Diseño de un biofiltro para compuestos nitrogenados utilizando Chlamydomonas sp. procedentes de vallados de Mosquera- Cundinamarca

El aumento de la contaminación ha llevado a que en los ecosistemas acuáticos generen un desequilibrio bioquímico y biológico ocasionando pérdida de especies locales y migratorias, en especial en los humedales y los remanentes de estos, los vallados, que se encuentran localizados en zonas urbanas y/o...

Full description

Autores:
Caicedo Pineda, Viviana
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2023
Institución:
Colegio Mayor de Cundinamarca
Repositorio:
Repositorio Colegio Mayor de Cundinamarca
Idioma:
spa
OAI Identifier:
oai:repositorio.unicolmayor.edu.co:unicolmayor/6835
Acceso en línea:
https://repositorio.unicolmayor.edu.co/handle/unicolmayor/6835
Palabra clave:
Eutrofización
Vallados
Microalgas
Biofiltración
Compuestos nitrogenados
Rights
closedAccess
License
Derechos reservados - Universidad Colegio Mayor de Cundinamarca, 2024
id UCOLMAYOR2_60c46467244243f88218ccbb408387ab
oai_identifier_str oai:repositorio.unicolmayor.edu.co:unicolmayor/6835
network_acronym_str UCOLMAYOR2
network_name_str Repositorio Colegio Mayor de Cundinamarca
repository_id_str
dc.title.spa.fl_str_mv Diseño de un biofiltro para compuestos nitrogenados utilizando Chlamydomonas sp. procedentes de vallados de Mosquera- Cundinamarca
title Diseño de un biofiltro para compuestos nitrogenados utilizando Chlamydomonas sp. procedentes de vallados de Mosquera- Cundinamarca
spellingShingle Diseño de un biofiltro para compuestos nitrogenados utilizando Chlamydomonas sp. procedentes de vallados de Mosquera- Cundinamarca
Eutrofización
Vallados
Microalgas
Biofiltración
Compuestos nitrogenados
title_short Diseño de un biofiltro para compuestos nitrogenados utilizando Chlamydomonas sp. procedentes de vallados de Mosquera- Cundinamarca
title_full Diseño de un biofiltro para compuestos nitrogenados utilizando Chlamydomonas sp. procedentes de vallados de Mosquera- Cundinamarca
title_fullStr Diseño de un biofiltro para compuestos nitrogenados utilizando Chlamydomonas sp. procedentes de vallados de Mosquera- Cundinamarca
title_full_unstemmed Diseño de un biofiltro para compuestos nitrogenados utilizando Chlamydomonas sp. procedentes de vallados de Mosquera- Cundinamarca
title_sort Diseño de un biofiltro para compuestos nitrogenados utilizando Chlamydomonas sp. procedentes de vallados de Mosquera- Cundinamarca
dc.creator.fl_str_mv Caicedo Pineda, Viviana
dc.contributor.advisor.none.fl_str_mv Camacho Kurmen, Judith Elena
dc.contributor.author.none.fl_str_mv Caicedo Pineda, Viviana
dc.contributor.corporatename.spa.fl_str_mv Universidad Colegio Mayor de Cundinamarca
dc.subject.proposal.spa.fl_str_mv Eutrofización
Vallados
Microalgas
Biofiltración
Compuestos nitrogenados
topic Eutrofización
Vallados
Microalgas
Biofiltración
Compuestos nitrogenados
description El aumento de la contaminación ha llevado a que en los ecosistemas acuáticos generen un desequilibrio bioquímico y biológico ocasionando pérdida de especies locales y migratorias, en especial en los humedales y los remanentes de estos, los vallados, que se encuentran localizados en zonas urbanas y/o rurales con constante ingreso de contaminantes. Por lo cual, la recuperación de estos ecosistemas, está enfocado en reducir compuestos nitrogenados que se relacionan con el aumento de eutrofización, a través del uso de microrganismos nativos, como las microalgas, aprovechando su metabolismo para reducir las concentraciones de amonio, nitrito y nitrato. Los objetivos de este trabajo fueron diseñar un biofiltro con capacidad de bioabsorción de compuestos nitrogenados utilizando microalgas libres y microencapsuladas, aisladas de cuerpos de agua de vallados así como determinar la capacidad del biofiltro diseñado para la bioabsorción de estos compuestos. El vallado utilizado presentó una concentración de Amonio (N-NH₄⁺) de 2,5 mg/l y de Nitrato (NO3-) de 2,2 mg/l, con un pH de 7. La microalga aislada pertenece al género Chlamydomonas sp. Esta microalga usa fuentes inorgánicas de nitrógeno para su crecimiento, lo cual permite aplicarla para biotratar aguas residuales con altos contenidos de compuestos nitrogenados. Se diseñaron los biofiltros utilizando 8,44 x 106 células/ ml de la microalga (μmax 0,077/día). Se observó que los biofiltros diseñados con la microalga bajo las condiciones trabajadas incrementaron el NH₄⁺ y NO3- presente, por lo que se necesita más investigación para optimizar los biofiltros y la eliminación de estos compuestos en el agua de los vallados.
publishDate 2023
dc.date.issued.none.fl_str_mv 2023-03
dc.date.accessioned.none.fl_str_mv 2024-05-14T21:13:56Z
dc.date.available.none.fl_str_mv 2024-05-14T21:13:56Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/TM
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_7a1f
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unicolmayor.edu.co/handle/unicolmayor/6835
url https://repositorio.unicolmayor.edu.co/handle/unicolmayor/6835
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Villabona González SL, Benjumea-Hoyos CA, Gutiérrez-Monsalve JA, López-Muñoz MT, González EJ. Variables fisicoquímicas y biológicas de mayor influencia en el estado trófico de cinco embalses andinos colombianos. Rev la Acad Colomb Ciencias Exactas, Físicas y Nat. 2020;44(171).
Alori ET, Gabasawa AI, Elenwo CE, Agbeyegbe OO. Bioremediation techniques as affected by limiting factors in soil environment. Front Soil Sci. 2022;2.
Roldán-Pérez G, Ramírez-Restrepo JJ. Fundamentos de limnología neotropical. Vol. 2, Editorial Universidad de Antioquia. 2008.
Gupta S, Pawar SB, Pandey RA. Current practices and challenges in using microalgae for treatment of nutrient rich wastewater from agro-based industries. Vol. 687, Science of the Total Environment. 2019.
Mallick N. Biotechnological potential of immobilized algae for wastewater N, P and metal removal: A review. BioMetals. 2002;15(4).
Hameed MS a, Ebrahim OH, Suef B. Biotechnological potential uses of immobilized algae. Int J Agric & Biol. 2007;9(1).
Cárdenas Calvachi GL, Sánchez Ortiz IA. Nitrógeno en aguas residuales: orígenes, efectos y mecanismos de remoción para preservar el ambiente y la salud pública. Univ y Salud. 2013;15(1).
Royal G, Finlayson M. Perspectiva Mundial Sobre los Humedales: Estado de los humedales del mundo y de los servicios que prestan a las personas 2018. Conveción Ramsar sobre los Humed. 2018;
O’Nei WB, Maurer M, Polanía O. Contaminacion industrial en Colombia. FEDESARROLLO; 1994. p. 151–75.
Instituto Humboldt, Investigación de Recursos Biológicos. Instituto Humboldt, Humedales Interiores de Colombia: Bases Técnicas para su Conservación y Uso Sostenible . 1999;
Gil-Izquierdo A, Pedreño MA, Montoro-García S, Tárraga-Martínez M, Iglesias P, Ferreres F, et al. A sustainable approach by using microalgae to minimize the eutrophication process of Mar Menor lagoon. Sci Total Environ. 2021;758.
Bernal R, Arias M, Domínguez M, Durán R, Valdés M, Sardiñas A. Bacterias como herramientas potenciales en el mejoramiento de humedales artificiales para el tratamiento de aguas. Rev CENIC Ciencias Biológicas. 2010;41(0253–5688).
Nagarajan D, Lee DJ, Chen CY, Chang JS. Resource recovery from wastewaters using microalgae-based approaches: A circular bioeconomy perspective. Vol. 302, Bioresource Technology. 2020.
Hernández-Pérez A, Labbé JI. Microalgas, cultivo y beneficios. Vol. 49, Revista de Biologia Marina y Oceanografia. 2014.
de-Bashan LE, Bashan Y. Immobilized microalgae for removing pollutants: Review of practical aspects. Bioresour Technol. 2010;101(6).
INECOL instituto de ecología México. Los humedales, sus funciones y su papel en el almacenamiento de carbono atmosférico.
UNIVERSIDAD NACIONAL DE COLOMBIA. REVISIÓN PLAN BASICO ORDENAMIENTO TERRITORIAL MUNICIPIO DE MOSQUERA CUNDINAMARCA . Facultad de Artes. 2012.
Guadarrama , Rosendo, Kido J, Roldán , Gustavo, Salas M. Contaminación del agua. Revista de Ciencias Ambientales y Recursos Naturales . Rev Ciencias Ambient y Recur Nat . 2015 Sep;2:1–10.
Roldán G. Bioindicación de la calidad del agua en Colombia: propuesta para el uso del método BMWP Col. Bioindicación de la calidad del agua en Colombia: propuesta para el uso del método BMWP Col. 2003.
De Miguel-Fernández C, Vázquez-Taset YM. ORIGEN DE LOS NITRATOS (NO3) Y NITRITOS (NO2) Y SU INFLUENCIA EN LA POTABILIDAD DE LAS AGUAS SUBTERRÁNEAS. Minería y Geol. 2006;22(3).
Du H, Chen Z, Mao G, Chen L, Crittenden J, Li RYM, et al. Evaluation of eutrophication in freshwater lakes: A new non-equilibrium statistical approach. Ecol Indic. 2019;102.
ministerio de agricultura. Decreto 1594 de 1984. Ley 9 1979 - Ley 2811 1974. 1984;1984(Junio 26).
Moreno-Vivián C, Cabello P, Martínez-Luque M, Blasco R, Castillo F. Prokaryotic nitrate reduction: Molecular properties and functional distinction among bacterial nitrate reductases. Vol. 181, Journal of Bacteriology. 1999.
Chen H, Wang Q. Microalgae-based nitrogen bioremediation. Vol. 46, Algal Research. 2020.
Sanz-Luque E, Chamizo-Ampudia A, Llamas A, Galvan A, Fernandez E. Understanding nitrate assimilation and its regulation in microalgae. Vol. 6, Frontiers in Plant Science. 2015.
Soler-Jofra A, Pérez J, van Loosdrecht MCM. Hydroxylamine and the nitrogen cycle: A review. Vol. 190, Water Research. 2021.
McDonald AE, Ivanov AG, Bode R, Maxwell DP, Rodermel SR, Hüner NPA. Flexibility in photosynthetic electron transport: The physiological role of plastoquinol terminal oxidase (PTOX). Vol. 1807, Biochimica et Biophysica Acta - Bioenergetics. 2011.
Harris EH. The Chlamydomonas Sourcebook Volume1: Introduction to Chlamydomonas and Its Laboratory Use. Vol. 53, Journal of Chemical Information and Modeling. 2013.
Takeuchi T, Benning C. Nitrogen-dependent coordination of cell cycle, quiescence and TAG accumulation in Chlamydomonas. Vol. 12, Biotechnology for Biofuels. 2019.
Morando-Grijalva CA, Vázquez-Larios AL, Alcántara-Hernández RJ, Ortega-Clemente LA, Robledo-Narváez PN. Isolation of a freshwater microalgae and its application for the treatment of wastewater and obtaining fatty acids from tilapia cultivation. Environ Sci Pollut Res. 2020;27(23).
Bellinger EG, Sigee DC. Freshwater Algae: Identification and Use as Bioindicators. Freshwater Algae: Identification and Use as Bioindicators. 2010.
Pröschold T, Darienko T, Krienitz L, Coleman AW. Chlamydomonas schloesseri sp. nov. (Chlamydophyceae, Chlorophyta) revealed by morphology, autolysin cross experiments, and multiple gene analyses. Phytotaxa. 2018;362(1).
Bux F, Chisti Y. Algae biotechnology. Products and processes. Green Energy Technol. 2016;(March).
Huang Q, Jiang F, Wang L, Yang C. Design of Photobioreactors for Mass Cultivation of Photosynthetic Organisms. Engineering. 2017;3(3).
Qin L, Gao M, Zhang M, Feng L, Liu Q, Zhang G. Application of encapsulated algae into MBR for high-ammonia nitrogen wastewater treatment and biofouling control. Water Res. 2020;187.
Lebeau T, Robert JM. Biotechnology of immobilized micro algae: a culture technique for the future? Algal Cult Analog Bloom Appl. 2006;2(January 2006).
Razak SBA, Sharip Z. The potential of phycoremediation in controlling eutrophication in tropical lake and reservoir: A review. Vol. 180, Desalination and Water Treatment. 2020.
Kumar SD, Santhanam P, Park MS, Kim MK. Development and application of a novel immobilized marine microalgae biofilter system for the treatment of shrimp culture effluent. J Water Process Eng. 2016;13.
Ecological and Genetic Implications of Aquaculture Activities. Ecological and Genetic Implications of Aquaculture Activities. 2007.
Persson F, Långmark J, Heinicke G, Hedberg T, Tobiason J, Stenström TA, et al. Characterisation of the behaviour of particles in biofilters for pre-treatment of drinking water. Water Res. 2005;39(16).
Youcai Z, Ziyang L. Leachate Pollution Control Technology at Sanitary Landfill. In: Pollution Control and Resource Recovery. 2017.
Kirisits MJ, Emelko MB, Pinto AJ. Applying biotechnology for drinking water biofiltration: advancing science and practice. Vol. 57, Current Opinion in Biotechnology. 2019.
Claydon LS. Rigour in quantitative research. Vol. 29, Nursing standard (Royal College of Nursing (Great Britain) : 1987). 2015.
Mohajan HK. Quantitative Research: A Successful Investigation in Natural and Social Sciences. J Econ Dev Environ People. 2020;9(4).
Galarza CR. Los alcances de una investigación. CienciAmérica. 2020;9.
APHA. American Public Health Association (2005). Standard Methods for the Examination of Water and Wastewater. 21st Edition. American Public Health Association/American Water Works Association/Water Environment Federation, Washington DC. Stand Methods Exam Water Waste Water. 2005;
Montenegro Ruiz LC. Aproximación al tratamiento de aguas residuales del lavado del café con las microalgas Parachlorella kessreli y Desmodesmus armatus. Rev Mutis. 2021 Dec;11:32–43.
Ávila Peltroche JGJ. Remoción de nitratos y fosfatos por cepas nativas de Chlorella sp. (Chlorellaceae) y Chlamydomonas sp. (Chlamydomonadaceae) libres e inmovilizadas en aguas residuales municipales. Arnaldoa. 2018;25(2).
Oluwole OR, Tobin CM, Banjo TT, Efunwoye OO, Awoyemi SO. The use of immobilized microalgal bead concentrations in the removal of ammonium nitrogen from synthetic wastewater. Niger J Biotechnol. 2019;36(1).
Kamaruddin MA, Yuso MS, Aziz HA. Preparation and characterization of alginate beads by drop weight. Int J Technol. 2014;5(2).
Posadas E, García-Encina PA, Domínguez A, Díaz I, Becares E, Blanco S, et al. Enclosed tubular and open algal-bacterial biofilm photobioreactors for carbon and nutrient removal from domestic wastewater. Ecol Eng. 2014;67.
Lee K, Lee CG. Nitrogen removal from wastewater by microalgae without consuming organic carbon sources. J Microbiol Biotechnol. 2002;12(6).
Gao Y, Yu J, Song Y, Zhu G, Paerl HW, Qin B. Spatial and temporal distribution characteristics of different forms of inorganic nitrogen in three types of rivers around Lake Taihu, China. Environ Sci Pollut Res. 2019;26(7).
Radu G, Racoviteanu G. Removing ammonium from water intended for human consumption. A review of existing technologies. In: IOP Conference Series: Earth and Environmental Science. 2021.
Jeon SM, Kim JH, Kim T, Park A, Ko AR, Ju SJ, et al. Morphological, molecular, and biochemical characterization of monounsaturated fatty acids-rich chlamydomonas sp. Kiost-1 isolated from Korea. J Microbiol Biotechnol. 2015;25(5).
Xie P, Ho SH, Xiao QY, Xu XJ, Zhao L, Zhou X, et al. Revealing the role of nitrate on sulfide removal coupled with bioenergy production in Chlamydomonas sp. Tai-03: Metabolic pathways and mechanisms. J Hazard Mater. 2020;399.
Yulistyorini A, Camargo-Valero MA. Microalgae Growth and Phosphorus Uptake of Chlamydomonas Reinhardtii 11/32C under Different Inorganic Nitrogen Sources. Int J Integr Eng. 2020;12(9).
Ruiz-Marin A, Canedo-Lopez Y, Campos-Garcia S del C, Sabido-Perez MY, Zavala-Loria J del C. Biodegradation of wastewater pollutants by activated sludge coimmobilized with scenedesmus obliquus. Agrociencia. 2013;47(5).
Salbitani G, Carfagna S. Ammonium utilization in microalgae: A sustainable method for wastewater treatment. Vol. 13, Sustainability (Switzerland). 2021.
Taj Khanzada Z. Growing Fresh Water Microalgae in High Ammonium Landfill Leachate. Am J Mech Appl. 2018;6(2).
Virtanen O, Valev D, Kruse O, Wobbe L, Tyystjärvi E. Photoinhibition and continuous growth of the wild-type and a high-light tolerant strain of chlamydomonas reinhardtii. Photosynthetica. 2019;57(2).
Bonente G, Pippa S, Castellano S, Bassi R, Ballottari M. Acclimation of Chlamydomonas reinhardtii to different growth irradiances. J Biol Chem. 2012;287(8).
Soo CL, Chen CA, Bojo O, Hii YS. Feasibility of Marine Microalgae Immobilization in Alginate Bead for Marine Water Treatment: Bead Stability, Cell Growth, and Ammonia Removal. Int J Polym Sci. 2017;2017.
de Jesus GC, Gaspar Bastos R, Altenhofen da Silva M. Production and characterization of alginate beads for growth of immobilized Desmodesmus subspicatus and its potential to remove potassium, carbon and nitrogen from sugarcane vinasse. Biocatal Agric Biotechnol. 2019;22.
Banerjee S, Tiwade PB, Sambhav K, Banerjee C, Bhaumik SK. Effect of alginate concentration in wastewater nutrient removal using alginate-immobilized microalgae beads: Uptake kinetics and adsorption studies. Biochem Eng J. 2019;149.
Sanz-Luque E, Ocaña-Calahorro F, Llamas A, Galvan A, Fernandez E. Nitric oxide controls nitrate and ammonium assimilation in Chlamydomonas reinhardtii. J Exp Bot. 2013;64(11).
Shen Y, Qiu S, Chen Z, Zhang Y, Trent J, Ge S. Free ammonia is the primary stress factor rather than total ammonium to Chlorella sorokiniana in simulated sludge fermentation liquor. Chem Eng J. 2020;397.
Hong M, Ma Z, Wang X, Shen Y, Mo Z, Wu M, et al. Effects of light intensity and ammonium stress on photosynthesis in Sargassum fusiforme seedlings. Chemosphere. 2021;273.
Gonçalves AL, Pires JCM, Simões M. A review on the use of microalgal consortia for wastewater treatment. Vol. 24, Algal Research. 2017.
Roy D, Hassan K, Boopathy R. Effect of carbon to nitrogen (C:N) ratio on nitrogen removal from shrimp production waste water using sequencing batch reactor. J Ind Microbiol Biotechnol. 2010;37(10).
Vergara C, Muñoz R, Campos JL, Seeger M, Jeison D. Influence of light intensity on bacterial nitrifying activity in algal-bacterial photobioreactors and its implications for microalgae-based wastewater treatment. Int Biodeterior Biodegrad. 2016;114.
Su F, Li Z, Li Y, Xu L, Li Y, Li S, et al. Removal of total nitrogen and phosphorus using single or combinations of aquatic plants. Int J Environ Res Public Health. 2019;16(23).
Garbayo I, León R, Vigara J, Vílchez C. Inhibition of nitrate consumption by nitrite in entrapped Chlamydomonas reinhardtii cells. Bioresour Technol. 2002;81(3).
Garbayo I, León R, Vílchez C. Diffusion characteristics of nitrate and glycerol in alginate. Colloids Surfaces B Biointerfaces. 2002;25(1).
Bloom AJ. Photorespiration and nitrate assimilation: A major intersection between plant carbon and nitrogen. Photosynth Res. 2015;123(2).
Inokuchi R, Kuma KI, Miyata T, Okada M. Nitrogen-assimilating enzymes in land plants and algae: Phylogenic and physiological perspectives. Vol. 116, Physiologia Plantarum. 2002.
Hagemann M, Bauwe H. Photorespiration and the potential to improve photosynthesis. Vol. 35, Current Opinion in Chemical Biology. 2016.
Garbayo I, Vigara AJ, Conchon V, Dos Santos VAPM, Vílchez C. Nitrate consumption alterations induced by alginate-entrapment of Chlamydomonas reinhardtii cells. Process Biochem. 2000;36(5).
González LE, Cañizares RO, Baena S. Efficiency of ammonia and phosphorus removal from a Colombian agroindustrial wastewater by the microalgae Chlorella vulgaris and Scenedesmus dimorphus. Bioresour Technol. 1997;60(3).
Akizuki S, Kishi M, Cuevas-Rodríguez G, Toda T. Effects of different light conditions on ammonium removal in a consortium of microalgae and partial nitrifying granules. Vol. 171, Water Research. 2020.
Kaplan D, Wilhelm R, Abeliovich A. Interdependent environmental factors controlling nitrification in waters. In: Water Science and Technology. 2000.
Almomani F, Al Ketife A, Judd S, Shurair M, Bhosale RR, Znad H, et al. Impact of CO 2 concentration and ambient conditions on microalgal growth and nutrient removal from wastewater by a photobioreactor. Sci Total Environ. 2019;662.
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Colegio Mayor de Cundinamarca, 2024
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/closedAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_14cb
rights_invalid_str_mv Derechos reservados - Universidad Colegio Mayor de Cundinamarca, 2024
https://creativecommons.org/licenses/by-nc/4.0/
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
http://purl.org/coar/access_right/c_14cb
eu_rights_str_mv closedAccess
dc.format.extent.spa.fl_str_mv 82p.
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Colegio Mayor de Cundinamarca
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias de la Salud
dc.publisher.place.spa.fl_str_mv Bogotá D.C., Colombia
dc.publisher.program.spa.fl_str_mv Maestría en Microbiología
institution Colegio Mayor de Cundinamarca
bitstream.url.fl_str_mv https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/6835/1/1.TRABAJO.GRADO_VIVIANA.CAICEDO.PINEDA_M.MICROBIOLOGIA_2023-1.pdf
https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/6835/2/1.Carta%20Derechos%20de%20autor_VivianaCaidedo_2023.pdf
https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/6835/3/1.FORMATO%20IDENTIFICACI%c3%93N%20TRABAJOS%20DE%20GRADO%20BIBLIOTECA_VivanaCaicedo_2023.pdf
https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/6835/4/license.txt
https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/6835/5/1.TRABAJO.GRADO_VIVIANA.CAICEDO.PINEDA_M.MICROBIOLOGIA_2023-1.pdf.txt
https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/6835/7/1.Carta%20Derechos%20de%20autor_VivianaCaidedo_2023.pdf.txt
https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/6835/9/1.FORMATO%20IDENTIFICACI%c3%93N%20TRABAJOS%20DE%20GRADO%20BIBLIOTECA_VivanaCaicedo_2023.pdf.txt
https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/6835/6/1.TRABAJO.GRADO_VIVIANA.CAICEDO.PINEDA_M.MICROBIOLOGIA_2023-1.pdf.jpg
https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/6835/8/1.Carta%20Derechos%20de%20autor_VivianaCaidedo_2023.pdf.jpg
https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/6835/10/1.FORMATO%20IDENTIFICACI%c3%93N%20TRABAJOS%20DE%20GRADO%20BIBLIOTECA_VivanaCaicedo_2023.pdf.jpg
bitstream.checksum.fl_str_mv 135a3e52b6377d156a0a15354330a54a
be47330bd4013588269c845e93101130
c50715cdcfb08ac2c64ddb4d191a85f9
2f9959eaf5b71fae44bbf9ec84150c7a
5b8e84516f4bfdeb5dcbfc801672114c
515524a5d2d70ecbf1160b7670a8fa3e
f213f44f1affe09ca62f0ffb30243ad0
2a9036e6c29668a62d38772886fcc6f3
d379bfc30759a58c2796fa98d22f7a2e
76bc9b1ced41f9b1c85b6c1e26f288c4
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital Unicolmayor
repository.mail.fl_str_mv repositorio@unicolmayor.edu.co
_version_ 1812210107483684864
spelling Camacho Kurmen, Judith Elena88ec3d87924bea44fb175e7780652267Caicedo Pineda, Vivianacf164912862789f473ea3e8d850f53e4Universidad Colegio Mayor de Cundinamarca2024-05-14T21:13:56Z2024-05-14T21:13:56Z2023-03https://repositorio.unicolmayor.edu.co/handle/unicolmayor/6835El aumento de la contaminación ha llevado a que en los ecosistemas acuáticos generen un desequilibrio bioquímico y biológico ocasionando pérdida de especies locales y migratorias, en especial en los humedales y los remanentes de estos, los vallados, que se encuentran localizados en zonas urbanas y/o rurales con constante ingreso de contaminantes. Por lo cual, la recuperación de estos ecosistemas, está enfocado en reducir compuestos nitrogenados que se relacionan con el aumento de eutrofización, a través del uso de microrganismos nativos, como las microalgas, aprovechando su metabolismo para reducir las concentraciones de amonio, nitrito y nitrato. Los objetivos de este trabajo fueron diseñar un biofiltro con capacidad de bioabsorción de compuestos nitrogenados utilizando microalgas libres y microencapsuladas, aisladas de cuerpos de agua de vallados así como determinar la capacidad del biofiltro diseñado para la bioabsorción de estos compuestos. El vallado utilizado presentó una concentración de Amonio (N-NH₄⁺) de 2,5 mg/l y de Nitrato (NO3-) de 2,2 mg/l, con un pH de 7. La microalga aislada pertenece al género Chlamydomonas sp. Esta microalga usa fuentes inorgánicas de nitrógeno para su crecimiento, lo cual permite aplicarla para biotratar aguas residuales con altos contenidos de compuestos nitrogenados. Se diseñaron los biofiltros utilizando 8,44 x 106 células/ ml de la microalga (μmax 0,077/día). Se observó que los biofiltros diseñados con la microalga bajo las condiciones trabajadas incrementaron el NH₄⁺ y NO3- presente, por lo que se necesita más investigación para optimizar los biofiltros y la eliminación de estos compuestos en el agua de los vallados.The increase in pollution has led aquatic ecosystems to generate a biochemical and biological imbalance, causing losses of local and migratory species, especially in wetlands and their remnants, the ditches, which are located in urban areas and/or rural with constant entry of contaminants. Therefore, the recovery of these ecosystems is focused on reducing nitrogenous compounds that are related to the increase in eutrophication, through the use of native microorganisms, such as microalgae, taking advantage of their metabolism to reduce ammonium, nitrite and nitrate concentrations. The objectives of this work are to design a biofilter with the capacity to remove nitrogenous compounds using free and microencapsulated microalgae, isolated from water bodies arising from ditches, as well as determine the capacity of the biofilter designed for the removal of these compounds. The sample taken from the stagnant water has an ammonium (N-NH₄⁺) concentration of 2.5 mg/l and nitrate (NO3-) of 2.2 mg/l, with a pH of 7. The isolated microalgae belongs to the genus Chlamydomonas sp. This microalga uses inorganic sources of nitrogen for its growth, which allows it to be used as biotreatment wastewater with high content of nitrogenous compounds. Biofilters were designed using 8,44 x 106 cells/ ml microalgae (μmax 0,077/day). It was observed that the biofilter designed with the microalga under the worked conditions increased the NH₄⁺ and NO3- present, therefore more research is needed to optimize the biofilters and the elimination of these compounds from the ditch.Contenido 1. Introducción1 1.1 Planteamiento del problema 2 1.2 Justificación 3 2. Marco conceptual y generalidades 6 2.1 Marco conceptual y generalidades6 2.1.1 Ecosistemas acuáticos cuerpos de agua6 2.1.2 Contaminación de aguas 7 2.1.3 Eutrofización 7 2.1.4 Ciclo del nitrógeno y asimilación del NO2- NO3- y NH4+ 9 2.1.5 Chlamydomonas sp 11 2.1.6 Producción a gran escala-microalgas en fotobiorreactor 13 2.1.7 Métodos para la microencapsulación 15 2.1.8 Biofiltración16 3. Objetivos18 3.1 Objetivo general 18 3.2 Objetivos específicos 18 4. Diseño metodológico 19 4.1 Fase 1 Caracterización de las microalgas presentes en muestras colectadas de cuerpos de agua de vallados. 20 4.1.1 Caracterización físicoquímica de las aguas provenientes de vallados 20 4.1.2 Caracterización de las microalgas nativas20 4.1.3 Producción de biomasa de la microalga nativa en el biorreactor biostat a plus 22 4.1.4 Generación de las curvas de crecimiento 23 4.1.5 Determinación de los parámetros cinéticos de crecimiento23 4.1.6 Determinación de los cambios morfológicos celulares 23 4.1.7 Determinación de clorofila 23 4.2 Fase 2. Diseño del biofiltro con las microalgas libres y microencapsuladas aisladas de cuerpos de agua en vallados. 24 4.2.1 Microencapsulación de microalgas 24 4.2.2 Preparación del macrocápsulas 24 4.2.3 Caracterización de las macrocápsulas 25 4.2.4 Diseño del biofiltro 26 4.3 fase 3. Determinación de la capacidad del biofiltro diseñado con microalgas libres e inmovilizadas para bioabsorción de compuestos nitrogenados 26 4.3.1 Porcentaje de bioabsorción de N-NH4+ y N-NO327 4.3.2 Diseño experimental y análisis estadístico 27 5. Resultados y análisis 28 5.1 Caracterización fisicoquímica de las muestras del vallado 28 5.2 Caracterización y crecimiento de la cepa aislada del vallado30 5.2.1 Identificación molecular31 5.2.2 Producción de biomasa del alga nativa en el biorreactor biosat a plus 34 5.3 Diseño del biofiltro37 5.3.1 Microencapsulación 37 5.4 Valores de N-NH₄⁺ y NO3- después del tratamiento 46 6. Conclusiones 52 7. Recomendaciones 54 8. Referencias 56 9. Anexos 62MaestríaMagíster en Microbiología82p.application/pdfspaUniversidad Colegio Mayor de CundinamarcaFacultad de Ciencias de la SaludBogotá D.C., ColombiaMaestría en MicrobiologíaDerechos reservados - Universidad Colegio Mayor de Cundinamarca, 2024https://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/closedAccessAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)http://purl.org/coar/access_right/c_14cbDiseño de un biofiltro para compuestos nitrogenados utilizando Chlamydomonas sp. procedentes de vallados de Mosquera- CundinamarcaTrabajo de grado - Maestríahttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/masterThesishttps://purl.org/redcol/resource_type/TMinfo:eu-repo/semantics/publishedVersionVillabona González SL, Benjumea-Hoyos CA, Gutiérrez-Monsalve JA, López-Muñoz MT, González EJ. Variables fisicoquímicas y biológicas de mayor influencia en el estado trófico de cinco embalses andinos colombianos. Rev la Acad Colomb Ciencias Exactas, Físicas y Nat. 2020;44(171).Alori ET, Gabasawa AI, Elenwo CE, Agbeyegbe OO. Bioremediation techniques as affected by limiting factors in soil environment. Front Soil Sci. 2022;2.Roldán-Pérez G, Ramírez-Restrepo JJ. Fundamentos de limnología neotropical. Vol. 2, Editorial Universidad de Antioquia. 2008.Gupta S, Pawar SB, Pandey RA. Current practices and challenges in using microalgae for treatment of nutrient rich wastewater from agro-based industries. Vol. 687, Science of the Total Environment. 2019.Mallick N. Biotechnological potential of immobilized algae for wastewater N, P and metal removal: A review. BioMetals. 2002;15(4).Hameed MS a, Ebrahim OH, Suef B. Biotechnological potential uses of immobilized algae. Int J Agric & Biol. 2007;9(1).Cárdenas Calvachi GL, Sánchez Ortiz IA. Nitrógeno en aguas residuales: orígenes, efectos y mecanismos de remoción para preservar el ambiente y la salud pública. Univ y Salud. 2013;15(1).Royal G, Finlayson M. Perspectiva Mundial Sobre los Humedales: Estado de los humedales del mundo y de los servicios que prestan a las personas 2018. Conveción Ramsar sobre los Humed. 2018;O’Nei WB, Maurer M, Polanía O. Contaminacion industrial en Colombia. FEDESARROLLO; 1994. p. 151–75.Instituto Humboldt, Investigación de Recursos Biológicos. Instituto Humboldt, Humedales Interiores de Colombia: Bases Técnicas para su Conservación y Uso Sostenible . 1999;Gil-Izquierdo A, Pedreño MA, Montoro-García S, Tárraga-Martínez M, Iglesias P, Ferreres F, et al. A sustainable approach by using microalgae to minimize the eutrophication process of Mar Menor lagoon. Sci Total Environ. 2021;758.Bernal R, Arias M, Domínguez M, Durán R, Valdés M, Sardiñas A. Bacterias como herramientas potenciales en el mejoramiento de humedales artificiales para el tratamiento de aguas. Rev CENIC Ciencias Biológicas. 2010;41(0253–5688).Nagarajan D, Lee DJ, Chen CY, Chang JS. Resource recovery from wastewaters using microalgae-based approaches: A circular bioeconomy perspective. Vol. 302, Bioresource Technology. 2020.Hernández-Pérez A, Labbé JI. Microalgas, cultivo y beneficios. Vol. 49, Revista de Biologia Marina y Oceanografia. 2014.de-Bashan LE, Bashan Y. Immobilized microalgae for removing pollutants: Review of practical aspects. Bioresour Technol. 2010;101(6).INECOL instituto de ecología México. Los humedales, sus funciones y su papel en el almacenamiento de carbono atmosférico.UNIVERSIDAD NACIONAL DE COLOMBIA. REVISIÓN PLAN BASICO ORDENAMIENTO TERRITORIAL MUNICIPIO DE MOSQUERA CUNDINAMARCA . Facultad de Artes. 2012.Guadarrama , Rosendo, Kido J, Roldán , Gustavo, Salas M. Contaminación del agua. Revista de Ciencias Ambientales y Recursos Naturales . Rev Ciencias Ambient y Recur Nat . 2015 Sep;2:1–10.Roldán G. Bioindicación de la calidad del agua en Colombia: propuesta para el uso del método BMWP Col. Bioindicación de la calidad del agua en Colombia: propuesta para el uso del método BMWP Col. 2003.De Miguel-Fernández C, Vázquez-Taset YM. ORIGEN DE LOS NITRATOS (NO3) Y NITRITOS (NO2) Y SU INFLUENCIA EN LA POTABILIDAD DE LAS AGUAS SUBTERRÁNEAS. Minería y Geol. 2006;22(3).Du H, Chen Z, Mao G, Chen L, Crittenden J, Li RYM, et al. Evaluation of eutrophication in freshwater lakes: A new non-equilibrium statistical approach. Ecol Indic. 2019;102.ministerio de agricultura. Decreto 1594 de 1984. Ley 9 1979 - Ley 2811 1974. 1984;1984(Junio 26).Moreno-Vivián C, Cabello P, Martínez-Luque M, Blasco R, Castillo F. Prokaryotic nitrate reduction: Molecular properties and functional distinction among bacterial nitrate reductases. Vol. 181, Journal of Bacteriology. 1999.Chen H, Wang Q. Microalgae-based nitrogen bioremediation. Vol. 46, Algal Research. 2020.Sanz-Luque E, Chamizo-Ampudia A, Llamas A, Galvan A, Fernandez E. Understanding nitrate assimilation and its regulation in microalgae. Vol. 6, Frontiers in Plant Science. 2015.Soler-Jofra A, Pérez J, van Loosdrecht MCM. Hydroxylamine and the nitrogen cycle: A review. Vol. 190, Water Research. 2021.McDonald AE, Ivanov AG, Bode R, Maxwell DP, Rodermel SR, Hüner NPA. Flexibility in photosynthetic electron transport: The physiological role of plastoquinol terminal oxidase (PTOX). Vol. 1807, Biochimica et Biophysica Acta - Bioenergetics. 2011.Harris EH. The Chlamydomonas Sourcebook Volume1: Introduction to Chlamydomonas and Its Laboratory Use. Vol. 53, Journal of Chemical Information and Modeling. 2013.Takeuchi T, Benning C. Nitrogen-dependent coordination of cell cycle, quiescence and TAG accumulation in Chlamydomonas. Vol. 12, Biotechnology for Biofuels. 2019.Morando-Grijalva CA, Vázquez-Larios AL, Alcántara-Hernández RJ, Ortega-Clemente LA, Robledo-Narváez PN. Isolation of a freshwater microalgae and its application for the treatment of wastewater and obtaining fatty acids from tilapia cultivation. Environ Sci Pollut Res. 2020;27(23).Bellinger EG, Sigee DC. Freshwater Algae: Identification and Use as Bioindicators. Freshwater Algae: Identification and Use as Bioindicators. 2010.Pröschold T, Darienko T, Krienitz L, Coleman AW. Chlamydomonas schloesseri sp. nov. (Chlamydophyceae, Chlorophyta) revealed by morphology, autolysin cross experiments, and multiple gene analyses. Phytotaxa. 2018;362(1).Bux F, Chisti Y. Algae biotechnology. Products and processes. Green Energy Technol. 2016;(March).Huang Q, Jiang F, Wang L, Yang C. Design of Photobioreactors for Mass Cultivation of Photosynthetic Organisms. Engineering. 2017;3(3).Qin L, Gao M, Zhang M, Feng L, Liu Q, Zhang G. Application of encapsulated algae into MBR for high-ammonia nitrogen wastewater treatment and biofouling control. Water Res. 2020;187.Lebeau T, Robert JM. Biotechnology of immobilized micro algae: a culture technique for the future? Algal Cult Analog Bloom Appl. 2006;2(January 2006).Razak SBA, Sharip Z. The potential of phycoremediation in controlling eutrophication in tropical lake and reservoir: A review. Vol. 180, Desalination and Water Treatment. 2020.Kumar SD, Santhanam P, Park MS, Kim MK. Development and application of a novel immobilized marine microalgae biofilter system for the treatment of shrimp culture effluent. J Water Process Eng. 2016;13.Ecological and Genetic Implications of Aquaculture Activities. Ecological and Genetic Implications of Aquaculture Activities. 2007.Persson F, Långmark J, Heinicke G, Hedberg T, Tobiason J, Stenström TA, et al. Characterisation of the behaviour of particles in biofilters for pre-treatment of drinking water. Water Res. 2005;39(16).Youcai Z, Ziyang L. Leachate Pollution Control Technology at Sanitary Landfill. In: Pollution Control and Resource Recovery. 2017.Kirisits MJ, Emelko MB, Pinto AJ. Applying biotechnology for drinking water biofiltration: advancing science and practice. Vol. 57, Current Opinion in Biotechnology. 2019.Claydon LS. Rigour in quantitative research. Vol. 29, Nursing standard (Royal College of Nursing (Great Britain) : 1987). 2015.Mohajan HK. Quantitative Research: A Successful Investigation in Natural and Social Sciences. J Econ Dev Environ People. 2020;9(4).Galarza CR. Los alcances de una investigación. CienciAmérica. 2020;9.APHA. American Public Health Association (2005). Standard Methods for the Examination of Water and Wastewater. 21st Edition. American Public Health Association/American Water Works Association/Water Environment Federation, Washington DC. Stand Methods Exam Water Waste Water. 2005;Montenegro Ruiz LC. Aproximación al tratamiento de aguas residuales del lavado del café con las microalgas Parachlorella kessreli y Desmodesmus armatus. Rev Mutis. 2021 Dec;11:32–43.Ávila Peltroche JGJ. Remoción de nitratos y fosfatos por cepas nativas de Chlorella sp. (Chlorellaceae) y Chlamydomonas sp. (Chlamydomonadaceae) libres e inmovilizadas en aguas residuales municipales. Arnaldoa. 2018;25(2).Oluwole OR, Tobin CM, Banjo TT, Efunwoye OO, Awoyemi SO. The use of immobilized microalgal bead concentrations in the removal of ammonium nitrogen from synthetic wastewater. Niger J Biotechnol. 2019;36(1).Kamaruddin MA, Yuso MS, Aziz HA. Preparation and characterization of alginate beads by drop weight. Int J Technol. 2014;5(2).Posadas E, García-Encina PA, Domínguez A, Díaz I, Becares E, Blanco S, et al. Enclosed tubular and open algal-bacterial biofilm photobioreactors for carbon and nutrient removal from domestic wastewater. Ecol Eng. 2014;67.Lee K, Lee CG. Nitrogen removal from wastewater by microalgae without consuming organic carbon sources. J Microbiol Biotechnol. 2002;12(6).Gao Y, Yu J, Song Y, Zhu G, Paerl HW, Qin B. Spatial and temporal distribution characteristics of different forms of inorganic nitrogen in three types of rivers around Lake Taihu, China. Environ Sci Pollut Res. 2019;26(7).Radu G, Racoviteanu G. Removing ammonium from water intended for human consumption. A review of existing technologies. In: IOP Conference Series: Earth and Environmental Science. 2021.Jeon SM, Kim JH, Kim T, Park A, Ko AR, Ju SJ, et al. Morphological, molecular, and biochemical characterization of monounsaturated fatty acids-rich chlamydomonas sp. Kiost-1 isolated from Korea. J Microbiol Biotechnol. 2015;25(5).Xie P, Ho SH, Xiao QY, Xu XJ, Zhao L, Zhou X, et al. Revealing the role of nitrate on sulfide removal coupled with bioenergy production in Chlamydomonas sp. Tai-03: Metabolic pathways and mechanisms. J Hazard Mater. 2020;399.Yulistyorini A, Camargo-Valero MA. Microalgae Growth and Phosphorus Uptake of Chlamydomonas Reinhardtii 11/32C under Different Inorganic Nitrogen Sources. Int J Integr Eng. 2020;12(9).Ruiz-Marin A, Canedo-Lopez Y, Campos-Garcia S del C, Sabido-Perez MY, Zavala-Loria J del C. Biodegradation of wastewater pollutants by activated sludge coimmobilized with scenedesmus obliquus. Agrociencia. 2013;47(5).Salbitani G, Carfagna S. Ammonium utilization in microalgae: A sustainable method for wastewater treatment. Vol. 13, Sustainability (Switzerland). 2021.Taj Khanzada Z. Growing Fresh Water Microalgae in High Ammonium Landfill Leachate. Am J Mech Appl. 2018;6(2).Virtanen O, Valev D, Kruse O, Wobbe L, Tyystjärvi E. Photoinhibition and continuous growth of the wild-type and a high-light tolerant strain of chlamydomonas reinhardtii. Photosynthetica. 2019;57(2).Bonente G, Pippa S, Castellano S, Bassi R, Ballottari M. Acclimation of Chlamydomonas reinhardtii to different growth irradiances. J Biol Chem. 2012;287(8).Soo CL, Chen CA, Bojo O, Hii YS. Feasibility of Marine Microalgae Immobilization in Alginate Bead for Marine Water Treatment: Bead Stability, Cell Growth, and Ammonia Removal. Int J Polym Sci. 2017;2017.de Jesus GC, Gaspar Bastos R, Altenhofen da Silva M. Production and characterization of alginate beads for growth of immobilized Desmodesmus subspicatus and its potential to remove potassium, carbon and nitrogen from sugarcane vinasse. Biocatal Agric Biotechnol. 2019;22.Banerjee S, Tiwade PB, Sambhav K, Banerjee C, Bhaumik SK. Effect of alginate concentration in wastewater nutrient removal using alginate-immobilized microalgae beads: Uptake kinetics and adsorption studies. Biochem Eng J. 2019;149.Sanz-Luque E, Ocaña-Calahorro F, Llamas A, Galvan A, Fernandez E. Nitric oxide controls nitrate and ammonium assimilation in Chlamydomonas reinhardtii. J Exp Bot. 2013;64(11).Shen Y, Qiu S, Chen Z, Zhang Y, Trent J, Ge S. Free ammonia is the primary stress factor rather than total ammonium to Chlorella sorokiniana in simulated sludge fermentation liquor. Chem Eng J. 2020;397.Hong M, Ma Z, Wang X, Shen Y, Mo Z, Wu M, et al. Effects of light intensity and ammonium stress on photosynthesis in Sargassum fusiforme seedlings. Chemosphere. 2021;273.Gonçalves AL, Pires JCM, Simões M. A review on the use of microalgal consortia for wastewater treatment. Vol. 24, Algal Research. 2017.Roy D, Hassan K, Boopathy R. Effect of carbon to nitrogen (C:N) ratio on nitrogen removal from shrimp production waste water using sequencing batch reactor. J Ind Microbiol Biotechnol. 2010;37(10).Vergara C, Muñoz R, Campos JL, Seeger M, Jeison D. Influence of light intensity on bacterial nitrifying activity in algal-bacterial photobioreactors and its implications for microalgae-based wastewater treatment. Int Biodeterior Biodegrad. 2016;114.Su F, Li Z, Li Y, Xu L, Li Y, Li S, et al. Removal of total nitrogen and phosphorus using single or combinations of aquatic plants. Int J Environ Res Public Health. 2019;16(23).Garbayo I, León R, Vigara J, Vílchez C. Inhibition of nitrate consumption by nitrite in entrapped Chlamydomonas reinhardtii cells. Bioresour Technol. 2002;81(3).Garbayo I, León R, Vílchez C. Diffusion characteristics of nitrate and glycerol in alginate. Colloids Surfaces B Biointerfaces. 2002;25(1).Bloom AJ. Photorespiration and nitrate assimilation: A major intersection between plant carbon and nitrogen. Photosynth Res. 2015;123(2).Inokuchi R, Kuma KI, Miyata T, Okada M. Nitrogen-assimilating enzymes in land plants and algae: Phylogenic and physiological perspectives. Vol. 116, Physiologia Plantarum. 2002.Hagemann M, Bauwe H. Photorespiration and the potential to improve photosynthesis. Vol. 35, Current Opinion in Chemical Biology. 2016.Garbayo I, Vigara AJ, Conchon V, Dos Santos VAPM, Vílchez C. Nitrate consumption alterations induced by alginate-entrapment of Chlamydomonas reinhardtii cells. Process Biochem. 2000;36(5).González LE, Cañizares RO, Baena S. Efficiency of ammonia and phosphorus removal from a Colombian agroindustrial wastewater by the microalgae Chlorella vulgaris and Scenedesmus dimorphus. Bioresour Technol. 1997;60(3).Akizuki S, Kishi M, Cuevas-Rodríguez G, Toda T. Effects of different light conditions on ammonium removal in a consortium of microalgae and partial nitrifying granules. Vol. 171, Water Research. 2020.Kaplan D, Wilhelm R, Abeliovich A. Interdependent environmental factors controlling nitrification in waters. In: Water Science and Technology. 2000.Almomani F, Al Ketife A, Judd S, Shurair M, Bhosale RR, Znad H, et al. Impact of CO 2 concentration and ambient conditions on microalgal growth and nutrient removal from wastewater by a photobioreactor. Sci Total Environ. 2019;662.EutrofizaciónValladosMicroalgasBiofiltraciónCompuestos nitrogenadosORIGINAL1.TRABAJO.GRADO_VIVIANA.CAICEDO.PINEDA_M.MICROBIOLOGIA_2023-1.pdf1.TRABAJO.GRADO_VIVIANA.CAICEDO.PINEDA_M.MICROBIOLOGIA_2023-1.pdfapplication/pdf2645688https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/6835/1/1.TRABAJO.GRADO_VIVIANA.CAICEDO.PINEDA_M.MICROBIOLOGIA_2023-1.pdf135a3e52b6377d156a0a15354330a54aMD51open access1.Carta Derechos de autor_VivianaCaidedo_2023.pdf1.Carta Derechos de autor_VivianaCaidedo_2023.pdfapplication/pdf218113https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/6835/2/1.Carta%20Derechos%20de%20autor_VivianaCaidedo_2023.pdfbe47330bd4013588269c845e93101130MD52metadata only access1.FORMATO IDENTIFICACIÓN TRABAJOS DE GRADO BIBLIOTECA_VivanaCaicedo_2023.pdf1.FORMATO IDENTIFICACIÓN TRABAJOS DE GRADO BIBLIOTECA_VivanaCaicedo_2023.pdfapplication/pdf176994https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/6835/3/1.FORMATO%20IDENTIFICACI%c3%93N%20TRABAJOS%20DE%20GRADO%20BIBLIOTECA_VivanaCaicedo_2023.pdfc50715cdcfb08ac2c64ddb4d191a85f9MD53metadata only accessLICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/6835/4/license.txt2f9959eaf5b71fae44bbf9ec84150c7aMD54open accessTEXT1.TRABAJO.GRADO_VIVIANA.CAICEDO.PINEDA_M.MICROBIOLOGIA_2023-1.pdf.txt1.TRABAJO.GRADO_VIVIANA.CAICEDO.PINEDA_M.MICROBIOLOGIA_2023-1.pdf.txtExtracted texttext/plain127088https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/6835/5/1.TRABAJO.GRADO_VIVIANA.CAICEDO.PINEDA_M.MICROBIOLOGIA_2023-1.pdf.txt5b8e84516f4bfdeb5dcbfc801672114cMD55open access1.Carta Derechos de autor_VivianaCaidedo_2023.pdf.txt1.Carta Derechos de autor_VivianaCaidedo_2023.pdf.txtExtracted texttext/plain2608https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/6835/7/1.Carta%20Derechos%20de%20autor_VivianaCaidedo_2023.pdf.txt515524a5d2d70ecbf1160b7670a8fa3eMD57metadata only access1.FORMATO IDENTIFICACIÓN TRABAJOS DE GRADO BIBLIOTECA_VivanaCaicedo_2023.pdf.txt1.FORMATO IDENTIFICACIÓN TRABAJOS DE GRADO BIBLIOTECA_VivanaCaicedo_2023.pdf.txtExtracted texttext/plain2939https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/6835/9/1.FORMATO%20IDENTIFICACI%c3%93N%20TRABAJOS%20DE%20GRADO%20BIBLIOTECA_VivanaCaicedo_2023.pdf.txtf213f44f1affe09ca62f0ffb30243ad0MD59metadata only accessTHUMBNAIL1.TRABAJO.GRADO_VIVIANA.CAICEDO.PINEDA_M.MICROBIOLOGIA_2023-1.pdf.jpg1.TRABAJO.GRADO_VIVIANA.CAICEDO.PINEDA_M.MICROBIOLOGIA_2023-1.pdf.jpgGenerated Thumbnailimage/jpeg7298https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/6835/6/1.TRABAJO.GRADO_VIVIANA.CAICEDO.PINEDA_M.MICROBIOLOGIA_2023-1.pdf.jpg2a9036e6c29668a62d38772886fcc6f3MD56open access1.Carta Derechos de autor_VivianaCaidedo_2023.pdf.jpg1.Carta Derechos de autor_VivianaCaidedo_2023.pdf.jpgGenerated Thumbnailimage/jpeg12241https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/6835/8/1.Carta%20Derechos%20de%20autor_VivianaCaidedo_2023.pdf.jpgd379bfc30759a58c2796fa98d22f7a2eMD58metadata only access1.FORMATO IDENTIFICACIÓN TRABAJOS DE GRADO BIBLIOTECA_VivanaCaicedo_2023.pdf.jpg1.FORMATO IDENTIFICACIÓN TRABAJOS DE GRADO BIBLIOTECA_VivanaCaicedo_2023.pdf.jpgGenerated Thumbnailimage/jpeg12301https://repositorio.unicolmayor.edu.co/bitstream/unicolmayor/6835/10/1.FORMATO%20IDENTIFICACI%c3%93N%20TRABAJOS%20DE%20GRADO%20BIBLIOTECA_VivanaCaicedo_2023.pdf.jpg76bc9b1ced41f9b1c85b6c1e26f288c4MD510metadata only accessunicolmayor/6835oai:repositorio.unicolmayor.edu.co:unicolmayor/68352024-05-15 03:01:03.529An error occurred on the license name.|||https://creativecommons.org/licenses/by-nc/4.0/open accessBiblioteca Digital Unicolmayorrepositorio@unicolmayor.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=