [Internet]. 2015 [consultado 2020 agosto 17]; 1-7. Disponible en: doi:10.1002/9781118960608.gbm01278 Göker M, Antunes A. Haloplasma. Bergey’s Manual of Systematics of Archaea and Bacteria [Internet]. 2019 [consultado 2020 agosto 17]; 1-8. Disponible en: https://doi.org/10.1002/9781118960608.gbm01422 HARWOOD C. S, CANALE-PAROLA E. Spirochaeta isovalerica sp. nov., a Marine Anaerobe That Forms Branched-Chain Fatty Acids as Fermentation Products. International Journal of Systematic Bacteriology [Internet]. 1983 [consultado 2020 agosto 17]; 33(3): 573-579. Disponible en: https://doi.org/10.1099/00207713-33-3-573 Jung H-M, Ten L. N, Kim K-H, An D. S, Im W-T, Lee S-T. Dyella ginsengisoli sp. nov., isolated from soil of a ginseng field in South Korea. International journal of systematic and evolutionary microbiology [Internet]. 2009 [consultado 2020 agosto 17]; 59(3): 460-465. Disponible en: DOI:10.1099/ijs.0.004838-0 Weon H-Y, Anandham R, Kim B-Y, Hong S-B, Jeon Y-A, Kwon S-W. Dyella soli sp. nov. and Dyella terrae sp. nov., isolated from soil. International journal of systematic and evolutionary microbiology [Internet]. 2009 [consultado 2020 agosto 17]; 59(7): 1685-1690. Disponible en: DOI:10.1099/ijs.0.004838-0 Anandham R, Kwon S-W, Gandhi P, Kim S-J, Weon H-Y, Kim Y-S, Sa T-M, Kim Y-K, Jee H-J. Dyella thiooxydans sp. nov., a facultatively chemolithotrophic, thiosulfate-oxidizing bacterium isolated from rhizosphere soil of sunflower (Helianthus annuus L.). International journal of systematic and evolutionary microbiology [Internet]. 2011 [consultado 2020 agosto 17]; 61(2): 392-398. Disponible en: DOI:10.1099/ijs.0.022012-0 KEGG Dyella thiooxydans [Internet]. Japón. [consultado 2020 agosto 17] Disponible en: https://www.genome.jp/kegg- bin/show_organism?menu_type=pathway_maps&org=dtx Sawabe T, Ogura Y, Matsumura Y, Feng G, Amin R, Mino S,et al. Updating the Vibrio clades defined by multilocus sequence phylogeny: proposal of eight new clades, and the description of Vibrio tritonius sp. nov. Frontiers in Microbiology [Internet]. 2013 [consultado 2020 agosto 23]; 4. Disponible en: DOI:10.3389/fmicb.2013.00414 Gomez-Gil B, Fajer-Avila E, Pascual J, Macian M. C, Pujalte M. J, Garay E, Roque A. Vibrio sinaloensis sp. nov., isolated from the spotted rose snapper, Lutjanus guttatus Steindachner, 1869. International journal of systematic and evolutionary microbiology [Internet]. 2008 [consultado 2020 agosto 23]; 58(7): 1621-1624. Disponible en: https://doi.org/10.1099/ijs.0.65719-0 Guerinot M. L, West P. A, Lee J. V, Colwell R. Vibrio diazotrophicus sp. nov., a Marine Nitrogen-Fixing Bacterium. International Journal of Systematic Bacteriology [Internet]. 1982 [consultado 2020 agosto 23]; 32(3): 350-357. Disponible en: https://doi.org/10.1099/00207713-32-3-350 Chang H.W, Roh SW, Kim K.H, Nam Y.D, Jeon CO, Oh H-M, Bae J.W. Vibrio areninigrae sp. nov., a marine bacterium isolated from black sand. International journal of systematic and evolutionary microbiology [Internet]. 2008 [consultado 2020 agosto 23]; 58 (8): 1903-1906. Disponible en: https://doi.org/10.1099/ijs.0.65726-0 Antony C. P, Doronina N. V, Boden R, Trotsenko Y. A, Shouche Y. S, Murrell J. C. Methylophaga lonarensis sp. nov., a moderately haloalkaliphilic methylotroph isolated from the soda lake sediments of a meteorite impact crater. International journal of systematic and evolutionary microbiology [internet]. 2011 [consultado 2020 agosto 23]; 62(7): 1613-1618. Disponible en: DOI: 10.1099/ijs.0.035089-0 Nishihara H, Igarashi Y, Kodama T. Hydrogenovibrio marinus gen. nov., sp. nov., a Marine Obligately Chemolithoautotrophic Hydrogen-Oxidizing Bacterium. International Journal of Systematic Bacteriology [Internet]. 1991 [consultado 2020 agosto 23]; 41(1): 130-133. Disponible en: https://doi.org/10.1099/00207713-41-1-130 KEGG Hydrogenovibrio marinus [Internet]. Japón. [consultado 2020 agosto 23] Disponible en: https://www.kegg.jp/kegg- bin/show_organism?org=hmar Nelson K. E, Weinel C, Paulsen I. T, Dodson R. J, Hilbert H, Martins dos Santos P, et al. Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environmental Microbiology [Internet]. 2002 [consultado 2020 agosto 28]; 4(12): 799-808. Disponible en: https://doi.org/10.1046/j.1462-2920.2002.00366.x KEGG Pseudomonas putida [Internet]. Japón. [consultado 2020 agosto 28] Disponible en: https://www.genome.jp/kegg- bin/show_organism?menu_type=pathway_maps&org=ppu WEIMBERG R. Pentose Oxidation by Pseudomonas fragi. The journal of biological chemistry [Internet]. 1961 [consultado 2020 agosto 28]; 236(3) 629-635. Disponible en: https://pubmed.ncbi.nlm.nih.gov/13783864/ KEGG Pseudomonas fragi [Internet]. Japón. [consultado 2020 agosto 28] Disponible en: https://www.genome.jp/kegg- bin/show_organism?menu_type=pathway_maps&org=pfz Carrion O, Minana-Galbis D, Montes M. J, Mercade E. Pseudomonas deceptionensis sp. nov., a psychrotolerant bacterium from the Antarctic. International journal of systematic and evolutionary microbiology [Internet]. 2010 [consultado 2020 agosto 28]; 61(10): 2401-2405. Disponible en: DOI:10.1099/ijs.0.024919-0 Ma Y, Rajkumar M, Moreno A, Zhang C, Freitas H. Serpentine endophytic bacterium Pseudomonas azotoformans ASS1 accelerates phytoremediation of soil metals under drought stress. Chemospher [Internet]. 2017 [consultado 2020 agosto 28]; 185: 75-85. Disponible en: https://doi.org/10.1016/j.chemosphere.2017.06.135 KEGG Pseudomonas azotoformans [Internet]. Japón. [consultado 2020 agosto 28] Disponible en: https://www.genome.jp/kegg- bin/show_organism?org=pazo Yumoto I, Hirota K, Sogabe Y, Nodasaka Y, Yokota Y, Hoshino T. Psychrobacter okhotskensis sp. nov., a lipase-producing facultative psychrophile isolated from the coast of the Okhotsk Sea. International journal of systematic and evolutionary microbiology [Internet]. 2003 [consultado 2020 agosto 28]; 53(6): 1985-1989. Disponible en: https://doi.org/10.1099/ijs.0.02686-0 Yumoto I, Hirota K, Kimoto H, Nodasaka Y, Matsuyama H, Yoshimune K. Psychrobacter piscatorii sp. nov., a psychrotolerant bacterium exhibiting high catalase activity isolated from an oxidative environment. International journal of systematic and evolutionary microbiology [Internet]. 2009 [consultado 2020 agosto 29]; 60(1): 205-208. Disponible en: https://doi.org/10.1099/ijs.0.010959-0 Romanenko L, Lysenko A.M, Rohde M, Mikhailov V.V, Stackebrandt E. Psychrobacter maritimus sp. nov. and Psychrobacter arenosus sp. nov., isolated from coastal sea ice and sediments of the Sea of Japan. International journal of systematic and evolutionary microbiology [Internet]. 2004 [consultado 2020 agosto 29]; 54(5): 1741-1745. Disponible en: https://doi.org/10.1099/ijs.0.63096-0 Jung S-Y, Lee M-H, Oh T-K, Park Y-H, Yoon J-H. Psychrobacter cibarius sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. International journal of systematic and evolutionary microbiology [Internet]. 2005 [consultado 2020 agosto 29]; 55(2): 577-582. Disponible en: https://doi.org/10.1099/ijs.0.63398-0 Wirth S. E, Ayala-del-Rio H. L, Cole J. A., Kohlerschmidt, D. J., Musser, K. A., Sepulveda-Torres, Thompson L.M, Wolfgang W. J. Psychrobacter sanguinis sp. nov., recovered from four clinical specimens over a 4-year period. International journal of systematic and evolutionary microbiology [Internet]. 2011 [consultado 2020 agosto 29]; 62(1): 49-54. Disponible en: https://doi.org/10.1099/ijs.0.029058-0 Shivaji S, Reddy G, Suresh K, Gupta P, Chintalapati S, Schumann P, Stackebrandt E, Matsumoto G.I. Psychrobacter vallis sp. nov. and Psychrobacter aquaticus sp. nov., from Antarctica. International journal of systematic and evolutionary microbiology [Internet]. 2005 [consultado 2020 agosto 29]; 55(2): 757–762. Disponible en: DOI:10.1099/ijs.0.03030-0 Yoon J-H, Yeo S-H, Oh T-K, Park Y-H. Psychrobacter alimentarius sp. nov., isolated from squid jeotgal, a traditional Korean fermented seafood. International journal of systematic and evolutionary microbiology [Internet]. 2005 [consultado 2020 agosto 29]; 55(1): 171-176. Disponible en: DOI:10.1099/ijs.0.63140-0 KEGG Psychrobacter alimentarius [Internet]. Japón. [consultado 2020 agosto 29] Disponible en: https://www.genome.jp/kegg- bin/show_organism?menu_type=pathway_maps&org=pali Li W, Zhang D, Huang X, Qin W. Acinetobacter harbinensis sp. nov., isolated from river water. International journal of systematic and evolutionary microbiology [Internet]. 2014 [consultado 2020 agosto 29]; 64(5): 1507-1513. Disponible en: DOI: 10.1099/ijs.0.055251-0 KEGG Acinetobacter guillouiae [Internet]. Japón. [consultado 2020 agosto 03] Disponible en: https://www.genome.jp/kegg- bin/show_organism?menu_type=pathway_maps&org=agu Choi A, Cho J-C. Thalassolituus marinus sp. nov., a hydrocarbon- utilizing marine bacterium. International journal of systematic and evolutionary microbiology [Internet]. 2012 [consultado 2020 agosto 03]; 63(6): 2234-2238. Disponible en: https://doi.org/10.1099/ijs.0.046383-0 Romanenko L. A, Schumann P, Rohde M, Mikhailov V.V, Stackebrandt E. Reinekea marinisedimentorum gen. nov., sp. nov., a novel gammaproteobacterium from marine coastal sediments. International journal of systematic and evolutionary microbiology [Internet]. 2004 [consultado 2020 agosto 03]; 54(3): 669-673. Disponible en: https://doi.org/10.1099/ijs.0.02846- 0 Lee H-W, Shin, N-R, Lee J, Roh S. W, Whon T. W, Bae J-W. Neptunomonas concharum sp. nov., isolated from a dead ark clam, and emended description of the genus Neptunomonas. International journal of systematic and evolutionary microbiology [Internet]. 2011 [consultado 2020 agosto 03]; 62(11): 2657-2661. Disponible en: DOI: 10.1099/ijs.0.037473-0 KEGG Neptunomonas concharum [Internet]. Japón. [consultado 2020 agosto 03] Disponible en: https://www.genome.jp/kegg- bin/show_organism?menu_type=pathway_maps&org=ncu Wang Z-J, Xie Z-H, Wang C, Du Z-J, Chen G-J. Motiliproteus sediminis gen. nov., sp. nov., isolated from coastal sediment. Antonie van Leeuwenhoek [Internet]. 2014 [consultado 2020 agosto 03]; 106(4): 615-621. Disponible en: DOI: 10.1007/s10482-014-0232-2 Kumari P, Poddar A, Das S. K. Marinomonas fungiae sp. nov., isolated from the coral Fungia echinata from the Andaman Sea. International journal of systematic and evolutionary microbiology [Internet]. 2013 [consultado 2020 agosto 03]; 64(2): 487–494. Disponible en: https://doi.org/10.1099/ijs.0.054809-0 Chimetto L. A, Cleenwerck I, Brocchi M, Willems A, De Vos P, Thompson F. L. Marinomonas brasilensis sp. nov., isolated from the coral Mussismilia hispida, and reclassification of Marinomonas basaltis as a later heterotypic synonym of Marinomonas communis. International journal of systematic and evolutionary microbiology [Internet]. 2010 [consultado 2020 agosto 05]; 61(5): 1170-1175. Disponible en: https://doi.org/10.1099/ijs.0.024661-0 Gartner A, Wiese J, Imhoff J. F. Amphritea atlantica gen. nov., sp. nov., a gammaproteobacterium from the Logatchev hydrothermal vent field. International journal of systematic and evolutionary microbiology [Internet]. 2008 [consultado 2020 agosto 05]; 58(1): 34-39. Disponible en: https://doi.org/10.1099/ijs.0.65234-0 Graevenitz A.V, Bowman J, Notaro C, Ritzler M. Human Infection with Halomonas venusta following Fish Bite. Journal of Clinical Microbiology [Internet]. 2000 [consultado 2020 agosto 05]; 38(8): 3123-3124. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC87208/ KEGG Halomonas venusta [Internet]. Japón. [consultado 2020 agosto 05] Disponible en: https://www.genome.jp/kegg- bin/show_organism?menu_type=pathway_maps&org=hvn Romano I, Lama L, Nicolaus B, Poli A, Gambacorta A, Giordano A. Halomonas alkaliphila sp. nov., a novel halotolerant alkaliphilic bacterium isolated from a salt pool in Campania (Italy). The Journal of General and Applied Microbiology [Internet]. 2006 [consultado 2020 agosto 05]; 52(6): 339-348. Disponible en: DOI: 10.2323/jgam.52.339 KEGG Halomonas alkaliphila [Internet]. Japón. [consultado 2020 agosto 05] Disponible en: https://www.genome.jp/kegg- bin/show_organism?menu_type=pathway_maps&org=halk Arahal D. R, Castillo A. M, Ludwig W, Schleifer K. H, Ventosa A. Proposal of Cobetia marina gen. nov., comb. nov., within the Family Halomonadaceae, to Include the Species Halomonas marina. Systematic and Applied Microbiology [Internet]. 2002 [consultado 2020 agosto 06]; 25(2): 207- 211.Disponible en: https://doi.org/10.1078/0723-2020-00113 KEGG Cobetia marina [Internet]. Japón. [consultado 2020 agosto 06] Disponible en: https://www.genome.jp/kegg- bin/show_organism?menu_type=pathway_maps&org=cmai Arahal D. R, García M. T, Ventosa A, Ludwig W, Schleifer K. H. Transfer of Halomonas canadensis and Halomonas israelensis to the genus Chromohalobacter as Chromohalobacter canadensis comb. nov. and Chromohalobacter israelensis comb. nov. International Journal of Systematic and Evolutionary Microbiology [Internet]. 2001 [consultado 2020 agosto 06]; 51(4): 1443-1448. Disponible en: https://doi.org/10.1099/00207713-51-4-1443 Kurahashi M, Yokota A. Endozoicomonas elysicola gen. nov., sp. nov., a γ-proteobacterium isolated from the sea slug Elysia ornata. Systematic and Applied Microbiology [Internet]. 2007 [consultado 2020 agosto 06]; 30(3): 202- 206. Disponible en: DOI: 10.1016/j.syapm.2006.07.003 Schmid M. F, Paredes A. M, Khant H. A, Soyer F, Aldrich H. C, Chiu W, Shively J. M. Structure of Halothiobacillus neapolitanus Carboxysomes by Cryo-electron Tomography. Journal of Molecular Biology [Internet]. 2006 [consultado 2020 agosto 06]; 364(3): 526-535. Disponible en: https://doi.org/10.1016/j.jmb.2006.09.024 KEGG Halothiobacillus neapolitanus [Internet]. Japón. [consultado 2020 agosto 06] Disponible en: https://www.genome.jp/kegg- bin/show_organism?menu_type=pathway_maps&org=hna KEGG Serratia liquefaciens [Internet]. Japón. [consultado 2020 agosto 06] Disponible en: https://www.genome.jp/kegg- bin/show_organism?menu_type=pathway_maps&org=slq Kampfer P, Arun A. B, Young C-C, Rekha P. D, Martin K, Busse, H-J, Chen W-M. Microbulbifer taiwanensis sp. nov., isolated from coastal soil. International journal of systematic and evolutionary microbiology [Internet]. 2011 [consultado 2020 agosto 06]; 62(10): 2485-2489. Disponible en: https://doi.org/10.1099/ijs.0.034512-0 Jeong S. H, Yang S-H, Jin H. M, Kim J. M, Kwon K. K, Jeon C. O. Microbulbifer gwangyangensis sp. nov. and Microbulbifer pacificus sp. nov., isolated from marine environments. International journal of systematic and evolutionary microbiology [Internet]. 2012 [consultado 2020 agosto 06]; 63(4): 1335-1341. Disponible en: https://doi.org/10.1099/ijs.0.042606-0 KEGG Pseudoalteromonas translucida [Internet]. Japón. [consultado 2020 agosto 09] Disponible en: https://www.genome.jp/kegg- bin/show_organism?menu_type=pathway_maps&org=ptn KEGG Pseudoalteromonas nigrifaciens [Internet]. Japón. [consultado 2020 agosto 09] Disponible en: https://www.genome.jp/kegg- bin/show_organism?menu_type=pathway_maps&org=png Matsuyama H, Minami H, Kasahara H, Kato Y, Murayama M, Yumoto I. Pseudoalteromonas arabiensis sp. nov., a marine polysaccharide-producing bacterium. International journal of systematic and evolutionary microbiology [Internet]. 2012 [consultado 2020 agosto 09]; 63(5): 1905-1809. Disponible en: https://doi.org/10.1099/ijs.0.043604-0 Brettar I, Christen R, Hofle M. Idiomarina baltica sp. nov., a marine bacterium with a high optimum growth temperature isolated from surface water of the central Baltic Sea. International journal of systematic and evolutionary microbiology [Internet]. 2003 [consultado 2020 agosto 09]; 53(2): 407-413. Disponible en: https://doi.org/10.1099/ijs.0.02399-0 Yoon J.H, Kang S.J, Lee S.Y. Salinimonas lutimaris sp. nov., a polysaccharide-degrading bacterium isolated from a tidal flat. Antonie van Leeuwenhoek [Internet]. 2012 [consultado 2020 agosto 09]; 101(4): 803-810. Disponible en: https://link.springer.com/article/10.1007/s10482-011-9695-6 Liebgott P.P, Casalot L, Paillard S, Lorquin J, Labat M. Marinobacter vinifirmus sp. nov., a moderately halophilic bacterium isolated from a wine- barrel-decalcification wastewater. International journal of systematic and evolutionary microbiology [Internet]. 2006 [consultado 2020 agosto 09]; 56(11): 2511-2516. Disponible en: https://doi.org/10.1099/ijs.0.64368-0 Antunes A, Franca L, Rainey F.A, Huber R, Nobre M.F, Edwards K.J, da Costa M.S. Marinobacter salsuginis sp. nov., isolated from the brine- seawater interface of the Shaban Deep, Red Sea. International journal of systematic and evolutionary microbiology [Internet]. 2007 [consultado 2020 agosto 09]; 57(5): 1035-1040. Disponible en: https://doi.org/10.1099/ijs.0.64862-0 Handley K.M, Hery M, Lloyd J.R. Marinobacter santoriniensis sp. nov., an arsenate-respiring and arsenite-oxidizing bacterium isolated from hydrothermal sediment. International journal of systematic and evolutionary microbiology [Internet]. 2009 [consultado 2020 agosto 09]; 59(4): 886-892. Disponible en: https://doi.org/10.1099/ijs.0.003145-0 Kim B.Y, Weon H.Y, Yoo S.H, Kim J.S, Kwon S.W, Stackebrandt E, et al. Marinobacter koreensis sp. nov., isolated from sea sand in Korea. International journal of systematic and evolutionary microbiology [Internet]. 2006 [consultado 2020 agosto 09]; 56(11): 2653-2656. Disponible en: https://doi.org/10.1099/ijs.0.64231-0 Wang C.Y, Ng C.C, Tzeng W.S, Shyu Y.T. Marinobacter szutsaonensis sp. nov., isolated from a solar saltern. International journal of systematic and evolutionary microbiology [Internet]. 2009 [consultado 2020 agosto 09]; 59(10): 2605-2609. Disponible en: https://doi.org/10.1099/ijs.0.008896-0 Gu J, Cai H, Yu S.L, Qu R, Yin B, Guo Y.F, et al. Marinobacter gudaonensis sp. nov., isolated from an oil-polluted saline soil in a Chinese oilfield. International journal of systematic and evolutionary microbiology [Internet]. 2007 [consultado 2020 agosto 09]; 57(2): 250-254. Disponible en: https://doi.org/10.1099/ijs.0.64522-0 Yi H, Bae K.S, Chun J. Aestuariibacter salexigens gen. nov., sp. nov. and Aestuariibacter halophilus sp. nov., isolated from tidal flat sediment, and emended description of Alteromonas macleodii. International journal of systematic and evolutionary microbiology [Internet]. 2004 [consultado 2020 agosto 09]; 54(2): 571-576. Disponible en: https://doi.org/10.1099/ijs.0.02798- 0 KEGG Arcobacter nitrofigilis [Internet]. Japón. [consultado 2020 agosto 09] Disponible en: https://www.genome.jp/dbget-bin/get_linkdb?- t+pathway+gn:T01235 KEGG Arcobacter marinus [Internet]. Japón. [consultado 2020 agosto 09] Disponible en: https://www.kegg.jp/kegg- bin/show_organism?menu_type=pathway_maps&org=amar KEGG Arcobacter halophilus [Internet]. Japón. [consultado 2020 agosto 09] Disponible en: https://www.genome.jp/kegg- bin/show_organism?org=ahs KEGG Arcobacter mytili [Internet]. Japón. [consultado 2020 agosto 09] Disponible en: https://www.kegg.jp/kegg- bin/show_organism?menu_type=pathway_maps&org=amyt KEGG Arcobacter molluscorum [Internet]. Japón. [consultado 2020 agosto 09] Disponible en: https://www.genome.jp/kegg- bin/show_organism?menu_type=pathway_maps&org=amol Narasingarao P, Haggblom M.M. Pelobacter seleniigenes sp. nov., a selenate-respiring bacterium. International journal of systematic and evolutionary microbiology [Internet]. 2007 [consultado 2020 agosto 09]; 57(9): 1937-1942. Disponible en: https://doi.org/10.1099/ijs.0.64980-0 KEGG Paraburkholderia fungorum [Internet]. Japón. [consultado 2020 agosto 09] Disponible en: https://www.genome.jp/dbget-bin/get_linkdb?- t+pathway+gn:T03799 Jung Y.T, Park S, Oh T.K, Yoon J.H. Erythrobacter marinus sp. nov., isolated from seawater. International journal of systematic and evolutionary microbiology [Internet]. 2011 [consultado 2020 agosto 09]; 62(9): 2050-2055. Disponible en: https://doi.org/10.1099/ijs.0.034702-0 Wang B, Tan T, Shao Z. Roseovarius pacificus sp. nov., isolated from deep-sea sediment. International journal of systematic and evolutionary microbiology [Internet]. 2009 [consultado 2020 agosto 10]; 59(5): 1116-1121. Disponible en: https://doi.org/10.1099/ijs.0.002477-0 Oh Y-S, Lim H.J, Cha I.T, Im W.T, Yoo J.S, Kang U.G, et al. Roseovarius halotolerans sp. nov., isolated from deep seawater. International journal of systematic and evolutionary microbiology [Internet]. 2009 [consultado 2020 agosto 10]; 59(11): 2718-2723. Disponible en: https://doi.org/10.1099/ijs.0.002576-0 Rathgeber C, Yurkova N, Stackebrandt E, Schumann P, Beatty J.T, Yurkov V. Roseicyclus mahoneyensis gen. nov., sp. nov., an aerobic phototrophic bacterium isolated from a meromictic lake. International journal of systematic and evolutionary microbiology [Internet]. 2005 [consultado 2020 agosto 10]; 55(4): 1597-1603. Disponible en: https://doi.org/10.1099/ijs.0.63195-0 KEGG Rhodovulum sulfidophilum [Internet]. Japón. [consultado 2020 agosto 10] Disponible en: https://www.genome.jp/dbget-bin/get_linkdb?- t+pathway+gn:T04143 Srinivas T. N.R, Kumar P.A, Sasikala Ch, Ramana V, Suling J, Imhoff J.F. Rhodovulum marinum sp. nov., a novel phototrophic purple non-sulfur alphaproteobacterium from marine tides of Visakhapatnam, India. International journal of systematic and evolutionary microbiology [Internet]. 2006 [consultado 2020 agosto 10]; 56(7): 1651-1656. Disponible en: https://doi.org/10.1099/ijs.0.64005-0 Yoon J.H, Lee S.Y, Kang S.J, Lee C.H, Oh T.K. Pseudoruegeria aquimaris gen. nov., sp. nov., isolated from seawater of the East Sea in Korea. International journal of systematic and evolutionary microbiology [Internet]. 2007 [consultado 2020 agosto 10]; 57(3): 542-547. Disponible en: https://doi.org/10.1099/ijs.0.64594-0 Hameed A, Shahina M, Lin S.Y, Nakayan P, Liu Y.C, Lai W.A, et al. Youngimonas vesicularis gen. nov., sp. nov., of the family Rhodobacteraceae, isolated from surface seawater, reclassification of Donghicola xiamenensis Tan et al. 2009 as Pseudodonghicola xiamenensis gen. nov., comb. nov. and emended description of the genus Donghicola Yoon et al. 2007. International journal of systematic and evolutionary microbiology [Internet]. 2014 [consultado 2020 agosto 10]; 64(8): 2729-2737. Disponible en: https://doi.org/10.1099/ijs.0.060962-0 Romanenko L.A, Tanaka N, Svetashev V.I, Kalinovskaya N.I. Poseidonocella pacifica gen. nov., sp. nov. and Poseidonocella sedimentorum sp. nov., novel alphaproteobacteria from the shallow sandy sediments of the Sea of Japan. Archives of Microbiology [Internet]. 2011 [consultado 2020 agosto 10]; 194(2): 113-121. Disponible en: https://link.springer.com/article/10.1007/s00203-011-0736-3 Sheu S. Y, Hsieh T.Y, Young C.C, Chen W.M. Paracoccus fontiphilus sp. nov., isolated from a freshwater spring. International journal of systematic and evolutionary microbiology [Internet]. 2018 [consultado 2020 agosto 10]; 68(6). Disponible en: https://doi.org/10.1099/ijsem.0.002793 Helsel L.O, Hollis D, Steigerwalt A.G, Morey R.E, Jordan J, Aye T, et al. Identification of “Haematobacter,” a New Genus of Aerobic Gram-Negative Rods Isolated from Clinical Specimens, and Reclassification of Rhodobacter massiliensis as “Haematobacter massiliensis comb. nov.” Journal of Clinical Microbiology [Internet]. 2007 [consultado 2020 agosto 10]; 45(4): 1238-1243. Disponible en: 10.1128/JCM.01188-06 Li A.H, Zhou Y.G. Frigidibacter albus gen. nov., sp. nov., a novel member of the family Rhodobacteraceae isolated from lake water. International Journal of Systematic and Evolutionary Microbiology [Internet]. 2015 [consultado 2020 agosto 10]; 65(4): 1199-1206. Disponible en: https://doi.org/10.1099/ijs.0.000080 Yoon J.H, Kang S.J, Oh T.K. Donghicola eburneus gen. nov., sp. nov., isolated from seawater of the East Sea in Korea.International journal of systematic and evolutionary microbiology [Internet]. 2007 [consultado 2020 agosto 10]; 57(1): 73–76. Disponible en: https://doi.org/10.1099/ijs.0.64577-0 Jiang L, Xu H, Shao Z, Long M. Defluviimonas indica sp. nov., a marine bacterium isolated from a deep-sea hydrothermal vent environment. International journal of systematic and evolutionary microbiology [Internet]. 2014 [consultado 2020 agosto 10]; 64(6): 2084-2088. Disponible en: https://doi.org/10.1099/ijs.0.061614-0 Park M.S, Chung B.S, Lee H.J, Jin H.M, Lee S.S, Oh Y.K, et al. Citreicella aestuarii sp. nov., isolated from a tidal flat. International journal of systematic and evolutionary microbiology [Internet]. 2011 [consultado 2020 agosto 10]; 61(11). Disponible en: https://doi.org/10.1099/ijs.0.028332-0 Gallego S, Vila J, Nieto J.M, Urdiain M, Rosselló R, Grifoll M. Breoghania corrubedonensis gen. nov. sp. nov., a novel alphaproteobacterium isolated from a Galician beach (NW Spain) after the Prestige fuel oil spill, and emended description of the family Cohaesibacteraceae and the species Cohaesibacter gelatinilyticus. Systematic and Applied Microbiology [Internet]. 2010 [consultado 2020 agosto 10]; 33(6): 316-321. Disponible en: https://doi.org/10.1016/j.syapm.2010.06.005 KEGG Methyloceanibacter caenitepidi [Internet]. Japón. [consultado 2020 agosto 10] Disponible en: https://www.genome.jp/dbget-bin/get_linkdb?- t+pathway+gn:T03636 Quan Z.X, Bae H.S, Baek J.H, Chen W.F, Im W.T, Lee S.T. Rhizobium daejeonense sp. nov. isolated from a cyanide treatment bioreactor. International journal of systematic and evolutionary microbiology [Internet]. 2005 [consultado 2020 agosto 10]; 55(6): 2543-2549. Disponible en: https://doi.org/10.1099/ijs.0.63667-0 Mantelin S, Saux M.F.L, Zakhia F, Béna G, Bonneau S, Jeder H, et al. Emended description of the genus Phyllobacterium and description of four novel species associated with plant roots: Phyllobacterium bourgognense sp. nov., Phyllobacterium ifriqiyense sp. nov., Phyllobacterium leguminum sp. nov. and Phyllobacterium brassicacearum sp. nov. International journal of systematic and evolutionary microbiology [Internet]. 2006 [consultado 2020 agosto 10]; 56(4): 827-839. Disponible en: https://doi.org/10.1099/ijs.0.63911- 0 Batista R. A, Rayo M, Talia P, Jackson S. A, O’Leary N. D, et al. From lignocellulosic metagenomes to lignocellulolytic genes: trends, challenges and future prospects. Biofuels, Bioproducts and Biorefining [Internet]. 2016 [consultado 2020 agosto 26]; 10(6): 864-882. Disponible en: https://doi.org/10.1002/bbb.1709 Lam M. Q, Oates N. C, Thevarajoo S, Tokiman L, Goh K. M, McQueen S. J, et al. Genomic analysis of a lignocellulose degrading strain from the underexplored genus Meridianimaribacter. Genomics [Internet]. 2019 [consultado 2020 agosto 26]; 112(1): 952-960. Disponible en: https://doi.org/10.1016/j.ygeno.2019.06.011 Gadd G. M, Sariaslani S. Advances in Applied Microbiology. Volume 97. Países Bajos: Academic Press; 2016. Mahjoubi M, Cappello S, Souissi Y, Jaouani A, Cherif A. Microbial Bioremediation of Petroleum Hydrocarbon– Contaminated Marine Environments. INTECH; 2018. Karigar C. S, Rao S. S. Role of Microbial Enzymes in the Bioremediation of Pollutants: A Review. Enzyme Research [Internet]. 2011 [consultado 2020 septiembre 02]; 2011(7): 1–11. Disponible en: DOI: 10.4061/2011/805187 Abatenh E, Gizaw B, Tsegaye Z, Wassie M. The Role of Microorganisms in Bioremediation- A Review. Open Journal of Environmental Biology [Internet]. 2017 [consultado 2020 septiembre 02]; 1(1): 038-046. Disponible en: DOI: 10.17352/ojeb.000007 Finneran K. T, Anderson R. T, Nevin K. P, Lovley D. R. Potential for Bioremediation of Uranium-Contaminated Aquifers with Microbial U(VI) Reduction. Soil and Sediment Contamination: An International Journal [Internet]. 2002 [consultado 2020 septiembre 02]; 11(3): 339–357. Disponible en: https://doi.org/10.1080/20025891106781 Newsome L, Morris K, Trivedi D, Atherton N, Lloyd J. R. Microbial reduction of uranium (VI) in sediments of different lithologies collected from Sellafield. Applied Geochemistry [Internet]. 2014 [consultado 2020 septiembre 02]; 51: 55–64. Disponible en: https://doi.org/10.1016/j.apgeochem.2014.09.00 |
dc.rights.spa.fl_str_mv |
Derechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2020 |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/closedAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
rights_invalid_str_mv |
Derechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2020 https://creativecommons.org/licenses/by-nc-sa/4.0/ Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) http://purl.org/coar/access_right/c_14cb |
eu_rights_str_mv |
closedAccess |
dc.format.extent.spa.fl_str_mv |
190p. |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Colegio Mayor de Cundinamarca |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias de la Salud |
dc.publisher.place.spa.fl_str_mv |
Bogotá D.C |
dc.publisher.program.spa.fl_str_mv |
Bacteriología y Laboratorio Clínico |
institution |
Colegio Mayor de Cundinamarca |
bitstream.url.fl_str_mv |
https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/257/4/license.txt https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/257/7/Danya%20Ramirez%20y%20Nicolas%20Rojas%20INFLUENCIA%20DE%20LA%20COMUNIDAD%20BACTERIANA%20EN%20LOS%20CICLOS%20BIOGEOQU%c3%8dMICOS%20DEL%20CARBONO%20Y%20EL%20NITR%c3%93GENO%20EN%20EL%20ECOSISTEMA%20DE%20MANGLAR.pdf.txt https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/257/11/Cartas%20derechos%20de%20autor.pdf.txt https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/257/13/Monograf%c3%ada_%20Ram%c3%adrez%20Lozada%20Gabriela_%20Rojas%20Villamil%20Nicol%c3%a1s.pdf.txt https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/257/8/Danya%20Ramirez%20y%20Nicolas%20Rojas%20INFLUENCIA%20DE%20LA%20COMUNIDAD%20BACTERIANA%20EN%20LOS%20CICLOS%20BIOGEOQU%c3%8dMICOS%20DEL%20CARBONO%20Y%20EL%20NITR%c3%93GENO%20EN%20EL%20ECOSISTEMA%20DE%20MANGLAR.pdf.jpg https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/257/12/Cartas%20derechos%20de%20autor.pdf.jpg https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/257/14/Monograf%c3%ada_%20Ram%c3%adrez%20Lozada%20Gabriela_%20Rojas%20Villamil%20Nicol%c3%a1s.pdf.jpg https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/257/15/Monograf%c3%ada_%20Ram%c3%adrez%20Lozada%20Gabriela_%20Rojas%20Villamil%20Nicol%c3%a1s.pdf https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/257/16/Danya%20Ramirez%20y%20Nicolas%20Rojas%20INFLUENCIA%20DE%20LA%20COMUNIDAD%20BACTERIANA%20EN%20LOS%20CICLOS%20BIOGEOQU%c3%8dMICOS%20DEL%20CARBONO%20Y%20EL%20NITR%c3%93GENO%20EN%20EL%20ECOSISTEMA%20DE%20MANGLAR.pdf https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/257/17/Cartas%20derechos%20de%20autor.pdf |
bitstream.checksum.fl_str_mv |
2f9959eaf5b71fae44bbf9ec84150c7a bc4ff933ad16266b7bc8f4b709d959f1 0bdac8501be6a736dd6e5fb5e66bec28 f939b141a16c5b2e21749aad71d1a6c5 e9825ee14616ee1bd7ef08ab8eb1b010 cef0edfe923bd14e82e4916af8569b48 6d5a4a621fb2248366266f38b79e2225 14d881fb398c48e4e2d8457df30df271 a876c4424f53ce08f3dc920c1566267c d96331752bb9277d1a762d2f6d64a139 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital Unicolmayor |
repository.mail.fl_str_mv |
repositorio@unicolmayor.edu.co |
_version_ |
1812210111719931904 |
spelling |
Posada Buitrago, Martha Lucía4d5afb0eea3b70008d7c115f3a7ee2c1600Ramírez Lozada, Danya Gabrielad965a96e854cefe6a525e5a4dacde16dRojas Villamil, Nicolás Davide639957a21eb6d4da0447214f30255702021-06-18T15:38:48Z2021-06-18T15:38:48Z2020-11-11https://repositorio.unicolmayor.edu.co/handle/unicolmayor/257Los ecosistemas de manglar son poco comunes en todo el mundo, tienen un valor tanto económico como ecológico alto, ofreciendo una amplia gama de servicios y bienes para la comunidad, además de ser el hábitat de diversas especies animales, vegetales y una gran comunidad microbiana que controla procesos fundamentales para su mantenimiento y supervivencia. En relación con lo anterior, conocer el microbioma de estos ecosistemas ayuda a caracterizarlos, determinar su funcionalidad e influencia en los ciclos biogeoquímicos que son importantes para el sostenimiento del mismo. El objetivo de este trabajo es determinar la influencia de la comunidad procariota en los ciclos biogeoquímicos del carbono y nitrógeno en el ecosistema de manglar, mediante una revisión documental, donde se incluyó literatura científica, bases de datos bibliográficas, libros, entre otras fuentes, con información obtenida de entidades nacionales e internacionales sobre el tema objeto de estudio. Se observó que las trasformaciones energéticas relacionadas con los ciclos del carbono y nitrógeno en los ecosistemas de manglar son llevadas a cabo por microorganismos procariotas que pertenecen principalmente a los filos Proteobacteria, Firmicutes, Actinobacteria, Chloroflexi, Bacteroidetes, Cyanobacteria, Bathyarchaeota y Euryarchaeota, y se observan mayor abundancia y diversidad en los microorganismos involucrados en el ciclo del carbono que del nitrógeno. Finalmente, se resalta la importancia que tienen la biodiversidad y los ciclos biogeoquímicos en la conservación de los ecosistemas, que a su vez, son una fuente de ingreso y sostenibilidad para las poblaciones.Mangrove ecosystems are rare worldwide; they have a high economic and ecological value, offering a wide range of services and goods to the community, this ecosystem harbors a high biodiversity of animals, plants and a large microbial community, which controls fundamental processes for its maintenance and survival. Regarding the above, knowing the microbiome of these ecosystems helps to characterize them and determine their functionality and influence on the biogeochemical cycles, especially carbon and nitrogen, which are important for their sustainability. The goal of this work is to determine the influence of the prokaryotic community on the carbon and nitrogen biogeochemical cycles in the mangrove ecosystem through a documentary review that includes scientific literature, bibliographic databases, books, among other sources, with information obtained from national and international entities about the subject under study. It was observed that the energetic transformations related to carbon and nitrogen cycles in mangrove ecosystems are carried out by prokaryotic microorganisms that belong mainly to the phyla Proteobacteria, Firmicutes, Actinobacteria, Chloroflexi, Bacteroidetes, Cyanobacteria, Bathyarchaeota and Euryarchaeota, with higher abundance and biodiversity of the microorganisms involved in the carbon cycle than the ones in the nitrogen cycle. Finally, the importance of biodiversity and biogeochemical cycles in the conservation of ecosystems is highlighted, which in turn are a source of income and sustainability for populations.RESUMEN 9 SUMMARY 10 1. Introducción 11 2. Objetivos 13 2.1. Objetivo general 13 2.2. Objetivos específicos 13 3. Antecedentes (estado del arte) 14 4. Marco teórico 24 4.1 Manglar 24 4.2. Ventajas de la protección de los manglares 25 4.3. Los manglares en Colombia y Córdoba 26 4.4. Microbiota de los manglares y su importancia 28 4.5. Ciclo del carbono y su relación con el manglar 31 4.6. Ciclo del nitrógeno y su relación con el manglar 33 5. Diseño metodológico 35 5.1. Tipo de investigación 35 5.2. Universo, población y muestra 35 5.2.1. Universo 35 5.2.2. Población 35 5.2.3. Muestra 36 6. Metodología 36 6.1. Revisión bibliográfica 36 6.2. Selección del material bibliográfico 36 6.3. Elaboración de la estructura del documento 36 7. Resultados 37 7.1. Revisión bibliográfica 37 7.2. Selección del material bibliográfico 37 7.3. Elaboración de la estructura del documento 40 8. Discusión 48 9. Conclusiones 58 10. Referencias 60 Anexos 94PregradoBacteriólogo(a) y Laboratorista Clínico190p.application/pdfspaUniversidad Colegio Mayor de CundinamarcaFacultad de Ciencias de la SaludBogotá D.CBacteriología y Laboratorio ClínicoDerechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2020https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/closedAccessAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)http://purl.org/coar/access_right/c_14cbInfluencia de la comunidad bacteriana en los ciclos biogeoquímicos del carbono y el nitrógeno en el ecosistema de manglarTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/bachelorThesishttps://purl.org/redcol/resource_type/TPinfo:eu-repo/semantics/publishedVersionSánchez H, Ulloa G, Alvarez R. Conservación y uso sostenible de los manglares del caribe colombiano. Colombia: Ministerio del Medio Ambiente; 1998.Blanco J, Álvarez R. Mangroves of Colombia revisited in an era of open data, global changes, and socio-political transition: Homage to Heliodoro Sánchez- Páez. Revista de la academia colombiana de ciencias exactas, físicas y naturales [Internet]. 2019 [consultado 2019 octubre 18]; 43(166): 84-97. Disponible en: http://www.scielo.org.co/pdf/racefn/v43n166/0370-3908-racefn- 43-166-84.pdfÁlvarez R. Los manglares de Colombia y la recuperación de sus áreas degradadas: revisión bibliográfica y nuevas experiencias. Madera y Bosques [Internet]. 2003 [consultado 2019 septiembre 25]; 9(1): 3-25. Disponible en: http://www.redalyc.org/articulo.oa?id=61790101Hernández R, Velázquez I, Orozco M, Santoyo G. Metagenómica de suelos: grandes desafíos y nuevas oportunidades biotecnológicas. Revista internacional de botánica experimental [Internet]. 2010 [consultado 2019 agosto 25]; 79: 133-139. Disponible en: http://www.revistaphyton.fund- romuloraggio.org.ar/vol79/Hernandez-Leon.pdfAndreote F, Jiménez D, Chaves D. et. al. The Microbiome of Brazilian Mangrove Sediments as Revealed by Metagenomics. PLoS ONE [Internet]. 2012 [consultado 2019 septiembre 25]; 7(6). Disponible en: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0038600Huang J, Lu X, Yan H, Chen S, Zhang W, Huang R. Transcriptome Characterization and Sequencing-Based Identification of Salt-Responsive Genes in Millettia pinnata, a Semi-Mangrove Plant. DNA Research [Internet]. 2012 [consultado 2019 septiembre 05]; 19(2): 195-207. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/22351699Sorokin D, Berben T, Melton E, Overmars L, Vavourakis C, Muyzer G. Microbial diversity and biogeochemical cycling in soda lakes. Extremophiles [Internet]. 2014 [consultado 2019 septiembre 25]; 18(5): 791-809. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4158274/pdf/792_2014_Article _670.pdfRay R, Majumder N, Das S, Chowdhury C, Kumar T. Biogeochemical cycle of nitrogen in a tropical mangrove ecosystem, east coast of India. Marine Chemistry [Internet]. 2014 [consultado 2019 septiembre 05]; 167: 33-43. Disponible en: https://www.sciencedirect.com/science/article/pii/S0304420314000802Verhoeven J, Laanbroek H, Rains M, Whigham D. Effects of increased summer flooding on nitrogen dynamics in impounded mangroves. Journal of Environmental Management [Internet]. 2014 [consultado 2019 septiembre 05]; 139: 217-226. Disponible en: https://www.sciencedirect.com/science/article/pii/S0301479714001261?via%3 DihubPolanía J, Urrego L, Agudelo C. Recent advances in understanding Colombian mangroves. Acta Oecologica [Internet]. 2015 [consultado 2019 septiembre 05]; 63: 82-90. Disponible en: https://www.sciencedirect.com/science/article/pii/S1146609X15000120Simoes M, Antunes A, Ottoni C, Shoaib M, Alam I, Alzubaidy H. Soil and Rhizosphere Associated Fungi in Gray Mangroves (Avicennia marina) from the Red Sea - A Metagenomic Approach. Genomics, Proteomics & Bioinformatics [Internet]. 2015 [consultado 2019 septiembre 05]; 13: 310-320. Disponible en: https://www.sciencedirect.com/science/article/pii/S1672022915001382Dudhagara P, Bhavsar S, Bhagat C, Ghelani A, Bhatt S, Patel R. Web Resources for Metagenomics Studies. Genomics, Proteomics & Bioinformatics [Internet]. 2015 [consultado 2019 agosto 25]; 13(5): 296-303. Disponible en: https://www.sciencedirect.com/science/article/pii/S1672022915001424Jing H, Shunyan C, Zhou Z, Wu C, Nagarajan S, Hongbin L. Spatial Variations of the Methanogenic Communities in the Sediments of Tropical Mangroves. PLoS ONE [Internet]. 2016 [consultado 2019 agosto 25]; 11(9). Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/27684479Lisboa M, Lara R, Cuevas E, Mulero E, Da Silvieira L. Effects of sea-level rise and climatic changes on mangroves from southwestern littoral of Puerto Rico during the middle and late Holocene. Catena [Internet]. 2016 [consultado 2019 septiembre 26]; 143: 187-200. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0341816216301266Llyina T, Friedlingstein P. Biogeochemical Cycles and Climate Change [Internet]. White Paper on WCRP Grand Challenge – Draft; 2016 [consultado 2019 septiembre 25]. Disponible en: https://www.wcrp- climate.org/JSC37/Documents/BGCGC_whitepaper_submission.pdfReinert F, Ferreira de Pinho C, Alves M. Diagnosing the level of stress on a mangrove species (Laguncularia racemosa) contaminated with oil: A necessary step for monitoring mangrove ecosystems. Marine Pollution Bulletin [Internet]. 2016 [consultado 2019 agosto 25]; 113: 94-99. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/27600275Dangan F, Dolorosa R, Sespeñe J, Mendoza N. Diversity and structural complexity of mangrove forest along Puerto Princesa Bay, Palawan Island, Philippines. Journal of Marine and Island Cultures [Internet]. 2016 [consultado 2019 septiembre 05]; 5: 118-125. Disponible en: https://www.sciencedirect.com/science/article/pii/S2212682115300032Xiaorong X, Yuhui H, Wei X, Shipeng F, Xi Z, Xiumei F, Zang J. Transcriptome Analysis of Ceriops tagal in Saline Environments Using RNA- Sequencing. PLoS ONE [Internet]. 2016 [consultado 2019 septiembre 05]; 11(12). Disponible en: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0167551Ramírez L. Marine protected areas in Colombia: Advances in conservation and barriers for effective governance. Ocean & Coastal Management [Internet]. 2016 [consultado 2019 septiembre 26]; 125: 49-62. Disponible en: https://www.sciencedirect.com/science/article/pii/S0964569116300308Ghosh A, Bhadury P. Insights into bacterioplankton community structure from Sundarbans mangrove ecoregion using Sanger and Illumina MiSeq sequencing approaches: A comparative analysis. Genomic Data [Internet]. 2017 [consultado 2019 agosto 25]; 11: 39-42. Disponible en: https://www.sciencedirect.com/science/article/pii/S2213596016301672Behera B, Sethi B, Mishra R, Dutta S, Thatoi H. Microbial cellulases – Diversity & biotechnology with reference to mangrove environment: A review. Journal of Genetic Engineering and Biotechnology [Internet]. 2017 [consultado 2019 agosto 25]; 15: 197-210. Disponible en: https://www.sciencedirect.com/science/article/pii/S1687157X16300555Burgos S, Navarro A, Marrugo J, Enamorado G, Urango I. Polycyclic aromatic hydrocarbons and heavy metals in the Cispata Bay, Colombia: A marine tropical ecosystem. Marine Pollution Bulletin [Internet]. 2017 [consultado 2019 septiembre 05]; 120: 379-386. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0025326X17304034Lamba S, Bera S, Rashid M, Medvinsky A.B, Sun GQ, Acquisti C, Chakraborty A, Li BL. Organization of biogeochemical nitrogen pathways with switch-like adjustment in fluctuating soil redox conditions. The Royal Society Publishing [Internet]. 2017 [consultado 2019 septiembre 25]; 4(1). Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5319346/Zhou Z, Meng H, Liu Y, Gu JD, Li M. Stratified Bacterial and Archaeal Community in Mangrove and Intertidal Wetland Mudflats Revealed by High Throughput 16S rRNA Gene Sequencing. Frontiers in Microbiology [Internet]. 2017 [consultado 2019 septiembre 05]; 8. Disponible en: https://www.frontiersin.org/articles/10.3389/fmicb.2017.02148/fullXiao K, Wu J, Li H, Hong Y, Wilson A, Jiao J, Shananan M. Nitrogen fate in a subtropical mangrove swamp: Potential association with seawater- groundwater exchange. Science of The Total Environment [Internet]. 2018 [consultado 2019 septiembre 05]; 635: 586-597. Disponible en: https://www.sciencedirect.com/science/article/pii/S0048969718313044Wang H, Gilbert J, Zhu Y, Yang X. Salinity is a key factor driving the nitrogen cycling in the mangrove sediment. Science of The Total Environment [Internet]. 2018 [consultado 2019 septiembre 05]; 631: 1342-1349. Disponible en: https://www.sciencedirect.com/science/article/pii/S0048969718308581Abril Flórez A.L, Alfonso Moyano L.D, Arango López D.R, Bermúdez Macías M.Y. Estudio metagenómico de la diversidad procariota del ecosistema de manglar de la bahía de Cispatá, San Antero, Córdoba, Colombia. Bogotá: UCMC; 2018.Muñoz A, Mestanza O, Isaza J, Figueroa I, Vanegas J. Influence of salinity on the degradation of xenobiotic compounds in rhizospheric mangrove soil. Environmental Pollution [Internet]. 2019 [consultado 2019 septiembre 05]; 249: 750-757. Disponible en: https://www.sciencedirect.com/science/article/pii/S0269749118357609Pugh T, Arneth A, Kautz M, Poulter B, Smith B. Important role of forest disturbances in the global biomass turnover and carbon sinks. Nat Geosci [Internet]. 2019 [consultado 2019 septiembre 05]; 12(9): 730-735. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/31478009Jeffrey L, Reithmaier G, Sippo J, Johnston S, Tait D, Harada Y, Maher D. Are methane emissions from mangrove stems a cryptic carbon loss pathway? Insights from a catastrophic forest mortality. New Phytol [Internet]. 2019 [consultado 2019 septiembre 05]; 224(1): 146-154. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/31211874Garcia L, Avila H, Gutierrez R. Land-use and socioeconomic changes related to armed conflicts: A Colombian regional case study. Environmental Science & Policy [Internet]. 2019 [consultado 2019 septiembre 26]; 7: 116-124. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S1462901118314114Cabral L, Fontes M, Tarciso S, Vieira G, Júnior L , Richter L. The metagenomic landscape of xenobiotics biodegradation in mangrove sediments. Ecotoxicology and Environmental Safety [Internet]. 2019 [consultado 2019 septiembre 26]; 179: 232-240. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0147651319304774Casas Velásquez N.A, Hurtado Pulido L.V. Estudio metagenómico de la diversidad eucariota del ecosistema del manglar de la bahía de Cispatá, San Antero, Córdoba. Bogotá: UCMC; 2019.Clüsener M, Cárdenas M. The Importance of Mangrove Ecosystems for Nature Protection and Food Productivity: Actions of UNESCO’s Man and the Biosphere Programme. Halophytes for Food Security in Dry Lands [Internet]. 2016 [consultado 2019 octubre 18]; 125-140. Disponible en: https://www.sciencedirect.com/science/article/pii/B978012801854500008XSpalding M, Blasco F, Field C. World Mangrove Atlas. The International Society for Mangrove Ecosystems. Okinawa, Japan: ISME; 1997.Spalding M, Kainuma M, Collins N. World Atlas of Mangroves. Earthscan. USA; 2010.Rodriguez J, Sierra P, Gómez M, Licero L. Mangrove Ecosystems (Colombia). The Wetland Book [Internet]. 2016 [consultado 2019 octubre 18]; 1–10. Disponible en: https://www.researchgate.net/publication/311317761_Mangroves_of_Colombi aÁlvarez León R, Álvarez-Puerto J.R. Legislación colombiana relacionada con los ecosistemas de manglar. Arquivos de Ciências do Mar. [Internet]. 2016 [consultado 2020 abril 18]; 49(2): 115-131. Disponible en: https://www.researchgate.net/publication/327150279_LEGISLACION_COLO MBIANA_RELACIONADA_CON_LOS_ECOSISTEMAS_DE_MANGLARLiu M, Huang H, Bao S, Tong Y. Microbial community structure of soils in Bamenwan mangrove wetland. Scientific Reports [Internet]. 2019 [consultado 2020 junio 29]; 9. Disponible en: https://www.nature.com/articles/s41598-019- 44788-xHolguin G, Vazquez P, Bashan Y. The role of sediment microorganisms in the productivity, conservation, and rehabilitation of mangrove ecosystems: an overview. Biol Fertil Soils [Internet]. 2001 [consultado 2020 marzo 27]; 33: 265–278. Disponible en: http://www.bashanfoundation.org/gmaweb/pdfs/therole.pdfSahoo K, Dhal N. Potential microbial diversity in mangrove ecosystems: A review. IJMS [Internet]. 2009 [consultado 2020 marzo 27]; 38(2): 249-256. Disponible en: http://nopr.niscair.res.in/bitstream/123456789/4675/1/IJMS%2038%282%29% 20249-256.pdfRivera M. Gómez L. Guillermo J. Efecto de ácidos húmicos sobre el crecimiento y la composición bioquímica de Arthrospira platensis. Revista colombiana de biotecnología [Internet]. 2017 [consultado 2020 abril 17]; 10(1): 71-81. Disponible en: http://www.scielo.org.co/pdf/biote/v19n1/0123- 3475-biote-19-01-00071.pdfDuarte C, Alonso S, Benito G, Dachs J, Montes C, Pardo M, Aida F. Cambio global: impacto de la actividad humana sobre el sistema Tierra. Consejo superior de investigaciones científicas. Madrid, España: Cyan, Proyectos y Producciones Editoriales, S.A; 2006.Cerón Rincón L.A, Aristizábal Gutiérrez F.A. Dinámica del ciclo del nitrógeno y fósforo en suelos. IBUN [Internet]. 2012 [consultado 2020 abril 17]; 14(1): 285-295. Disponible en: http://www.scielo.org.co/pdf/biote/v14n1/v14n1a26.pdfShcherbakova V, Rivkina E, Pecheritsyna S, Laurinavichius K, Suzina N, Gilichinsky D. Methanobacterium arcticum sp. nov., a methanogenic archaeon from Holocene Arctic permafrost. International journal of systematic and evolutionary microbiology [Internet]. 2011 [consultado 2020 julio 17]; 61(1): 144–147. Disponible en: https://doi.org/10.1099/ijs.0.021311-0Guyott J, Brauman A. Methane Production from Formate by Syntrophic Association of Methanobacterium bryantii and Desulfovibrio vulgaris JJ. Applied and environmental microbiology [Internet]. 1986 [consultado 2020 julio 17]; 52(6): 1436-1437. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC239251/Weng Y, Chen S, Lai M, Wu S, Lin S, Yang T, et al. Methanoculleus taiwanensis sp. nov., a methanogen isolated from deep marine sediment at the deformation front area near Taiwan. International journal of systematic and evolutionary microbiology [Internet]. 2015 [consultado 2020 julio 17]; 65(3): 1044–1049. Disponible en: https://doi.org/10.1099/ijs.0.000062KEGG. Methanosaeta harundinacea [Internet]. Japón. [consultado 2020 julio 17] Disponible en: https://www.genome.jp/kegg- bin/show_organism?menu_type=genome_info&org=mhiMochimaru H, Tamaki H, Hanada S, Imachi H, Nakamura K, Sakata S, Kamagata Y. Methanolobus profundi sp. nov., a methylotrophic methanogen isolated from deep subsurface sediments in a natural gas field. International journal of systematic and evolutionary microbiology [Internet]. 2009 .[consultado 2020 julio 17]; 59(4): 714–718. Disponible en: https://doi.org/10.1099/ijs.0.001677-0KEGG. Methanosarcina horonobensis [Internet]. Japón. [consultado 2020 julio 17] Disponible en: https://www.genome.jp/dbget-bin/www_bget?gn:T03933KEGG. Methanosarcina siciliae [Internet]. Japón. [consultado 2020 julio 17] Disponible en: https://www.genome.jp/kegg-bin/show_organism?org=mszKazda J, Müller H, Stackebrandt E, Daffe M, Müller K, Pitulle C. Mycobacterium madagascariense sp. nov. International journal of systematic bacteriology [Internet]. 1992 [consultado 2020 julio 17]; 42(4): 524-528. Disponible en: https://doi.org/10.1099/00207713-42-4-524Tsukamura M, Yano I, Imaeda T. Mycobacterium moriokaense sp. nov., a Rapidly Growing, Nonphotochromogenic Mycobacterium. International journal of systematic bacteriology [Internet]. 1986 [consultado 2020 julio 17]; 36(2): 333-338. Disponible en: https://doi.org/10.1099/00207713-36-2-333KEGG. Rhodococcus erythropolis [Internet]. Japón. [consultado 2020 julio 17] Disponible en: https://www.genome.jp/dbget-bin/www_bget?rer:RER_14730Proteomes - Rhodococcus erythropolis (strain PR4 / NBRC 100887) [Internet]. UniProt Consortium; 2002 - 2020c [consultado 2020 julio 17] Disponible en: https://www.uniprot.org/proteomes/UP000002204Pucci O, Acuña A, Pucci G. Biodegradación de residuos de estaciones de servicio y lavaderos industriales por la cepa Rhodococcus erythropolis ohp-al- gp. Acta biológica colombiana [Internet]. 2013 [consultado 2020 julio 17]; 18(2): 251-258. Disponible en: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120- 548X2013000200002KEGG. Rhodococcus qingshengii [Internet]. Japón. [consultado 2020 julio 17] Disponible en: https://www.genome.jp/kegg- bin/show_organism?menu_type=pathway_maps&org=rqiXu J, He J, Wang Z, Wang K, Li W, Tang S, Li S. Rhodococcus qingshengii sp. nov., a carbendazim-degrading bacterium. International journal of systematic and evolutionary microbiology [Internet]. 2007 [consultado 2020 julio 17]; 57(12): 2754–2757. Disponible en: https://doi.org/10.1099/ijs.0.65095-0Hamada M, Tamura T. Yamamura H, Suzuki K, Hayakawa M. Lysinimicrobium mangrovi gen. nov., sp. nov., an actinobacterium isolated from the rhizosphere of a mangrove. International journal of systematic and evolutionary microbiology [Internet]. 2012 [consultado 2020 julio 19]; 62(8): 1731-1735 Disponible en: https://doi.org/10.1099/ijs.0.035493-0KEGG. Pontimonas salivibrio [Internet]. Japón. [consultado 2020 julio 19] Disponible en: https://www.genome.jp/dbget-bin/www_bget?gn:T05334Cho B, Hardies S, Jang H, Hwang C. Complete genome of streamlined marine actinobacterium Pontimonas salivibrio strain CL-TW6T adapted to coastal planktonic lifestyle. BCM genomics [Internet]. 2018 [consultado 2020 julio 19]; 19: 625-645. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6106888/Tseng M, Liao H, Chiang W, Yuan G. Isoptericola chiayiensis sp. nov., isolated from mangrove soil. International journal of systematic and evolutionary microbiology [Internet]. 2011 [consultado 2020 julio 19]; 61(7): 1667–1670. Disponible en: https://doi.org/10.1099/ijs.0.022491-0Dastager S, Lee J, Ju Y, Park D, Kim C. Nocardioides islandiensis sp. nov., isolated from soil in Bigeum Island Korea. Antonie van Leeuwenhoek [Internet]. 2008 [consultado 2020 julio 19]; 93: 401–406. Disponible en: https://www.researchgate.net/publication/5776321_Nocardioides_islandiensis _sp_nov_isolated_from_soil_in_Bigeum_Island_KoreaYang S, Seo H, Woo J, Oh H, Jang H, Lee J, et al. Carboxylicivirga gen. nov. in the family Marinilabiliaceae with two novel species, Carboxylicivirga mesophila sp. nov. and Carboxylicivirga taeanensis sp. nov., and reclassification of Cytophaga fermentans as Saccharicrinis fermentans gen. nov., comb. nov. International journal of systematic and evolutionary microbiology [Internet]. 2014 [consultado 2020 julio 19]; 64(4): 1351–1358. Disponible en: https://doi.org/10.1099/ijs.0.053462-0Lino T, Sakamoto M, Ohkuma M. Prolixibacter denitrificans sp. nov., an iron- corroding, facultatively aerobic, nitrate-reducing bacterium isolated from crude oil, and emended descriptions of the genus Prolixibacter and Prolixibacter bellariivorans. International journal of systematic and evolutionary microbiology [Internet]. 2015 [consultado 2020 julio 19]; 65(9): 2865–2869. Disponible en: https://doi.org/10.1099/ijs.0.000343Holmes D, Nevin K, Woodard T, Peacock A, Lovley D. Prolixibacter bellariivorans gen. nov., sp. nov., a sugar-fermenting, psychrotolerant anaerobe of the phylum Bacteroidetes, isolated from a marine-sediment fuel cell. International journal of systematic and evolutionary microbiology [Internet]. 2007 [consultado 2020 julio 20]; 57(4): 701–707. Disponible en: https://doi.org/10.1099/ijs.0.64296-0Nedashkovskaya O, Vancanneyt M, Trappen S, Vandemeulebroecke K, Lysenko A, Rohde M, et al. Description of Algoriphagus aquimarinus sp. nov., Algoriphagus chordae sp. nov. and Algoriphagus winogradskyi sp. nov., from sea water and algae, transfer of Hongiella halophila Yi and Chun 2004 to the genus Algoriphagus as Algoriphagus halophilus comb. nov. and emended descriptions of the genera Algoriphagus Bowman et al. 2003 and Hongiella Yi and Chun 2004. International journal of systematic and evolutionary microbiology [Internet]. 2004 [consultado 2020 julio 20]; 54(5): 1757–1764. Disponible en: https://doi.org/10.1099/ijs.0.02915-0Yang C, Li Y, Guo Q, Lai Q, Zheng T, Tian Y. Algoriphagus zhangzhouensis sp. nov., isolated from mangrove sediment. International journal of systematic and evolutionary microbiology [Internet]. 2013 [consultado 2020 julio 20]; 63(5): 1621–1626. Disponible en: https://doi.org/10.1099/ijs.0.044271-0KEGG. Cyclobacterium marinum [Internet]. Japón. [consultado 2020 julio 20] Disponible en: https://www.kegg.jp/kegg-bin/show_organism?org=cmrWang H, Li J, Zheng T, Hill R, Hu X. Imperialibacter roseus gen. nov., sp. nov., a novel bacterium of the family Flammeovirgaceae isolated from Permian groundwater. International journal of systematic and evolutionary microbiology [Internet]. 2013 [consultado 2020 julio 20]; 63(11): 4136–4140. Disponible en: https://doi.org/10.1099/ijs.0.052662-0Chen L, Xu H, Fu S, Fan H, Zhou Y, Liu Z. Lishizhenia tianjinensis sp. nov., isolated from coastal seawater. International journal of systematic and evolutionary microbiology [Internet]. 2009 [consultado 2020 julio 20]; 59(10): 2400–2403. Disponible en: https://doi.org/10.1099/ijs.0.008524-0KEGG. Owenweeksia hongkongensis [Internet]. Japón. [consultado 2020 julio 20] Disponible en: https://www.kegg.jp/kegg- bin/show_organism?menu_type=genome_info&org=ohoHyeon S, Su M, Mi H, Lee K, Park W, Ok C. Aestuariibaculum suncheonense gen. nov., sp. nov., a marine bacterium of the family Flavobacteriaceae isolated from a tidal flat and emended descriptions of the genera Gaetbulibacter and Tamlana. International journal of systematic and evolutionary microbiology [Internet]. 2013 [consultado 2020 julio 20]; 63(1): 332–338. Disponible en: https://doi.org/10.1099/ijs.0.037846-0Nedashkovskaya O, Vancanneyt M, Cleenwerck I, Snauwaert C, Bum S, Lysenko A, et al. Arenibacter palladensis sp. nov., a novel marine bacterium isolated from the green alga Ulva fenestrata, and emended description of the genus Arenibacter. International journal of systematic and evolutionary microbiology [Internet]. 2006 [consultado 2020 julio 20]; 56(1): 155–160. Disponible en: https://doi.org/10.1099/ijs.0.63893-0Nedashkovskaya O, Suzuki M, Vysotskii M, Mikhailov V. Arenibacter troitsensis sp. nov., isolated from marine bottom sediment. International journal of systematic and evolutionary microbiology [Internet]. 2003 [consultado 2020 julio 20]; 53(5): 1287–1290. Disponible en: https://doi.org/10.1099/ijs.0.02384-0Yoon J, Adachi K, Kasai H. Citreitalea marina gen. nov., sp. nov., a novel member of the family Flavobacteriaceae isolated from a marine red alga and emended description of the genus Gangjinia. Antonie van Leeuwenhoek [Internet]. 2014 [consultado 2020 julio 23]; 106(2): 261-269. Disponible en: https://pubmed.ncbi.nlm.nih.gov/24866884/Yi H, Oh H, Lee J, Kim S, Chun J. Flavobacterium antarcticum sp. nov., a novel psychrotolerant bacterium isolated from the Antarctic. International journal of systematic and evolutionary microbiology [Internet]. 2005 [consultado 2020 julio 20]; 55(2): 637–641. Disponible en: https://doi.org/10.1099/ijs.0.63423-0Park S, Choe H, Baik K, Lee K, Seong C. Gaetbulibacter aestuarii sp. nov., isolated from shallow coastal seawater, and emended description of the genus Gaetbulibacter. International journal of systematic and evolutionary microbiology [Internet]. 2012 [consultado 2020 julio 23]; 62(1): 150–154. Disponible en: https://doi.org/10.1099/ijs.0.028944-0Khan S, Nakagawa Y, Harayama S. Sediminibacter furfurosus gen. nov., sp. nov. and Gilvibacter sediminis gen. nov., sp. nov., novel members of the family Flavobacteriaceae. International journal of systematic and evolutionary microbiology [Internet]. 2007 [consultado 2020 julio 23]; 57(2): 265–269. Disponible en: https://doi.org/10.1099/ijs.0.64628-0Hameed A, Shahina M, Lai W, Lin S, Liu Y, Hsu Y, et al. Hanstruepera neustonica gen. nov., sp. nov., a zeaxanthin-producing member of the family Flavobacteriaceae isolated from estuarine water, and emendation of Sediminibacter furfurosus Khan et al. 2007 emend. Kwon et al. 2014, Mangrovimonas yunxiaonensis Li et al. 2013, Antarcticimonas flava Yang et al. 2009 and Hoppeia youngheungensis Kwon et al. 2014. International journal of systematic and evolutionary microbiology [Internet]. 2015 [consultado 2020 julio 23]; 65(2): 336–345. Disponible en: https://doi.org/10.1099/ijs.0.066852-0Yoon J, Kang S, Jung Y, Oh T. Aestuariicola saemankumensis gen. nov., sp. nov., a member of the family Flavobacteriaceae, isolated from tidal flat 72 sediment. International journal of systematic and evolutionary microbiology [Internet]. 2008 [consultado 2020 julio 23]; 58(9): 2126–2131. Disponible en: https://doi.org/10.1099/ijs.0.65717-0Kim Y, Park S, Nam B,Jung Y, Kim D, Bae K, et al. Description of Lutimonas halocynthiae sp. nov., isolated from a golden sea squirt (Halocynthia aurantium), reclassification of Aestuariicola saemankumensis as Lutimonas saemankumensis comb. nov. and emended description of the genus Lutimonas. International journal of systematic and evolutionary microbiology [Internet]. 2014 [consultado 2020 julio 23]; 64(6): 1984–1990. Disponible en: https://doi.org/10.1099/ijs.0.059923-0Hu J, Yang Q, Ren Y, Zhang W, Zheng G, Sun C, et al. Maribacter thermophilus sp. nov., isolated from an algal bloom in an intertidal zone, and emended description of the genus Maribacter. International journal of systematic and evolutionary microbiology [Internet]. 2015 [consultado 2020 julio 23]; 65(1): 36-41. Disponible en: https://doi.org/10.1099/ijs.0.064774-0Lee S, Park S, Oh T, Yoon J. Muricauda beolgyonensis sp. nov., isolated from a tidal flat. International journal of systematic and evolutionary microbiology [Internet]. 2012 [consultado 2020 julio 23]; 62(5): 1134-1139. Disponible en: https://doi.org/10.1099/ijs.0.032581-0Kwon K, Lee S, Park J, Ahn T, Lee H. Psychroserpens mesophilus sp. nov., a mesophilic marine bacterium belonging to the family Flavobacteriaceae isolated from a young biofilm. International journal of systematic and evolutionary microbiology [Internet]. 2006 [consultado 2020 julio 23]; 56(5): 1055–1058. Disponible en: https://doi.org/10.1099/ijs.0.64171-0Hameed A, Shahina M, Lin S, Lai W, Liu Y, Hsu Y, et al. Robertkochia marina gen. nov., sp. nov., of the family Flavobacteriaceae, isolated from surface seawater, and emended descriptions of the genera Joostella and Galbibacter. International journal of systematic and evolutionary microbiology [Internet]. 2014 [consultado 2020 julio 26]; 64(2): 533–539. Disponible en: https://doi.org/10.1099/ijs.0.054627-0Nedashkovskaya O, Kim S, Lysenko A, Mikhailov V, Bae K, Kim I. Salegentibacter mishustinae sp. nov., isolated from the sea urchin Strongylocentrotus intermedius. International journal of systematic and evolutionary microbiology [Internet]. 2005 [consultado 2020 julio 26]; 55(1): 235–238. Disponible en: https://doi.org/10.1099/ijs.0.63297-0Kwon K, Lee H, Jung H, Kang J, Kim S. Yeosuana aromativorans gen. nov., sp. nov., a mesophilic marine bacterium belonging to the family Flavobacteriaceae, isolated from estuarine sediment of the South Sea, Korea. International journal of systematic and evolutionary microbiology [Internet]. 2006 [consultado 2020 julio 26]; 53(4): 727–732. Disponible en: https://doi.org/10.1099/ijs.0.64073-0Chen Z, Lei X, Lai Q, Li Y, Zhang B, Zhang J, et al. Phaeodactylibacter xiamenensis gen. nov., sp. nov., a member of the family Saprospiraceae isolated from the marine alga Phaeodactylum tricornutum. International journal of systematic and evolutionary microbiology [Internet]. 2014 [consultado 2020 julio 26]; 64(10): 3496–3502. Disponible en: https://doi.org/10.1099/ijs.0.063909-0Takeuchi M, Yokota A. Proposals of Sphingobacterium faecium sp. nov., Sphingobacterium piscium sp. nov., Sphingobacterium heparinum comb. nov., Sphingobacterium thalpophilum comb. nov., and two genospecies of the genus Sphingobacterium and synonymy of Flavobacterium yabuuchiae and Sphingobacterium spiritivorum. The Journal of General and Applied Microbiology [Internet]. 1992 [consultado 2020 julio 26]; 38: 465–482. Disponible en: DOI: 10.2323/jgam.38.465KEGG. Chlorobaculum parvum [Internet]. Japón. [consultado 2020 julio 26] Disponible en: https://www.genome.jp/dbget-bin/www_bget?gn:T00725KEGG. Chlorobium limicola [Internet]. Japón. [consultado 2020 julio 26] Disponible en: https://www.genome.jp/dbget-bin/www_bget?gn:T00766KEGG. Chlorobium luteolum [Internet]. Japón. [consultado 2020 julio 26] Disponible en: https://www.genome.jp/dbget-bin/www_bget?gn:T00291KEGG. Prosthecochloris aestuarii [Internet]. Japón. [consultado 2020 julio 26] Disponible en: https://www.genome.jp/dbget-bin/www_bget?gn:T00732Petroutsos D, Katapodis P, Samiotaki M, Panayotou G, Kekos D. Detoxification of 2,4-dichlorophenol by the marine microalga Tetraselmis marina. Phytochemistry [Internet]. 2008 [consultado 2020 julio 26]; 69(3): 707-714. Disponible en: https://doi.org/10.1016/j.phytochem.2007.09.002KEGG. Prochlorococcus marinus [Internet]. Japón. [consultado 2020 julio 26] Disponible en: https://www.genome.jp/kegg- bin/show_organism?menu_type=pathway_maps&org=pmnFujita T, Shida O, Takagi H, Kunugita K, Pankrushina A, Matsuhashi M. Description of Bacillus carboniphilus sp. nov. International journal of systematic bacteriology [Internet]. 1996 [consultado 2020 julio 28]; 46(1): 116- 118. Disponible en: https://doi.org/10.1099/00207713-46-1-116KEGG. Geobacillus thermodenitrificans [Internet]. Japón. [consultado 2020 julio 28] Disponible en: https://www.genome.jp/kegg- bin/show_organism?org=gtnKEGG. Halobacillus mangrovi [Internet]. Japón. [consultado 2020 julio 28] Disponible en: https://www.genome.jp/kegg- bin/show_organism?menu_type=genome_info&org=hmnYoon J, Kang S, Oh T. Reclassification of Marinococcus albus Hao et al. 1985 as Salimicrobium album gen. nov., comb. nov. and Bacillus halophilus Ventosa et al. 1990 as Salimicrobium halophilum comb. nov., and description of Salimicrobium luteum sp. nov. International journal of systematic and evolutionary microbiology [Internet]. 2006 [consultado 2020 julio 31]; 53(4): 727-732. Disponible en: https://doi.org/10.1099/ijs.0.65003-0Talon R, Grimont P, Gasser F, Boeufgras J. Brochothrix campestris sp. nov. International journal of systematic bacteriology [Internet]. 1988 [consultado 2020 julio 31]; 38(1): 99-102. Disponible en: https://doi.org/10.1099/00207713-38-1-99Lee J, Pyun Y, Bae K. Transfer of Bacillus ehimensis and Bacillus chitinolyticus to the genus Paenibacillus with emended descriptions of Paenibacillus ehimensis comb. nov. and Paenibacillus chitinolyticus comb. nov. International journal of systematic and evolutionary microbiology [Internet]. 2004 [consultado 2020 julio 31]; 54(3): 929-933. Disponible en: https://doi.org/10.1099/ijs.0.02765-0Kuroshima K, Sakane T, Takata R, Yokota A. Bacillus ehimensis sp. nov. and Bacillus chitinolyticus sp. nov., New Chitinolytic Members of the Genus Bacillus. International journal of systematic bacteriology [Internet]. 1996 [consultado 2020 julio 31]; 46(1): 76-80. Disponible en: https://doi.org/10.1099/00207713-46-1-76KEGG. Paenibacillus sabinae [Internet]. Japón. [consultado 2020 julio 17] Disponible en: https://www.genome.jp/dbget-bin/www_bget?gn:T03064Pereira S, Albuquerque L, Nobre M, Tiago I, Veríssimo A , Pereira A, et al. Pullulanibacillus uraniitolerans sp. nov., una especie acidófila resistente a U(VI) aislada de un efluente de relaves de molino de uranio ácido y descripción modificada del género Pullulanibacillus. International journal of systematic and evolutionary microbiology [Internet]. 2013 [consultado 2020 julio 31]; 63(1): 158-162. Disponible en: https://doi.org/10.1099/ijs.0.040923-0KEGG. Aerococcus urinaeequi [Internet]. Japón. [consultado 2020 agosto 01] Disponible en: https://www.genome.jp/dbget- bin/www_bget?gn:T04249KEGG. Aerococcus viridans [Internet]. Japón. [consultado 2020 agosto 01] Disponible en: https://www.genome.jp/dbget-bin/www_bget?gn:avsFranzmann P, Höpfl P, Weiss N, Tindall B. Psychrotrophic, lactic acid- producing bacteria from anoxic waters in Ace Lake, Antarctica; Carnobacterium funditum sp. nov. and Carnobacterium alterfunditum sp. nov. Archives of Microbiology [Internet]. 1991 [consultado 2020 agosto 01]; 156(4): 255-262. Disponible en: https://pubmed.ncbi.nlm.nih.gov/1793333/KEGG. Carnobacterium inhibens [Internet]. Japón. [consultado 2020 agosto 01] Disponible en: https://www.genome.jp/kegg- bin/show_organism?menu_type=genome_info&org=cawKim M, Roh S, Nam Y, Yoon J, Bae J. Carnobacterium jeotgali sp. nov., isolated from a Korean traditional fermented food. International journal of systematic and evolutionary microbiology [Internet]. 2009 [consultado 2020 agosto 01]; 59(12): 3168-3171. Disponible en: https://doi.org/10.1099/ijs.0.010116-0Ravot G, Magot M, Fardeau M, Patel B, Thomas P, García J, et al. Fusibacter paucivorans gen. nov., sp. nov., an anaerobic, thiosulfate-reducing bacterium from an oil-producing well. International Journal of Systematic Bacteriology [Internet]. 1999 [consultado 2020 agosto 01]; 49(3): 1141-1147. Disponible en: https://doi.org/10.1099/00207713-49-3-1141Hauschild A, Holdeman L. Clostridium celatum sp.nov., Isolated from Normal Human Feces. International Journal of Systematic Bacteriology [Internet]. 1974 [consultado 2020 agosto 01]; 24(4): 478-481. Disponible en: https://doi.org/10.1099/00207713-24-4-478KEGG. Clostridium perfringens [Internet]. Japón. [consultado 2020 agosto 01] Disponible en: https://www.genome.jp/kegg- bin/show_organism?org=cpeAbraham W, Estrela A, Nikitin D, Smit J, Vancanneyt M. Brevundimonas halotolerans sp. nov., Brevundimonas poindexterae sp. nov. and Brevundimonas staleyi sp. nov., prosthecate bacteria from aquatic habitats. International journal of systematic and evolutionary microbiology [Internet]. 2010 [consultado 2020 agosto 01]; 60(8): 1837-1843. Disponible en: https://doi.org/10.1099/ijs.0.016832-0Fritz I, Strömpl C, Nikitin D, Lysenko A, Abraham W. Brevundimonas mediterranea sp. nov., a non-stalked species from the Mediterranean Sea. International journal of systematic and evolutionary microbiology [Internet]. 2005 [consultado 2020 agosto 01]; 55(1): 479-486. Disponible en: https://doi.org/10.1099/ijs.0.02852-0Weiner R, Melick M, O'Neill K, Quintero E. Hyphomonas adhaerens sp. nov., Hyphomonas johnsonii sp. nov. and Hyphomonas rosenbergii sp. nov., marine budding and prosthecate bacteria. International journal of systematic and evolutionary microbiology [Internet]. 2000 [consultado 2020 agosto 01]; 50(2): 459-469. Disponible en: https://doi.org/10.1099/00207713-50-2-459Math R, Jeong S, Jin H, Park M, Kim J, Jeon C. Kordiimonas aestuarii sp. nov., a marine bacterium isolated from a tidal flat. International journal of systematic and evolutionary microbiology [Internet]. 2012 [consultado 2020 agosto 01]; 62: 3049-3054. Disponible en: https://doi.org/10.1099/ijs.0.038943-0Denner E, Smith G, Busse H, Schumann P, Narzt T, Polson S, et al. Aurantimonas coralicida gen. nov., sp. nov., the causative agent of white plague type II on Caribbean scleractinian corals. International journal of systematic and evolutionary microbiology [Internet]. 2003 [consultado 2020 agosto 10]; 53(4): 1115-1122. Disponible en: https://doi.org/10.1099/ijs.0.02359-0Anderson C, Dick G, Chu M, Cho J, Davis R, Bräuer S, et al. Aurantimonas manganoxydans, sp. nov. and Aurantimonas litoralis, sp. nov.: Mn(II) oxidizing representatives of a globally distributed clade of alpha- Proteobacteria from the order Rhizobiales. Geomicrobiology Journal [Internet]. 2009 [consultado 2020 agosto 10]; 26 (3): 189-198. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2746641/KEGG. Methylovirgula ligni [Internet]. Japón. [consultado 2020 agosto 10] Disponible en: https://www.kegg.jp/kegg-bin/show_organism?org=mlgVorob'ev A, Boer W, Folman L, Bodelier P, Doronina N, Suzina N, et al. Methylovirgula ligni gen. nov., sp. nov., an obligately acidophilic, facultatively methylotrophic bacterium with a highly divergent mxaF gene. International journal of systematic and evolutionary microbiology [Internet]. 2009 [consultado 2020 agosto 10]; 59 (10): 2538-2545. Disponible en: https://doi.org/10.1099/ijs.0.010074-0Imhoff J. Transfer of Rhodopseudomonas acidophila to the new genus Rhodoblastus as Rhodoblastus acidophilus gen. nov., comb. nov. International journal of systematic and evolutionary microbiology [Internet]. 2001 [consultado 2020 agosto 10]; 51 (5): 1863-1866. Disponible en: https://doi.org/10.1099/00207713-51-5-1863Bambauer A, Rainey F, Stackebrandt E, Winter J. Characterization of Aquamicrobium defluvii gen. nov. sp. nov., a thiophene-2-carboxylate- metabolizing bacterium from activated sludge. Archives of Microbiology [Internet]. 1998 [consultado 2020 agosto 10]; 169 (4): 293-302. Disponible en: https://pubmed.ncbi.nlm.nih.gov/9531630/Wang X, Jin D, Zhou L, Zhang Z. Draft Genome Sequence of Aquamicrobium defluvii Strain W13Z1, a Psychrotolerant Halotolerant Hydrocarbon-Degrading Bacterium. Genome Announcements [Internet]. 2015 [consultado 2020 agosto 10]; 3(4). Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4551884/Jung M, Shin K, Kim S, Kim S, Park S, Kim J, et al. Hoeflea halophila sp. nov., a novel bacterium isolated from marine sediment of the East Sea, Korea. Antonie van Leeuwenhoek [Internet]. 2013 [consultado 2020 agosto 23]; 103(5): 971-978. Disponible en: https://pubmed.ncbi.nlm.nih.gov/23314912/Martínez P, Ramírez M, Flores J, Rivas R, Igual J, Mateos P, et al. Revision of the taxonomic status of type strains of Mesorhizobium loti and reclassification of strain USDA 3471T as the type strain of Mesorhizobium erdmanii sp. nov. and ATCC 33669T as the type strain of Mesorhizobium jarvisii sp. nov. International journal of systematic and evolutionary microbiology [Internet]. 2015 [consultado 2020 agosto 10]; 65(6): 1703-1708. Disponible en: https://doi.org/10.1099/ijs.0.000164KEGG. Mesorhizobium loti [Internet]. Japón. [consultado 2020 agosto 11] Disponible en: https://www.genome.jp/dbget-bin/www_bget?gn:T04711KEGG. Mesorhizobium ciceri [Internet]. Japón. [consultado 2020 agosto 11] Disponible en: https://www.genome.jp/dbget-bin/get_linkdb?- t+pathway+gn:T04711Yoon J, Hedlund, B. P. Pelagicoccus. Bergey’s Manual of Systematics of Archaea and Bacteria [Internet]. 2015 [consultado 2020 agosto 17]; 1-7. Disponible en: doi:10.1002/9781118960608.gbm01278Göker M, Antunes A. Haloplasma. Bergey’s Manual of Systematics of Archaea and Bacteria [Internet]. 2019 [consultado 2020 agosto 17]; 1-8. Disponible en: https://doi.org/10.1002/9781118960608.gbm01422HARWOOD C. S, CANALE-PAROLA E. Spirochaeta isovalerica sp. nov., a Marine Anaerobe That Forms Branched-Chain Fatty Acids as Fermentation Products. International Journal of Systematic Bacteriology [Internet]. 1983 [consultado 2020 agosto 17]; 33(3): 573-579. Disponible en: https://doi.org/10.1099/00207713-33-3-573Jung H-M, Ten L. N, Kim K-H, An D. S, Im W-T, Lee S-T. Dyella ginsengisoli sp. nov., isolated from soil of a ginseng field in South Korea. International journal of systematic and evolutionary microbiology [Internet]. 2009 [consultado 2020 agosto 17]; 59(3): 460-465. Disponible en: DOI:10.1099/ijs.0.004838-0Weon H-Y, Anandham R, Kim B-Y, Hong S-B, Jeon Y-A, Kwon S-W. Dyella soli sp. nov. and Dyella terrae sp. nov., isolated from soil. International journal of systematic and evolutionary microbiology [Internet]. 2009 [consultado 2020 agosto 17]; 59(7): 1685-1690. Disponible en: DOI:10.1099/ijs.0.004838-0Anandham R, Kwon S-W, Gandhi P, Kim S-J, Weon H-Y, Kim Y-S, Sa T-M, Kim Y-K, Jee H-J. Dyella thiooxydans sp. nov., a facultatively chemolithotrophic, thiosulfate-oxidizing bacterium isolated from rhizosphere soil of sunflower (Helianthus annuus L.). International journal of systematic and evolutionary microbiology [Internet]. 2011 [consultado 2020 agosto 17]; 61(2): 392-398. Disponible en: DOI:10.1099/ijs.0.022012-0KEGG Dyella thiooxydans [Internet]. Japón. [consultado 2020 agosto 17] Disponible en: https://www.genome.jp/kegg- bin/show_organism?menu_type=pathway_maps&org=dtxSawabe T, Ogura Y, Matsumura Y, Feng G, Amin R, Mino S,et al. Updating the Vibrio clades defined by multilocus sequence phylogeny: proposal of eight new clades, and the description of Vibrio tritonius sp. nov. Frontiers in Microbiology [Internet]. 2013 [consultado 2020 agosto 23]; 4. Disponible en: DOI:10.3389/fmicb.2013.00414Gomez-Gil B, Fajer-Avila E, Pascual J, Macian M. C, Pujalte M. J, Garay E, Roque A. Vibrio sinaloensis sp. nov., isolated from the spotted rose snapper, Lutjanus guttatus Steindachner, 1869. International journal of systematic and evolutionary microbiology [Internet]. 2008 [consultado 2020 agosto 23]; 58(7): 1621-1624. Disponible en: https://doi.org/10.1099/ijs.0.65719-0Guerinot M. L, West P. A, Lee J. V, Colwell R. Vibrio diazotrophicus sp. nov., a Marine Nitrogen-Fixing Bacterium. International Journal of Systematic Bacteriology [Internet]. 1982 [consultado 2020 agosto 23]; 32(3): 350-357. Disponible en: https://doi.org/10.1099/00207713-32-3-350Chang H.W, Roh SW, Kim K.H, Nam Y.D, Jeon CO, Oh H-M, Bae J.W. Vibrio areninigrae sp. nov., a marine bacterium isolated from black sand. International journal of systematic and evolutionary microbiology [Internet]. 2008 [consultado 2020 agosto 23]; 58 (8): 1903-1906. Disponible en: https://doi.org/10.1099/ijs.0.65726-0Antony C. P, Doronina N. V, Boden R, Trotsenko Y. A, Shouche Y. S, Murrell J. C. Methylophaga lonarensis sp. nov., a moderately haloalkaliphilic methylotroph isolated from the soda lake sediments of a meteorite impact crater. International journal of systematic and evolutionary microbiology [internet]. 2011 [consultado 2020 agosto 23]; 62(7): 1613-1618. Disponible en: DOI: 10.1099/ijs.0.035089-0Nishihara H, Igarashi Y, Kodama T. Hydrogenovibrio marinus gen. nov., sp. nov., a Marine Obligately Chemolithoautotrophic Hydrogen-Oxidizing Bacterium. International Journal of Systematic Bacteriology [Internet]. 1991 [consultado 2020 agosto 23]; 41(1): 130-133. Disponible en: https://doi.org/10.1099/00207713-41-1-130KEGG Hydrogenovibrio marinus [Internet]. Japón. [consultado 2020 agosto 23] Disponible en: https://www.kegg.jp/kegg- bin/show_organism?org=hmarNelson K. E, Weinel C, Paulsen I. T, Dodson R. J, Hilbert H, Martins dos Santos P, et al. Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environmental Microbiology [Internet]. 2002 [consultado 2020 agosto 28]; 4(12): 799-808. Disponible en: https://doi.org/10.1046/j.1462-2920.2002.00366.xKEGG Pseudomonas putida [Internet]. Japón. [consultado 2020 agosto 28] Disponible en: https://www.genome.jp/kegg- bin/show_organism?menu_type=pathway_maps&org=ppuWEIMBERG R. Pentose Oxidation by Pseudomonas fragi. The journal of biological chemistry [Internet]. 1961 [consultado 2020 agosto 28]; 236(3) 629-635. Disponible en: https://pubmed.ncbi.nlm.nih.gov/13783864/KEGG Pseudomonas fragi [Internet]. Japón. [consultado 2020 agosto 28] Disponible en: https://www.genome.jp/kegg- bin/show_organism?menu_type=pathway_maps&org=pfzCarrion O, Minana-Galbis D, Montes M. J, Mercade E. Pseudomonas deceptionensis sp. nov., a psychrotolerant bacterium from the Antarctic. International journal of systematic and evolutionary microbiology [Internet]. 2010 [consultado 2020 agosto 28]; 61(10): 2401-2405. Disponible en: DOI:10.1099/ijs.0.024919-0Ma Y, Rajkumar M, Moreno A, Zhang C, Freitas H. Serpentine endophytic bacterium Pseudomonas azotoformans ASS1 accelerates phytoremediation of soil metals under drought stress. Chemospher [Internet]. 2017 [consultado 2020 agosto 28]; 185: 75-85. Disponible en: https://doi.org/10.1016/j.chemosphere.2017.06.135KEGG Pseudomonas azotoformans [Internet]. Japón. [consultado 2020 agosto 28] Disponible en: https://www.genome.jp/kegg- bin/show_organism?org=pazoYumoto I, Hirota K, Sogabe Y, Nodasaka Y, Yokota Y, Hoshino T. Psychrobacter okhotskensis sp. nov., a lipase-producing facultative psychrophile isolated from the coast of the Okhotsk Sea. International journal of systematic and evolutionary microbiology [Internet]. 2003 [consultado 2020 agosto 28]; 53(6): 1985-1989. Disponible en: https://doi.org/10.1099/ijs.0.02686-0Yumoto I, Hirota K, Kimoto H, Nodasaka Y, Matsuyama H, Yoshimune K. Psychrobacter piscatorii sp. nov., a psychrotolerant bacterium exhibiting high catalase activity isolated from an oxidative environment. International journal of systematic and evolutionary microbiology [Internet]. 2009 [consultado 2020 agosto 29]; 60(1): 205-208. Disponible en: https://doi.org/10.1099/ijs.0.010959-0Romanenko L, Lysenko A.M, Rohde M, Mikhailov V.V, Stackebrandt E. Psychrobacter maritimus sp. nov. and Psychrobacter arenosus sp. nov., isolated from coastal sea ice and sediments of the Sea of Japan. International journal of systematic and evolutionary microbiology [Internet]. 2004 [consultado 2020 agosto 29]; 54(5): 1741-1745. Disponible en: https://doi.org/10.1099/ijs.0.63096-0Jung S-Y, Lee M-H, Oh T-K, Park Y-H, Yoon J-H. Psychrobacter cibarius sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. International journal of systematic and evolutionary microbiology [Internet]. 2005 [consultado 2020 agosto 29]; 55(2): 577-582. Disponible en: https://doi.org/10.1099/ijs.0.63398-0Wirth S. E, Ayala-del-Rio H. L, Cole J. A., Kohlerschmidt, D. J., Musser, K. A., Sepulveda-Torres, Thompson L.M, Wolfgang W. J. Psychrobacter sanguinis sp. nov., recovered from four clinical specimens over a 4-year period. International journal of systematic and evolutionary microbiology [Internet]. 2011 [consultado 2020 agosto 29]; 62(1): 49-54. Disponible en: https://doi.org/10.1099/ijs.0.029058-0Shivaji S, Reddy G, Suresh K, Gupta P, Chintalapati S, Schumann P, Stackebrandt E, Matsumoto G.I. Psychrobacter vallis sp. nov. and Psychrobacter aquaticus sp. nov., from Antarctica. International journal of systematic and evolutionary microbiology [Internet]. 2005 [consultado 2020 agosto 29]; 55(2): 757–762. Disponible en: DOI:10.1099/ijs.0.03030-0Yoon J-H, Yeo S-H, Oh T-K, Park Y-H. Psychrobacter alimentarius sp. nov., isolated from squid jeotgal, a traditional Korean fermented seafood. International journal of systematic and evolutionary microbiology [Internet]. 2005 [consultado 2020 agosto 29]; 55(1): 171-176. Disponible en: DOI:10.1099/ijs.0.63140-0KEGG Psychrobacter alimentarius [Internet]. Japón. [consultado 2020 agosto 29] Disponible en: https://www.genome.jp/kegg- bin/show_organism?menu_type=pathway_maps&org=paliLi W, Zhang D, Huang X, Qin W. Acinetobacter harbinensis sp. nov., isolated from river water. International journal of systematic and evolutionary microbiology [Internet]. 2014 [consultado 2020 agosto 29]; 64(5): 1507-1513. Disponible en: DOI: 10.1099/ijs.0.055251-0KEGG Acinetobacter guillouiae [Internet]. Japón. [consultado 2020 agosto 03] Disponible en: https://www.genome.jp/kegg- bin/show_organism?menu_type=pathway_maps&org=aguChoi A, Cho J-C. Thalassolituus marinus sp. nov., a hydrocarbon- utilizing marine bacterium. International journal of systematic and evolutionary microbiology [Internet]. 2012 [consultado 2020 agosto 03]; 63(6): 2234-2238. Disponible en: https://doi.org/10.1099/ijs.0.046383-0Romanenko L. A, Schumann P, Rohde M, Mikhailov V.V, Stackebrandt E. Reinekea marinisedimentorum gen. nov., sp. nov., a novel gammaproteobacterium from marine coastal sediments. International journal of systematic and evolutionary microbiology [Internet]. 2004 [consultado 2020 agosto 03]; 54(3): 669-673. Disponible en: https://doi.org/10.1099/ijs.0.02846- 0Lee H-W, Shin, N-R, Lee J, Roh S. W, Whon T. W, Bae J-W. Neptunomonas concharum sp. nov., isolated from a dead ark clam, and emended description of the genus Neptunomonas. International journal of systematic and evolutionary microbiology [Internet]. 2011 [consultado 2020 agosto 03]; 62(11): 2657-2661. Disponible en: DOI: 10.1099/ijs.0.037473-0KEGG Neptunomonas concharum [Internet]. Japón. [consultado 2020 agosto 03] Disponible en: https://www.genome.jp/kegg- bin/show_organism?menu_type=pathway_maps&org=ncuWang Z-J, Xie Z-H, Wang C, Du Z-J, Chen G-J. Motiliproteus sediminis gen. nov., sp. nov., isolated from coastal sediment. Antonie van Leeuwenhoek [Internet]. 2014 [consultado 2020 agosto 03]; 106(4): 615-621. Disponible en: DOI: 10.1007/s10482-014-0232-2Kumari P, Poddar A, Das S. K. Marinomonas fungiae sp. nov., isolated from the coral Fungia echinata from the Andaman Sea. International journal of systematic and evolutionary microbiology [Internet]. 2013 [consultado 2020 agosto 03]; 64(2): 487–494. Disponible en: https://doi.org/10.1099/ijs.0.054809-0Chimetto L. A, Cleenwerck I, Brocchi M, Willems A, De Vos P, Thompson F. L. Marinomonas brasilensis sp. nov., isolated from the coral Mussismilia hispida, and reclassification of Marinomonas basaltis as a later heterotypic synonym of Marinomonas communis. International journal of systematic and evolutionary microbiology [Internet]. 2010 [consultado 2020 agosto 05]; 61(5): 1170-1175. Disponible en: https://doi.org/10.1099/ijs.0.024661-0Gartner A, Wiese J, Imhoff J. F. Amphritea atlantica gen. nov., sp. nov., a gammaproteobacterium from the Logatchev hydrothermal vent field. International journal of systematic and evolutionary microbiology [Internet]. 2008 [consultado 2020 agosto 05]; 58(1): 34-39. Disponible en: https://doi.org/10.1099/ijs.0.65234-0Graevenitz A.V, Bowman J, Notaro C, Ritzler M. Human Infection with Halomonas venusta following Fish Bite. Journal of Clinical Microbiology [Internet]. 2000 [consultado 2020 agosto 05]; 38(8): 3123-3124. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC87208/KEGG Halomonas venusta [Internet]. Japón. [consultado 2020 agosto 05] Disponible en: https://www.genome.jp/kegg- bin/show_organism?menu_type=pathway_maps&org=hvnRomano I, Lama L, Nicolaus B, Poli A, Gambacorta A, Giordano A. Halomonas alkaliphila sp. nov., a novel halotolerant alkaliphilic bacterium isolated from a salt pool in Campania (Italy). The Journal of General and Applied Microbiology [Internet]. 2006 [consultado 2020 agosto 05]; 52(6): 339-348. Disponible en: DOI: 10.2323/jgam.52.339KEGG Halomonas alkaliphila [Internet]. Japón. [consultado 2020 agosto 05] Disponible en: https://www.genome.jp/kegg- bin/show_organism?menu_type=pathway_maps&org=halkArahal D. R, Castillo A. M, Ludwig W, Schleifer K. H, Ventosa A. Proposal of Cobetia marina gen. nov., comb. nov., within the Family Halomonadaceae, to Include the Species Halomonas marina. Systematic and Applied Microbiology [Internet]. 2002 [consultado 2020 agosto 06]; 25(2): 207- 211.Disponible en: https://doi.org/10.1078/0723-2020-00113KEGG Cobetia marina [Internet]. Japón. [consultado 2020 agosto 06] Disponible en: https://www.genome.jp/kegg- bin/show_organism?menu_type=pathway_maps&org=cmaiArahal D. R, García M. T, Ventosa A, Ludwig W, Schleifer K. H. Transfer of Halomonas canadensis and Halomonas israelensis to the genus Chromohalobacter as Chromohalobacter canadensis comb. nov. and Chromohalobacter israelensis comb. nov. International Journal of Systematic and Evolutionary Microbiology [Internet]. 2001 [consultado 2020 agosto 06]; 51(4): 1443-1448. Disponible en: https://doi.org/10.1099/00207713-51-4-1443Kurahashi M, Yokota A. Endozoicomonas elysicola gen. nov., sp. nov., a γ-proteobacterium isolated from the sea slug Elysia ornata. Systematic and Applied Microbiology [Internet]. 2007 [consultado 2020 agosto 06]; 30(3): 202- 206. Disponible en: DOI: 10.1016/j.syapm.2006.07.003Schmid M. F, Paredes A. M, Khant H. A, Soyer F, Aldrich H. C, Chiu W, Shively J. M. Structure of Halothiobacillus neapolitanus Carboxysomes by Cryo-electron Tomography. Journal of Molecular Biology [Internet]. 2006 [consultado 2020 agosto 06]; 364(3): 526-535. Disponible en: https://doi.org/10.1016/j.jmb.2006.09.024KEGG Halothiobacillus neapolitanus [Internet]. Japón. [consultado 2020 agosto 06] Disponible en: https://www.genome.jp/kegg- bin/show_organism?menu_type=pathway_maps&org=hnaKEGG Serratia liquefaciens [Internet]. Japón. [consultado 2020 agosto 06] Disponible en: https://www.genome.jp/kegg- bin/show_organism?menu_type=pathway_maps&org=slqKampfer P, Arun A. B, Young C-C, Rekha P. D, Martin K, Busse, H-J, Chen W-M. Microbulbifer taiwanensis sp. nov., isolated from coastal soil. International journal of systematic and evolutionary microbiology [Internet]. 2011 [consultado 2020 agosto 06]; 62(10): 2485-2489. Disponible en: https://doi.org/10.1099/ijs.0.034512-0Jeong S. H, Yang S-H, Jin H. M, Kim J. M, Kwon K. K, Jeon C. O. Microbulbifer gwangyangensis sp. nov. and Microbulbifer pacificus sp. nov., isolated from marine environments. International journal of systematic and evolutionary microbiology [Internet]. 2012 [consultado 2020 agosto 06]; 63(4): 1335-1341. Disponible en: https://doi.org/10.1099/ijs.0.042606-0KEGG Pseudoalteromonas translucida [Internet]. Japón. [consultado 2020 agosto 09] Disponible en: https://www.genome.jp/kegg- bin/show_organism?menu_type=pathway_maps&org=ptnKEGG Pseudoalteromonas nigrifaciens [Internet]. Japón. [consultado 2020 agosto 09] Disponible en: https://www.genome.jp/kegg- bin/show_organism?menu_type=pathway_maps&org=pngMatsuyama H, Minami H, Kasahara H, Kato Y, Murayama M, Yumoto I. Pseudoalteromonas arabiensis sp. nov., a marine polysaccharide-producing bacterium. International journal of systematic and evolutionary microbiology [Internet]. 2012 [consultado 2020 agosto 09]; 63(5): 1905-1809. Disponible en: https://doi.org/10.1099/ijs.0.043604-0Brettar I, Christen R, Hofle M. Idiomarina baltica sp. nov., a marine bacterium with a high optimum growth temperature isolated from surface water of the central Baltic Sea. International journal of systematic and evolutionary microbiology [Internet]. 2003 [consultado 2020 agosto 09]; 53(2): 407-413. Disponible en: https://doi.org/10.1099/ijs.0.02399-0Yoon J.H, Kang S.J, Lee S.Y. Salinimonas lutimaris sp. nov., a polysaccharide-degrading bacterium isolated from a tidal flat. Antonie van Leeuwenhoek [Internet]. 2012 [consultado 2020 agosto 09]; 101(4): 803-810. Disponible en: https://link.springer.com/article/10.1007/s10482-011-9695-6Liebgott P.P, Casalot L, Paillard S, Lorquin J, Labat M. Marinobacter vinifirmus sp. nov., a moderately halophilic bacterium isolated from a wine- barrel-decalcification wastewater. International journal of systematic and evolutionary microbiology [Internet]. 2006 [consultado 2020 agosto 09]; 56(11): 2511-2516. Disponible en: https://doi.org/10.1099/ijs.0.64368-0Antunes A, Franca L, Rainey F.A, Huber R, Nobre M.F, Edwards K.J, da Costa M.S. Marinobacter salsuginis sp. nov., isolated from the brine- seawater interface of the Shaban Deep, Red Sea. International journal of systematic and evolutionary microbiology [Internet]. 2007 [consultado 2020 agosto 09]; 57(5): 1035-1040. Disponible en: https://doi.org/10.1099/ijs.0.64862-0Handley K.M, Hery M, Lloyd J.R. Marinobacter santoriniensis sp. nov., an arsenate-respiring and arsenite-oxidizing bacterium isolated from hydrothermal sediment. International journal of systematic and evolutionary microbiology [Internet]. 2009 [consultado 2020 agosto 09]; 59(4): 886-892. Disponible en: https://doi.org/10.1099/ijs.0.003145-0Kim B.Y, Weon H.Y, Yoo S.H, Kim J.S, Kwon S.W, Stackebrandt E, et al. Marinobacter koreensis sp. nov., isolated from sea sand in Korea. International journal of systematic and evolutionary microbiology [Internet]. 2006 [consultado 2020 agosto 09]; 56(11): 2653-2656. Disponible en: https://doi.org/10.1099/ijs.0.64231-0Wang C.Y, Ng C.C, Tzeng W.S, Shyu Y.T. Marinobacter szutsaonensis sp. nov., isolated from a solar saltern. International journal of systematic and evolutionary microbiology [Internet]. 2009 [consultado 2020 agosto 09]; 59(10): 2605-2609. Disponible en: https://doi.org/10.1099/ijs.0.008896-0Gu J, Cai H, Yu S.L, Qu R, Yin B, Guo Y.F, et al. Marinobacter gudaonensis sp. nov., isolated from an oil-polluted saline soil in a Chinese oilfield. International journal of systematic and evolutionary microbiology [Internet]. 2007 [consultado 2020 agosto 09]; 57(2): 250-254. Disponible en: https://doi.org/10.1099/ijs.0.64522-0Yi H, Bae K.S, Chun J. Aestuariibacter salexigens gen. nov., sp. nov. and Aestuariibacter halophilus sp. nov., isolated from tidal flat sediment, and emended description of Alteromonas macleodii. International journal of systematic and evolutionary microbiology [Internet]. 2004 [consultado 2020 agosto 09]; 54(2): 571-576. Disponible en: https://doi.org/10.1099/ijs.0.02798- 0KEGG Arcobacter nitrofigilis [Internet]. Japón. [consultado 2020 agosto 09] Disponible en: https://www.genome.jp/dbget-bin/get_linkdb?- t+pathway+gn:T01235KEGG Arcobacter marinus [Internet]. Japón. [consultado 2020 agosto 09] Disponible en: https://www.kegg.jp/kegg- bin/show_organism?menu_type=pathway_maps&org=amarKEGG Arcobacter halophilus [Internet]. Japón. [consultado 2020 agosto 09] Disponible en: https://www.genome.jp/kegg- bin/show_organism?org=ahsKEGG Arcobacter mytili [Internet]. Japón. [consultado 2020 agosto 09] Disponible en: https://www.kegg.jp/kegg- bin/show_organism?menu_type=pathway_maps&org=amytKEGG Arcobacter molluscorum [Internet]. Japón. [consultado 2020 agosto 09] Disponible en: https://www.genome.jp/kegg- bin/show_organism?menu_type=pathway_maps&org=amolNarasingarao P, Haggblom M.M. Pelobacter seleniigenes sp. nov., a selenate-respiring bacterium. International journal of systematic and evolutionary microbiology [Internet]. 2007 [consultado 2020 agosto 09]; 57(9): 1937-1942. Disponible en: https://doi.org/10.1099/ijs.0.64980-0KEGG Paraburkholderia fungorum [Internet]. Japón. [consultado 2020 agosto 09] Disponible en: https://www.genome.jp/dbget-bin/get_linkdb?- t+pathway+gn:T03799Jung Y.T, Park S, Oh T.K, Yoon J.H. Erythrobacter marinus sp. nov., isolated from seawater. International journal of systematic and evolutionary microbiology [Internet]. 2011 [consultado 2020 agosto 09]; 62(9): 2050-2055. Disponible en: https://doi.org/10.1099/ijs.0.034702-0Wang B, Tan T, Shao Z. Roseovarius pacificus sp. nov., isolated from deep-sea sediment. International journal of systematic and evolutionary microbiology [Internet]. 2009 [consultado 2020 agosto 10]; 59(5): 1116-1121. Disponible en: https://doi.org/10.1099/ijs.0.002477-0Oh Y-S, Lim H.J, Cha I.T, Im W.T, Yoo J.S, Kang U.G, et al. Roseovarius halotolerans sp. nov., isolated from deep seawater. International journal of systematic and evolutionary microbiology [Internet]. 2009 [consultado 2020 agosto 10]; 59(11): 2718-2723. Disponible en: https://doi.org/10.1099/ijs.0.002576-0Rathgeber C, Yurkova N, Stackebrandt E, Schumann P, Beatty J.T, Yurkov V. Roseicyclus mahoneyensis gen. nov., sp. nov., an aerobic phototrophic bacterium isolated from a meromictic lake. International journal of systematic and evolutionary microbiology [Internet]. 2005 [consultado 2020 agosto 10]; 55(4): 1597-1603. Disponible en: https://doi.org/10.1099/ijs.0.63195-0KEGG Rhodovulum sulfidophilum [Internet]. Japón. [consultado 2020 agosto 10] Disponible en: https://www.genome.jp/dbget-bin/get_linkdb?- t+pathway+gn:T04143Srinivas T. N.R, Kumar P.A, Sasikala Ch, Ramana V, Suling J, Imhoff J.F. Rhodovulum marinum sp. nov., a novel phototrophic purple non-sulfur alphaproteobacterium from marine tides of Visakhapatnam, India. International journal of systematic and evolutionary microbiology [Internet]. 2006 [consultado 2020 agosto 10]; 56(7): 1651-1656. Disponible en: https://doi.org/10.1099/ijs.0.64005-0Yoon J.H, Lee S.Y, Kang S.J, Lee C.H, Oh T.K. Pseudoruegeria aquimaris gen. nov., sp. nov., isolated from seawater of the East Sea in Korea. International journal of systematic and evolutionary microbiology [Internet]. 2007 [consultado 2020 agosto 10]; 57(3): 542-547. Disponible en: https://doi.org/10.1099/ijs.0.64594-0Hameed A, Shahina M, Lin S.Y, Nakayan P, Liu Y.C, Lai W.A, et al. Youngimonas vesicularis gen. nov., sp. nov., of the family Rhodobacteraceae, isolated from surface seawater, reclassification of Donghicola xiamenensis Tan et al. 2009 as Pseudodonghicola xiamenensis gen. nov., comb. nov. and emended description of the genus Donghicola Yoon et al. 2007. International journal of systematic and evolutionary microbiology [Internet]. 2014 [consultado 2020 agosto 10]; 64(8): 2729-2737. Disponible en: https://doi.org/10.1099/ijs.0.060962-0Romanenko L.A, Tanaka N, Svetashev V.I, Kalinovskaya N.I. Poseidonocella pacifica gen. nov., sp. nov. and Poseidonocella sedimentorum sp. nov., novel alphaproteobacteria from the shallow sandy sediments of the Sea of Japan. Archives of Microbiology [Internet]. 2011 [consultado 2020 agosto 10]; 194(2): 113-121. Disponible en: https://link.springer.com/article/10.1007/s00203-011-0736-3Sheu S. Y, Hsieh T.Y, Young C.C, Chen W.M. Paracoccus fontiphilus sp. nov., isolated from a freshwater spring. International journal of systematic and evolutionary microbiology [Internet]. 2018 [consultado 2020 agosto 10]; 68(6). Disponible en: https://doi.org/10.1099/ijsem.0.002793Helsel L.O, Hollis D, Steigerwalt A.G, Morey R.E, Jordan J, Aye T, et al. Identification of “Haematobacter,” a New Genus of Aerobic Gram-Negative Rods Isolated from Clinical Specimens, and Reclassification of Rhodobacter massiliensis as “Haematobacter massiliensis comb. nov.” Journal of Clinical Microbiology [Internet]. 2007 [consultado 2020 agosto 10]; 45(4): 1238-1243. Disponible en: 10.1128/JCM.01188-06Li A.H, Zhou Y.G. Frigidibacter albus gen. nov., sp. nov., a novel member of the family Rhodobacteraceae isolated from lake water. International Journal of Systematic and Evolutionary Microbiology [Internet]. 2015 [consultado 2020 agosto 10]; 65(4): 1199-1206. Disponible en: https://doi.org/10.1099/ijs.0.000080Yoon J.H, Kang S.J, Oh T.K. Donghicola eburneus gen. nov., sp. nov., isolated from seawater of the East Sea in Korea.International journal of systematic and evolutionary microbiology [Internet]. 2007 [consultado 2020 agosto 10]; 57(1): 73–76. Disponible en: https://doi.org/10.1099/ijs.0.64577-0Jiang L, Xu H, Shao Z, Long M. Defluviimonas indica sp. nov., a marine bacterium isolated from a deep-sea hydrothermal vent environment. International journal of systematic and evolutionary microbiology [Internet]. 2014 [consultado 2020 agosto 10]; 64(6): 2084-2088. Disponible en: https://doi.org/10.1099/ijs.0.061614-0Park M.S, Chung B.S, Lee H.J, Jin H.M, Lee S.S, Oh Y.K, et al. Citreicella aestuarii sp. nov., isolated from a tidal flat. International journal of systematic and evolutionary microbiology [Internet]. 2011 [consultado 2020 agosto 10]; 61(11). Disponible en: https://doi.org/10.1099/ijs.0.028332-0Gallego S, Vila J, Nieto J.M, Urdiain M, Rosselló R, Grifoll M. Breoghania corrubedonensis gen. nov. sp. nov., a novel alphaproteobacterium isolated from a Galician beach (NW Spain) after the Prestige fuel oil spill, and emended description of the family Cohaesibacteraceae and the species Cohaesibacter gelatinilyticus. Systematic and Applied Microbiology [Internet]. 2010 [consultado 2020 agosto 10]; 33(6): 316-321. Disponible en: https://doi.org/10.1016/j.syapm.2010.06.005KEGG Methyloceanibacter caenitepidi [Internet]. Japón. [consultado 2020 agosto 10] Disponible en: https://www.genome.jp/dbget-bin/get_linkdb?- t+pathway+gn:T03636Quan Z.X, Bae H.S, Baek J.H, Chen W.F, Im W.T, Lee S.T. Rhizobium daejeonense sp. nov. isolated from a cyanide treatment bioreactor. International journal of systematic and evolutionary microbiology [Internet]. 2005 [consultado 2020 agosto 10]; 55(6): 2543-2549. Disponible en: https://doi.org/10.1099/ijs.0.63667-0Mantelin S, Saux M.F.L, Zakhia F, Béna G, Bonneau S, Jeder H, et al. Emended description of the genus Phyllobacterium and description of four novel species associated with plant roots: Phyllobacterium bourgognense sp. nov., Phyllobacterium ifriqiyense sp. nov., Phyllobacterium leguminum sp. nov. and Phyllobacterium brassicacearum sp. nov. International journal of systematic and evolutionary microbiology [Internet]. 2006 [consultado 2020 agosto 10]; 56(4): 827-839. Disponible en: https://doi.org/10.1099/ijs.0.63911- 0Batista R. A, Rayo M, Talia P, Jackson S. A, O’Leary N. D, et al. From lignocellulosic metagenomes to lignocellulolytic genes: trends, challenges and future prospects. Biofuels, Bioproducts and Biorefining [Internet]. 2016 [consultado 2020 agosto 26]; 10(6): 864-882. Disponible en: https://doi.org/10.1002/bbb.1709Lam M. Q, Oates N. C, Thevarajoo S, Tokiman L, Goh K. M, McQueen S. J, et al. Genomic analysis of a lignocellulose degrading strain from the underexplored genus Meridianimaribacter. Genomics [Internet]. 2019 [consultado 2020 agosto 26]; 112(1): 952-960. Disponible en: https://doi.org/10.1016/j.ygeno.2019.06.011Gadd G. M, Sariaslani S. Advances in Applied Microbiology. Volume 97. Países Bajos: Academic Press; 2016.Mahjoubi M, Cappello S, Souissi Y, Jaouani A, Cherif A. Microbial Bioremediation of Petroleum Hydrocarbon– Contaminated Marine Environments. INTECH; 2018.Karigar C. S, Rao S. S. Role of Microbial Enzymes in the Bioremediation of Pollutants: A Review. Enzyme Research [Internet]. 2011 [consultado 2020 septiembre 02]; 2011(7): 1–11. Disponible en: DOI: 10.4061/2011/805187Abatenh E, Gizaw B, Tsegaye Z, Wassie M. The Role of Microorganisms in Bioremediation- A Review. Open Journal of Environmental Biology [Internet]. 2017 [consultado 2020 septiembre 02]; 1(1): 038-046. Disponible en: DOI: 10.17352/ojeb.000007Finneran K. T, Anderson R. T, Nevin K. P, Lovley D. R. Potential for Bioremediation of Uranium-Contaminated Aquifers with Microbial U(VI) Reduction. Soil and Sediment Contamination: An International Journal [Internet]. 2002 [consultado 2020 septiembre 02]; 11(3): 339–357. Disponible en: https://doi.org/10.1080/20025891106781Newsome L, Morris K, Trivedi D, Atherton N, Lloyd J. R. Microbial reduction of uranium (VI) in sediments of different lithologies collected from Sellafield. Applied Geochemistry [Internet]. 2014 [consultado 2020 septiembre 02]; 51: 55–64. Disponible en: https://doi.org/10.1016/j.apgeochem.2014.09.00Ecosistema de manglarMicrobiomaMicroorganismosMicrobiomaMicrobiotaManglarCiclos biogeoquímicos del carbono y nitrógenoLICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/257/4/license.txt2f9959eaf5b71fae44bbf9ec84150c7aMD54open accessTEXTDanya Ramirez y Nicolas Rojas INFLUENCIA DE LA COMUNIDAD BACTERIANA EN LOS CICLOS BIOGEOQUÍMICOS DEL CARBONO Y EL NITRÓGENO EN EL ECOSISTEMA DE MANGLAR.pdf.txtDanya Ramirez y Nicolas Rojas INFLUENCIA DE LA COMUNIDAD BACTERIANA EN LOS CICLOS BIOGEOQUÍMICOS DEL CARBONO Y EL NITRÓGENO EN EL ECOSISTEMA DE MANGLAR.pdf.txtExtracted texttext/plain15966https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/257/7/Danya%20Ramirez%20y%20Nicolas%20Rojas%20INFLUENCIA%20DE%20LA%20COMUNIDAD%20BACTERIANA%20EN%20LOS%20CICLOS%20BIOGEOQU%c3%8dMICOS%20DEL%20CARBONO%20Y%20EL%20NITR%c3%93GENO%20EN%20EL%20ECOSISTEMA%20DE%20MANGLAR.pdf.txtbc4ff933ad16266b7bc8f4b709d959f1MD57open accessCartas derechos de autor.pdf.txtCartas derechos de autor.pdf.txtExtracted texttext/plain610https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/257/11/Cartas%20derechos%20de%20autor.pdf.txt0bdac8501be6a736dd6e5fb5e66bec28MD511metadata only accessMonografía_ Ramírez Lozada Gabriela_ Rojas Villamil Nicolás.pdf.txtMonografía_ Ramírez Lozada Gabriela_ Rojas Villamil Nicolás.pdf.txtExtracted texttext/plain306546https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/257/13/Monograf%c3%ada_%20Ram%c3%adrez%20Lozada%20Gabriela_%20Rojas%20Villamil%20Nicol%c3%a1s.pdf.txtf939b141a16c5b2e21749aad71d1a6c5MD513open accessTHUMBNAILDanya Ramirez y Nicolas Rojas INFLUENCIA DE LA COMUNIDAD BACTERIANA EN LOS CICLOS BIOGEOQUÍMICOS DEL CARBONO Y EL NITRÓGENO EN EL ECOSISTEMA DE MANGLAR.pdf.jpgDanya Ramirez y Nicolas Rojas INFLUENCIA DE LA COMUNIDAD BACTERIANA EN LOS CICLOS BIOGEOQUÍMICOS DEL CARBONO Y EL NITRÓGENO EN EL ECOSISTEMA DE MANGLAR.pdf.jpgGenerated Thumbnailimage/jpeg4979https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/257/8/Danya%20Ramirez%20y%20Nicolas%20Rojas%20INFLUENCIA%20DE%20LA%20COMUNIDAD%20BACTERIANA%20EN%20LOS%20CICLOS%20BIOGEOQU%c3%8dMICOS%20DEL%20CARBONO%20Y%20EL%20NITR%c3%93GENO%20EN%20EL%20ECOSISTEMA%20DE%20MANGLAR.pdf.jpge9825ee14616ee1bd7ef08ab8eb1b010MD58open accessCartas derechos de autor.pdf.jpgCartas derechos de autor.pdf.jpgGenerated Thumbnailimage/jpeg9476https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/257/12/Cartas%20derechos%20de%20autor.pdf.jpgcef0edfe923bd14e82e4916af8569b48MD512metadata only accessMonografía_ Ramírez Lozada Gabriela_ Rojas Villamil Nicolás.pdf.jpgMonografía_ Ramírez Lozada Gabriela_ Rojas Villamil Nicolás.pdf.jpgGenerated Thumbnailimage/jpeg6460https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/257/14/Monograf%c3%ada_%20Ram%c3%adrez%20Lozada%20Gabriela_%20Rojas%20Villamil%20Nicol%c3%a1s.pdf.jpg6d5a4a621fb2248366266f38b79e2225MD514open accessORIGINALMonografía_ Ramírez Lozada Gabriela_ Rojas Villamil Nicolás.pdfMonografía_ Ramírez Lozada Gabriela_ Rojas Villamil Nicolás.pdfapplication/pdf1692818https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/257/15/Monograf%c3%ada_%20Ram%c3%adrez%20Lozada%20Gabriela_%20Rojas%20Villamil%20Nicol%c3%a1s.pdf14d881fb398c48e4e2d8457df30df271MD515open accessDanya Ramirez y Nicolas Rojas INFLUENCIA DE LA COMUNIDAD BACTERIANA EN LOS CICLOS BIOGEOQUÍMICOS DEL CARBONO Y EL NITRÓGENO EN EL ECOSISTEMA DE MANGLAR.pdfDanya Ramirez y Nicolas Rojas INFLUENCIA DE LA COMUNIDAD BACTERIANA EN LOS CICLOS BIOGEOQUÍMICOS DEL CARBONO Y EL NITRÓGENO EN EL ECOSISTEMA DE MANGLAR.pdfapplication/pdf2890798https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/257/16/Danya%20Ramirez%20y%20Nicolas%20Rojas%20INFLUENCIA%20DE%20LA%20COMUNIDAD%20BACTERIANA%20EN%20LOS%20CICLOS%20BIOGEOQU%c3%8dMICOS%20DEL%20CARBONO%20Y%20EL%20NITR%c3%93GENO%20EN%20EL%20ECOSISTEMA%20DE%20MANGLAR.pdfa876c4424f53ce08f3dc920c1566267cMD516open accessCartas derechos de autor.pdfCartas derechos de autor.pdfapplication/pdf306247https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/257/17/Cartas%20derechos%20de%20autor.pdfd96331752bb9277d1a762d2f6d64a139MD517metadata only accessunicolmayor/257oai:repositorio.unicolmayor.edu.co:unicolmayor/2572024-04-29 12:48:14.697An error occurred on the license name.|||https://creativecommons.org/licenses/by-nc-sa/4.0/open accessBiblioteca Digital Unicolmayorrepositorio@unicolmayor.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo= |